diff --git a/dev/.doctrees/environment.pickle b/dev/.doctrees/environment.pickle index af66d1eeb..37d2e9d21 100644 Binary files a/dev/.doctrees/environment.pickle and b/dev/.doctrees/environment.pickle differ diff --git a/dev/.doctrees/index.doctree b/dev/.doctrees/index.doctree index 0d93ffa07..c70da8ef0 100644 Binary files a/dev/.doctrees/index.doctree and b/dev/.doctrees/index.doctree differ diff --git a/dev/.doctrees/notebooks/0.1-Theory.doctree b/dev/.doctrees/notebooks/0.1-Theory.doctree index 7fa4c707c..7a62e66c9 100644 Binary files a/dev/.doctrees/notebooks/0.1-Theory.doctree and b/dev/.doctrees/notebooks/0.1-Theory.doctree differ diff --git a/dev/.doctrees/notebooks/0.2-Creating_networks.doctree b/dev/.doctrees/notebooks/0.2-Creating_networks.doctree index cd338d5e0..04f08807a 100644 Binary files a/dev/.doctrees/notebooks/0.2-Creating_networks.doctree and b/dev/.doctrees/notebooks/0.2-Creating_networks.doctree differ diff --git a/dev/.doctrees/notebooks/0.3-Generalised_filtering.doctree b/dev/.doctrees/notebooks/0.3-Generalised_filtering.doctree index a28d2da70..d32b804e7 100644 Binary files a/dev/.doctrees/notebooks/0.3-Generalised_filtering.doctree and b/dev/.doctrees/notebooks/0.3-Generalised_filtering.doctree differ diff --git a/dev/.doctrees/notebooks/1.1-Binary_HGF.doctree b/dev/.doctrees/notebooks/1.1-Binary_HGF.doctree index f46456f07..95f6cf050 100644 Binary files a/dev/.doctrees/notebooks/1.1-Binary_HGF.doctree and b/dev/.doctrees/notebooks/1.1-Binary_HGF.doctree differ diff --git a/dev/.doctrees/notebooks/1.2-Categorical_HGF.doctree b/dev/.doctrees/notebooks/1.2-Categorical_HGF.doctree index 92e6273cd..de9c0273c 100644 Binary files a/dev/.doctrees/notebooks/1.2-Categorical_HGF.doctree and b/dev/.doctrees/notebooks/1.2-Categorical_HGF.doctree differ diff --git a/dev/.doctrees/notebooks/1.3-Continuous_HGF.doctree b/dev/.doctrees/notebooks/1.3-Continuous_HGF.doctree index e49eaad60..941870450 100644 Binary files a/dev/.doctrees/notebooks/1.3-Continuous_HGF.doctree and b/dev/.doctrees/notebooks/1.3-Continuous_HGF.doctree differ diff --git a/dev/.doctrees/notebooks/2-Using_custom_response_functions.doctree b/dev/.doctrees/notebooks/2-Using_custom_response_functions.doctree index ddbb22a4b..739885a94 100644 Binary files a/dev/.doctrees/notebooks/2-Using_custom_response_functions.doctree and b/dev/.doctrees/notebooks/2-Using_custom_response_functions.doctree differ diff --git a/dev/.doctrees/notebooks/3-Multilevel_HGF.doctree b/dev/.doctrees/notebooks/3-Multilevel_HGF.doctree index 7cc1620e7..c48e461de 100644 Binary files a/dev/.doctrees/notebooks/3-Multilevel_HGF.doctree and b/dev/.doctrees/notebooks/3-Multilevel_HGF.doctree differ diff --git a/dev/.doctrees/notebooks/4-Parameter_recovery.doctree b/dev/.doctrees/notebooks/4-Parameter_recovery.doctree index 93d3db4d6..259a859f6 100644 Binary files a/dev/.doctrees/notebooks/4-Parameter_recovery.doctree and b/dev/.doctrees/notebooks/4-Parameter_recovery.doctree differ diff --git a/dev/.doctrees/notebooks/5-Non_linear_value_coupling.doctree b/dev/.doctrees/notebooks/5-Non_linear_value_coupling.doctree index ce0de44be..2156511a1 100644 Binary files a/dev/.doctrees/notebooks/5-Non_linear_value_coupling.doctree and b/dev/.doctrees/notebooks/5-Non_linear_value_coupling.doctree differ diff --git a/dev/.doctrees/notebooks/Example_1_Heart_rate_variability.doctree b/dev/.doctrees/notebooks/Example_1_Heart_rate_variability.doctree index a4c328e30..0bdd8d06d 100644 Binary files a/dev/.doctrees/notebooks/Example_1_Heart_rate_variability.doctree and b/dev/.doctrees/notebooks/Example_1_Heart_rate_variability.doctree differ diff --git a/dev/.doctrees/notebooks/Example_2_Input_node_volatility_coupling.doctree b/dev/.doctrees/notebooks/Example_2_Input_node_volatility_coupling.doctree index 088272f9f..21849998f 100644 Binary files a/dev/.doctrees/notebooks/Example_2_Input_node_volatility_coupling.doctree and b/dev/.doctrees/notebooks/Example_2_Input_node_volatility_coupling.doctree differ diff --git a/dev/.doctrees/notebooks/Example_3_Multi_armed_bandit.doctree b/dev/.doctrees/notebooks/Example_3_Multi_armed_bandit.doctree index 992e4666a..d97d68492 100644 Binary files a/dev/.doctrees/notebooks/Example_3_Multi_armed_bandit.doctree and b/dev/.doctrees/notebooks/Example_3_Multi_armed_bandit.doctree differ diff --git a/dev/.doctrees/notebooks/Exercise_1_Introduction_to_the_generalised_hierarchical_gaussian_filter.doctree b/dev/.doctrees/notebooks/Exercise_1_Introduction_to_the_generalised_hierarchical_gaussian_filter.doctree index a78175890..10993eca4 100644 Binary files a/dev/.doctrees/notebooks/Exercise_1_Introduction_to_the_generalised_hierarchical_gaussian_filter.doctree and b/dev/.doctrees/notebooks/Exercise_1_Introduction_to_the_generalised_hierarchical_gaussian_filter.doctree differ diff --git a/dev/.doctrees/notebooks/Exercise_2_Bayesian_reinforcement_learning.doctree b/dev/.doctrees/notebooks/Exercise_2_Bayesian_reinforcement_learning.doctree index 26fbd2bea..eecd11657 100644 Binary files a/dev/.doctrees/notebooks/Exercise_2_Bayesian_reinforcement_learning.doctree and b/dev/.doctrees/notebooks/Exercise_2_Bayesian_reinforcement_learning.doctree differ diff --git a/dev/_images/0114064ed85fc215380fbdabb181c31d981c52cd56374cf008fa5b330f9abcd4.png b/dev/_images/0114064ed85fc215380fbdabb181c31d981c52cd56374cf008fa5b330f9abcd4.png new file mode 100644 index 000000000..221e5806d Binary files /dev/null and b/dev/_images/0114064ed85fc215380fbdabb181c31d981c52cd56374cf008fa5b330f9abcd4.png differ diff --git a/dev/_images/03fb89787c0643accb8e98ac41a9d68876aa156045737432f9b16d2298ee1722.png b/dev/_images/03fb89787c0643accb8e98ac41a9d68876aa156045737432f9b16d2298ee1722.png deleted file mode 100644 index 9733e5783..000000000 Binary files a/dev/_images/03fb89787c0643accb8e98ac41a9d68876aa156045737432f9b16d2298ee1722.png and /dev/null differ diff --git a/dev/_images/0654015973a91d306adb272fbcc4682092de2e20d14e9438c2a0d62578a1f8bd.png b/dev/_images/0654015973a91d306adb272fbcc4682092de2e20d14e9438c2a0d62578a1f8bd.png deleted file mode 100644 index ab1f88168..000000000 Binary files a/dev/_images/0654015973a91d306adb272fbcc4682092de2e20d14e9438c2a0d62578a1f8bd.png and /dev/null differ diff --git a/dev/_images/116ba179f38fe997ec8dd5339a7b7b45dfa4cde1ba660bc3e17fb7650e0e8251.png b/dev/_images/116ba179f38fe997ec8dd5339a7b7b45dfa4cde1ba660bc3e17fb7650e0e8251.png deleted file mode 100644 index 6b546c1cb..000000000 Binary files a/dev/_images/116ba179f38fe997ec8dd5339a7b7b45dfa4cde1ba660bc3e17fb7650e0e8251.png and /dev/null differ diff --git a/dev/_images/153b556a97f25d970d6291b1327cb3fcb130c3b279d03dc7b8cde6ca0282360c.png b/dev/_images/153b556a97f25d970d6291b1327cb3fcb130c3b279d03dc7b8cde6ca0282360c.png new file mode 100644 index 000000000..8bb73c303 Binary files /dev/null and b/dev/_images/153b556a97f25d970d6291b1327cb3fcb130c3b279d03dc7b8cde6ca0282360c.png differ diff --git a/dev/_images/1e72cff820cbd98e5bda7efefd8f287bfbe7f4e7ace42d66120f8d70f0b6cf7b.png b/dev/_images/1e72cff820cbd98e5bda7efefd8f287bfbe7f4e7ace42d66120f8d70f0b6cf7b.png deleted file mode 100644 index 79575bf57..000000000 Binary files a/dev/_images/1e72cff820cbd98e5bda7efefd8f287bfbe7f4e7ace42d66120f8d70f0b6cf7b.png and /dev/null differ diff --git a/dev/_images/233a6798deb950bae4abbce540aa2dfeecb8eed2dff2588e1274a89d750fa37b.png b/dev/_images/233a6798deb950bae4abbce540aa2dfeecb8eed2dff2588e1274a89d750fa37b.png new file mode 100644 index 000000000..1e31516e3 Binary files /dev/null and b/dev/_images/233a6798deb950bae4abbce540aa2dfeecb8eed2dff2588e1274a89d750fa37b.png differ diff --git a/dev/_images/24a47a30e61963b01e9fe86fc49f9457db4b4cba70774597cb0b25bd4df90686.png b/dev/_images/24a47a30e61963b01e9fe86fc49f9457db4b4cba70774597cb0b25bd4df90686.png new file mode 100644 index 000000000..052cb669e Binary files /dev/null and b/dev/_images/24a47a30e61963b01e9fe86fc49f9457db4b4cba70774597cb0b25bd4df90686.png differ diff --git a/dev/_images/26758b7f65167119e7f137514a3bb762c860517b1390d4fcfe48baf410db71e9.png b/dev/_images/26758b7f65167119e7f137514a3bb762c860517b1390d4fcfe48baf410db71e9.png deleted file mode 100644 index 12e079a84..000000000 Binary files a/dev/_images/26758b7f65167119e7f137514a3bb762c860517b1390d4fcfe48baf410db71e9.png and /dev/null differ diff --git a/dev/_images/29295e06c1eb5848e8e93428b9578e19846e291904b3a10dac6b94bf6757c447.png b/dev/_images/29295e06c1eb5848e8e93428b9578e19846e291904b3a10dac6b94bf6757c447.png new file mode 100644 index 000000000..2661d7162 Binary files /dev/null and b/dev/_images/29295e06c1eb5848e8e93428b9578e19846e291904b3a10dac6b94bf6757c447.png differ diff --git a/dev/_images/3c2af49a091ef1221eda36afd570a2dddbb7a0b9d97e8db6202753549f2caf95.png b/dev/_images/3c2af49a091ef1221eda36afd570a2dddbb7a0b9d97e8db6202753549f2caf95.png deleted file mode 100644 index 205d7a9e7..000000000 Binary files a/dev/_images/3c2af49a091ef1221eda36afd570a2dddbb7a0b9d97e8db6202753549f2caf95.png and /dev/null differ diff --git a/dev/_images/43e79bcefd6590e092d3b59bc4dd131a58b705fd6ad7a83cba69ab5ea61c6a9d.png b/dev/_images/43e79bcefd6590e092d3b59bc4dd131a58b705fd6ad7a83cba69ab5ea61c6a9d.png deleted file mode 100644 index ec075aab4..000000000 Binary files a/dev/_images/43e79bcefd6590e092d3b59bc4dd131a58b705fd6ad7a83cba69ab5ea61c6a9d.png and /dev/null differ diff --git a/dev/_images/444a5b2d70e469c857d0b6f9ff4444b2da08c87eb1a82cf600adef5ec0674682.png b/dev/_images/444a5b2d70e469c857d0b6f9ff4444b2da08c87eb1a82cf600adef5ec0674682.png new file mode 100644 index 000000000..3b31c8bb9 Binary files /dev/null and b/dev/_images/444a5b2d70e469c857d0b6f9ff4444b2da08c87eb1a82cf600adef5ec0674682.png differ diff --git a/dev/_images/484b00abaaf4ac30b26ae8ca84aea19f5e0a7f9f5a6630a5ff919f28ff2e7177.png b/dev/_images/484b00abaaf4ac30b26ae8ca84aea19f5e0a7f9f5a6630a5ff919f28ff2e7177.png new file mode 100644 index 000000000..44626bf58 Binary files /dev/null and b/dev/_images/484b00abaaf4ac30b26ae8ca84aea19f5e0a7f9f5a6630a5ff919f28ff2e7177.png differ diff --git a/dev/_images/543db542df16a7681d3b72a722653b6598b2d1e06fc5c4d3cf7a9b8da13ebbcc.png b/dev/_images/543db542df16a7681d3b72a722653b6598b2d1e06fc5c4d3cf7a9b8da13ebbcc.png deleted file mode 100644 index ddc9a1172..000000000 Binary files a/dev/_images/543db542df16a7681d3b72a722653b6598b2d1e06fc5c4d3cf7a9b8da13ebbcc.png and /dev/null differ diff --git a/dev/_images/5a99396fb2358fd3bde2ff8f77e2f78d0f7e3ccfc4c3dfae1a701d179cc8db48.png b/dev/_images/5a99396fb2358fd3bde2ff8f77e2f78d0f7e3ccfc4c3dfae1a701d179cc8db48.png deleted file mode 100644 index a3cfdd0fd..000000000 Binary files a/dev/_images/5a99396fb2358fd3bde2ff8f77e2f78d0f7e3ccfc4c3dfae1a701d179cc8db48.png and /dev/null differ diff --git a/dev/_images/5d435b3fb0dce7a7d45dea210135000420dfc59cdf7bc28380708a90f0e7acd2.png b/dev/_images/5d435b3fb0dce7a7d45dea210135000420dfc59cdf7bc28380708a90f0e7acd2.png new file mode 100644 index 000000000..049a78753 Binary files /dev/null and b/dev/_images/5d435b3fb0dce7a7d45dea210135000420dfc59cdf7bc28380708a90f0e7acd2.png differ diff --git a/dev/_images/6354f5db8b71a5abba6da48fe89d82f65317368c8531aed7fb8329a7425e3bec.png b/dev/_images/6354f5db8b71a5abba6da48fe89d82f65317368c8531aed7fb8329a7425e3bec.png deleted file mode 100644 index e38ce9642..000000000 Binary files a/dev/_images/6354f5db8b71a5abba6da48fe89d82f65317368c8531aed7fb8329a7425e3bec.png and /dev/null differ diff --git a/dev/_images/663965b834f90357f811ded970ac0de9a39a11aa030eb6b9a3ba2792c2a0fa96.png b/dev/_images/663965b834f90357f811ded970ac0de9a39a11aa030eb6b9a3ba2792c2a0fa96.png deleted file mode 100644 index a26affe8a..000000000 Binary files a/dev/_images/663965b834f90357f811ded970ac0de9a39a11aa030eb6b9a3ba2792c2a0fa96.png and /dev/null differ diff --git a/dev/_images/73d8ac4564bd7c20f638b42d402ff89f69cb42565445a575c3ae7a7eaed6265a.png b/dev/_images/73d8ac4564bd7c20f638b42d402ff89f69cb42565445a575c3ae7a7eaed6265a.png deleted file mode 100644 index 2ba687779..000000000 Binary files a/dev/_images/73d8ac4564bd7c20f638b42d402ff89f69cb42565445a575c3ae7a7eaed6265a.png and /dev/null differ diff --git a/dev/_images/75ba141784c329581c8af75cb93813932383738b8ca02503f189e93e19a34736.png b/dev/_images/75ba141784c329581c8af75cb93813932383738b8ca02503f189e93e19a34736.png new file mode 100644 index 000000000..134cbbec1 Binary files /dev/null and b/dev/_images/75ba141784c329581c8af75cb93813932383738b8ca02503f189e93e19a34736.png differ diff --git a/dev/_images/76b5d8f3b2720d8b557c96ba18307540d719cc34c421c5c0daea3276bc5e79cc.png b/dev/_images/76b5d8f3b2720d8b557c96ba18307540d719cc34c421c5c0daea3276bc5e79cc.png new file mode 100644 index 000000000..203b164e4 Binary files /dev/null and b/dev/_images/76b5d8f3b2720d8b557c96ba18307540d719cc34c421c5c0daea3276bc5e79cc.png differ diff --git a/dev/_images/7e3bd8562916a392a1a27ed3e938adba5309476da2be4f67e8bcd1e4f37b375e.png b/dev/_images/7e3bd8562916a392a1a27ed3e938adba5309476da2be4f67e8bcd1e4f37b375e.png new file mode 100644 index 000000000..cca2517f1 Binary files /dev/null and b/dev/_images/7e3bd8562916a392a1a27ed3e938adba5309476da2be4f67e8bcd1e4f37b375e.png differ diff --git a/dev/_images/845bbb99a5a68380c8f37c9a41b24da15cdbf5600b51de63e556a08bea0cebf0.png b/dev/_images/845bbb99a5a68380c8f37c9a41b24da15cdbf5600b51de63e556a08bea0cebf0.png new file mode 100644 index 000000000..9776e833c Binary files /dev/null and b/dev/_images/845bbb99a5a68380c8f37c9a41b24da15cdbf5600b51de63e556a08bea0cebf0.png differ diff --git a/dev/_images/8bf90f4f5d0ef6dadf9792093612016fa74bc479b8d59f26cec6598902af92a1.png b/dev/_images/8bf90f4f5d0ef6dadf9792093612016fa74bc479b8d59f26cec6598902af92a1.png deleted file mode 100644 index 111db8f49..000000000 Binary files a/dev/_images/8bf90f4f5d0ef6dadf9792093612016fa74bc479b8d59f26cec6598902af92a1.png and /dev/null differ diff --git a/dev/_images/8eaaca2275dc895d6c8d7af5dd218d2046fa14b35405a262a1944435e63f3cb2.png b/dev/_images/8eaaca2275dc895d6c8d7af5dd218d2046fa14b35405a262a1944435e63f3cb2.png deleted file mode 100644 index c336a0b9d..000000000 Binary files a/dev/_images/8eaaca2275dc895d6c8d7af5dd218d2046fa14b35405a262a1944435e63f3cb2.png and /dev/null differ diff --git a/dev/_images/8fea7168fa17fc6b3d40923278b3870df3af8a2ff131b79212752f9137921a7d.png b/dev/_images/8fea7168fa17fc6b3d40923278b3870df3af8a2ff131b79212752f9137921a7d.png deleted file mode 100644 index 787aa85bc..000000000 Binary files a/dev/_images/8fea7168fa17fc6b3d40923278b3870df3af8a2ff131b79212752f9137921a7d.png and /dev/null differ diff --git a/dev/_images/959562fb3a66897575e221465c228219570f40a9822de7a34232571fb9f96c69.png b/dev/_images/959562fb3a66897575e221465c228219570f40a9822de7a34232571fb9f96c69.png deleted file mode 100644 index 67e6f0a4c..000000000 Binary files a/dev/_images/959562fb3a66897575e221465c228219570f40a9822de7a34232571fb9f96c69.png and /dev/null differ diff --git a/dev/_images/97166c2bbfb27aa4121c75c0556324aeed771b61ae8c83290ba1f5e3145b71ff.png b/dev/_images/97166c2bbfb27aa4121c75c0556324aeed771b61ae8c83290ba1f5e3145b71ff.png deleted file mode 100644 index d26f75a28..000000000 Binary files a/dev/_images/97166c2bbfb27aa4121c75c0556324aeed771b61ae8c83290ba1f5e3145b71ff.png and /dev/null differ diff --git a/dev/_images/9d3c39a39f31badddb0ffc16c50176f00817b02bd365f7370cd035c9e158ccab.png b/dev/_images/9d3c39a39f31badddb0ffc16c50176f00817b02bd365f7370cd035c9e158ccab.png new file mode 100644 index 000000000..f72355289 Binary files /dev/null and b/dev/_images/9d3c39a39f31badddb0ffc16c50176f00817b02bd365f7370cd035c9e158ccab.png differ diff --git a/dev/_images/a736e444ca28d861f03c5b1dbdbf7a5534c2e37289ddb786f22fbed2cf8b8537.png b/dev/_images/a736e444ca28d861f03c5b1dbdbf7a5534c2e37289ddb786f22fbed2cf8b8537.png new file mode 100644 index 000000000..504b35df0 Binary files /dev/null and b/dev/_images/a736e444ca28d861f03c5b1dbdbf7a5534c2e37289ddb786f22fbed2cf8b8537.png differ diff --git a/dev/_images/a98848f23487345169ba0443080bc719c8abc65be7ebe18b918c4a829074b564.svg b/dev/_images/a98848f23487345169ba0443080bc719c8abc65be7ebe18b918c4a829074b564.svg new file mode 100644 index 000000000..77ad0410e --- /dev/null +++ b/dev/_images/a98848f23487345169ba0443080bc719c8abc65be7ebe18b918c4a829074b564.svg @@ -0,0 +1,135 @@ + + + + + + +%3 + + +cluster10 + +10 + + +cluster10 x 320 + +10 x 320 + + + +mu_volatility + +mu_volatility +~ +Normal + + + +volatility + +volatility +~ +Normal + + + +mu_volatility->volatility + + + + + +sigma_volatility + +sigma_volatility +~ +HalfNormal + + + +sigma_volatility->volatility + + + + + +sigma_temperature + +sigma_temperature +~ +HalfNormal + + + +inverse_temperature + +inverse_temperature +~ +LogNormal + + + +sigma_temperature->inverse_temperature + + + + + +mu_temperature + +mu_temperature +~ +Normal + + + +mu_temperature->inverse_temperature + + + + + +pointwise_loglikelihood + +pointwise_loglikelihood +~ +Deterministic + + + +volatility->pointwise_loglikelihood + + + + + +log_likelihood + +log_likelihood +~ +CustomDist_log_likelihood + + + +volatility->log_likelihood + + + + + +inverse_temperature->pointwise_loglikelihood + + + + + +inverse_temperature->log_likelihood + + + + + \ No newline at end of file diff --git a/dev/_images/acbf6fbb2ca082f097ee859d4d468b99bced871ccca24ef9f1f162c2d526acf5.png b/dev/_images/acbf6fbb2ca082f097ee859d4d468b99bced871ccca24ef9f1f162c2d526acf5.png new file mode 100644 index 000000000..7c431c9a2 Binary files /dev/null and b/dev/_images/acbf6fbb2ca082f097ee859d4d468b99bced871ccca24ef9f1f162c2d526acf5.png differ diff --git a/dev/_images/b166c9e058ffa8deed6689419f3e89e8e9b3cc5fb37d3b9af4f796813f732b5d.png b/dev/_images/b166c9e058ffa8deed6689419f3e89e8e9b3cc5fb37d3b9af4f796813f732b5d.png deleted file mode 100644 index ecb93f06f..000000000 Binary files a/dev/_images/b166c9e058ffa8deed6689419f3e89e8e9b3cc5fb37d3b9af4f796813f732b5d.png and /dev/null differ diff --git a/dev/_images/b2380c69c6d5faafdf3900c8af8e443b44078eca2d972dd859ee992193092346.png b/dev/_images/b2380c69c6d5faafdf3900c8af8e443b44078eca2d972dd859ee992193092346.png new file mode 100644 index 000000000..1f3b1650d Binary files /dev/null and b/dev/_images/b2380c69c6d5faafdf3900c8af8e443b44078eca2d972dd859ee992193092346.png differ diff --git a/dev/_images/b590b5cd35858b7bc5468f4ec04fb54d78f94f07ab100ccb8c0654aa00868bac.png b/dev/_images/b590b5cd35858b7bc5468f4ec04fb54d78f94f07ab100ccb8c0654aa00868bac.png new file mode 100644 index 000000000..521f1abbf Binary files /dev/null and b/dev/_images/b590b5cd35858b7bc5468f4ec04fb54d78f94f07ab100ccb8c0654aa00868bac.png differ diff --git a/dev/_images/c2323feef5f512fa702bf0200886fedd958eff5909a06f494c20993ed655e808.png b/dev/_images/c2323feef5f512fa702bf0200886fedd958eff5909a06f494c20993ed655e808.png new file mode 100644 index 000000000..5e5e55947 Binary files /dev/null and b/dev/_images/c2323feef5f512fa702bf0200886fedd958eff5909a06f494c20993ed655e808.png differ diff --git a/dev/_images/c2addc030e95a741b204403278a335639b22c9f55b68c4cc241636030def7471.png b/dev/_images/c2addc030e95a741b204403278a335639b22c9f55b68c4cc241636030def7471.png new file mode 100644 index 000000000..9a0e9153b Binary files /dev/null and b/dev/_images/c2addc030e95a741b204403278a335639b22c9f55b68c4cc241636030def7471.png differ diff --git a/dev/_images/c411ee3d5073f99c48bd56f340be14983ec30e0e6d7608ae6da3ae1f9897a83f.png b/dev/_images/c411ee3d5073f99c48bd56f340be14983ec30e0e6d7608ae6da3ae1f9897a83f.png new file mode 100644 index 000000000..bd4f3d5e4 Binary files /dev/null and b/dev/_images/c411ee3d5073f99c48bd56f340be14983ec30e0e6d7608ae6da3ae1f9897a83f.png differ diff --git a/dev/_images/c816db92f3ac56f0832f5324c2ee4379cc3e7a74400c2bd6c298ccb92ab42712.png b/dev/_images/c816db92f3ac56f0832f5324c2ee4379cc3e7a74400c2bd6c298ccb92ab42712.png new file mode 100644 index 000000000..285c615f7 Binary files /dev/null and b/dev/_images/c816db92f3ac56f0832f5324c2ee4379cc3e7a74400c2bd6c298ccb92ab42712.png differ diff --git a/dev/_images/caa79567721dd81873a5b2b664d2e17b8b5d6b2ea1e074167f759160207a973d.png b/dev/_images/caa79567721dd81873a5b2b664d2e17b8b5d6b2ea1e074167f759160207a973d.png deleted file mode 100644 index 79e4c2d86..000000000 Binary files a/dev/_images/caa79567721dd81873a5b2b664d2e17b8b5d6b2ea1e074167f759160207a973d.png and /dev/null differ diff --git a/dev/_images/cd388337c92dcb3193299b1087136df0ab25680b6d2e7bbaa43435e0a2db95b6.svg b/dev/_images/cd388337c92dcb3193299b1087136df0ab25680b6d2e7bbaa43435e0a2db95b6.svg deleted file mode 100644 index d8c709fab..000000000 --- a/dev/_images/cd388337c92dcb3193299b1087136df0ab25680b6d2e7bbaa43435e0a2db95b6.svg +++ /dev/null @@ -1,135 +0,0 @@ - - - - - - -%3 - - -cluster10 - -10 - - -cluster10 x 320 - -10 x 320 - - - -mu_temperature - -mu_temperature -~ -Normal - - - -inverse_temperature - -inverse_temperature -~ -LogNormal - - - -mu_temperature->inverse_temperature - - - - - -mu_volatility - -mu_volatility -~ -Normal - - - -volatility - -volatility -~ -Normal - - - -mu_volatility->volatility - - - - - -sigma_volatility - -sigma_volatility -~ -HalfNormal - - - -sigma_volatility->volatility - - - - - -sigma_temperature - -sigma_temperature -~ -HalfNormal - - - -sigma_temperature->inverse_temperature - - - - - -log_likelihood - -log_likelihood -~ -CustomDist_log_likelihood - - - -inverse_temperature->log_likelihood - - - - - -pointwise_loglikelihood - -pointwise_loglikelihood -~ -Deterministic - - - -inverse_temperature->pointwise_loglikelihood - - - - - -volatility->log_likelihood - - - - - -volatility->pointwise_loglikelihood - - - - - \ No newline at end of file diff --git a/dev/_images/d795c16f780b3629d7892222d25649d814af2b4887a94bfe8a42519157ee1c95.png b/dev/_images/d795c16f780b3629d7892222d25649d814af2b4887a94bfe8a42519157ee1c95.png new file mode 100644 index 000000000..b300c2a97 Binary files /dev/null and b/dev/_images/d795c16f780b3629d7892222d25649d814af2b4887a94bfe8a42519157ee1c95.png differ diff --git a/dev/_images/dfd5447e2f78b946df72f1f7169ec6d98555857bcc7e2db1bfdc805be5fcb4fc.png b/dev/_images/dfd5447e2f78b946df72f1f7169ec6d98555857bcc7e2db1bfdc805be5fcb4fc.png deleted file mode 100644 index 32342eebd..000000000 Binary files a/dev/_images/dfd5447e2f78b946df72f1f7169ec6d98555857bcc7e2db1bfdc805be5fcb4fc.png and /dev/null differ diff --git a/dev/_images/e17b5b4df71d585ba8be22e3032e1d2cdd32f7dce1d4f014dbaa4b34790e3a4c.png b/dev/_images/e17b5b4df71d585ba8be22e3032e1d2cdd32f7dce1d4f014dbaa4b34790e3a4c.png deleted file mode 100644 index 7311a4dd9..000000000 Binary files a/dev/_images/e17b5b4df71d585ba8be22e3032e1d2cdd32f7dce1d4f014dbaa4b34790e3a4c.png and /dev/null differ diff --git a/dev/_images/c220766790f0ac4c23d169d2a6b8286c1b66ca2bf50f19e9b1c2b87730c5efa1.svg b/dev/_images/e3093df40c606a365fce51328bb90c832e9b204e89fed0d0688e3e2fdb1677dd.svg similarity index 93% rename from dev/_images/c220766790f0ac4c23d169d2a6b8286c1b66ca2bf50f19e9b1c2b87730c5efa1.svg rename to dev/_images/e3093df40c606a365fce51328bb90c832e9b204e89fed0d0688e3e2fdb1677dd.svg index ed17b147f..6acc91819 100644 --- a/dev/_images/c220766790f0ac4c23d169d2a6b8286c1b66ca2bf50f19e9b1c2b87730c5efa1.svg +++ b/dev/_images/e3093df40c606a365fce51328bb90c832e9b204e89fed0d0688e3e2fdb1677dd.svg @@ -9,39 +9,39 @@ %3 - + +tonic_volatility_3 + +tonic_volatility_3 +~ +Normal + + + hgf_loglike hgf_loglike ~ Potential - - -tonic_volatility_2 - -tonic_volatility_2 -~ -Uniform - - + -tonic_volatility_2->hgf_loglike +tonic_volatility_3->hgf_loglike - - -tonic_volatility_3 + + +tonic_volatility_2 -tonic_volatility_3 +tonic_volatility_2 ~ -Normal +Uniform - + -tonic_volatility_3->hgf_loglike +tonic_volatility_2->hgf_loglike diff --git a/dev/_images/e471bdfe6e97fd35d7668e61f2864bc512c2551617b3837477c2925b4d3a7abc.png b/dev/_images/e471bdfe6e97fd35d7668e61f2864bc512c2551617b3837477c2925b4d3a7abc.png deleted file mode 100644 index 3b461d5b5..000000000 Binary files a/dev/_images/e471bdfe6e97fd35d7668e61f2864bc512c2551617b3837477c2925b4d3a7abc.png and /dev/null differ diff --git a/dev/_images/e4a0ac1e1d1a1c73a4ea74ca9c2684ff9ab30c93926efc4d3621dd368b9cab39.png b/dev/_images/e4a0ac1e1d1a1c73a4ea74ca9c2684ff9ab30c93926efc4d3621dd368b9cab39.png deleted file mode 100644 index 675948660..000000000 Binary files a/dev/_images/e4a0ac1e1d1a1c73a4ea74ca9c2684ff9ab30c93926efc4d3621dd368b9cab39.png and /dev/null differ diff --git a/dev/_images/ee706bd40c79698e726fe0acdf05a8694dc4031d023476e5da2318161cd5cf03.png b/dev/_images/ee706bd40c79698e726fe0acdf05a8694dc4031d023476e5da2318161cd5cf03.png new file mode 100644 index 000000000..85296af76 Binary files /dev/null and b/dev/_images/ee706bd40c79698e726fe0acdf05a8694dc4031d023476e5da2318161cd5cf03.png differ diff --git a/dev/_images/f7d82d5f5d4e76e152d144cab2ec19d7306e6744f7beffa04d8bbefb09e155cb.png b/dev/_images/f7d82d5f5d4e76e152d144cab2ec19d7306e6744f7beffa04d8bbefb09e155cb.png deleted file mode 100644 index cffff14ce..000000000 Binary files a/dev/_images/f7d82d5f5d4e76e152d144cab2ec19d7306e6744f7beffa04d8bbefb09e155cb.png and /dev/null differ diff --git a/dev/_images/fcaf294a75fafe9c0dabc7e2e2643f61e1c78b78bf8d7b7c74f489d637b37f5e.png b/dev/_images/fcaf294a75fafe9c0dabc7e2e2643f61e1c78b78bf8d7b7c74f489d637b37f5e.png new file mode 100644 index 000000000..f6920b0f5 Binary files /dev/null and b/dev/_images/fcaf294a75fafe9c0dabc7e2e2643f61e1c78b78bf8d7b7c74f489d637b37f5e.png differ diff --git a/dev/_images/graph_network.svg b/dev/_images/graph_network.svg index 0218ad7b7..437fd102b 100644 --- a/dev/_images/graph_network.svg +++ b/dev/_images/graph_network.svg @@ -28,15 +28,15 @@ inkscape:document-units="mm" showgrid="false" showguides="true" - inkscape:zoom="1.4324916" - inkscape:cx="255.49888" - inkscape:cy="131.5889" - inkscape:window-width="2400" - inkscape:window-height="1261" - inkscape:window-x="2391" + inkscape:zoom="1.0129245" + inkscape:cx="238.91217" + inkscape:cy="237.43131" + inkscape:window-width="1920" + inkscape:window-height="991" + inkscape:window-x="-9" inkscape:window-y="-9" inkscape:window-maximized="1" - inkscape:current-layer="layer1">Update functionsUpdate functionsAttributesAttributesEdgesEdges + r="1.1101313" /> diff --git a/dev/_images/logo.svg b/dev/_images/logo.svg deleted file mode 100644 index df4b352ef..000000000 --- a/dev/_images/logo.svg +++ /dev/null @@ -1,373 +0,0 @@ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - image/svg+xml - - - - - - - - - - - - - - F - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - diff --git a/dev/_images/trajectories.png b/dev/_images/trajectories.png index 7df45a2ff..516bdb54d 100644 Binary files a/dev/_images/trajectories.png and b/dev/_images/trajectories.png differ diff --git a/dev/_sources/index.md.txt b/dev/_sources/index.md.txt index d892c4500..ec85757d1 100644 --- a/dev/_sources/index.md.txt +++ b/dev/_sources/index.md.txt @@ -1,10 +1,10 @@ -![png](./images/logo.svg) - [![pre-commit](https://img.shields.io/badge/pre--commit-enabled-brightgreen?logo=pre-commit&logoColor=white)](https://github.com/pre-commit/pre-commit) [![license](https://img.shields.io/badge/License-GPL%20v3-blue.svg)](https://github.com/ilabcode/pyhgf/blob/master/LICENSE) [![codecov](https://codecov.io/gh/ilabcode/pyhgf/branch/master/graph/badge.svg)](https://codecov.io/gh/ilabcode/pyhgf) [![black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black) [![mypy](http://www.mypy-lang.org/static/mypy_badge.svg)](http://mypy-lang.org/) [![Imports: isort](https://img.shields.io/badge/%20imports-isort-%231674b1?style=flat&labelColor=ef8336)](https://pycqa.github.io/isort/) [![pip](https://badge.fury.io/py/pyhgf.svg)](https://badge.fury.io/py/pyhgf) # PyHGF: A Neural Network Library for Predictive Coding -PyHGF is a Python library to create and manipulate dynamic hierarchical probabilistic networks for predictive coding. The networks can approximate Bayesian inference and optimize beliefs through the diffusion of predictions and precision-weighted prediction errors, and their structure is flexible during both observation and inference. These systems can serve as biologically plausible cognitive models for computational psychiatry and reinforcement learning or as a generalisation of Bayesian filtering to arbitrarily sized dynamic graphical structures for signal processing or decision-making agents. The default implementation supports the generalisation and nodalisation of the Hierarchical Gaussian Filters for predictive coding (gHGF, Weber et al., 2024), but the framework is flexible enough to support any possible algorithm. The library is written on top of [JAX](https://jax.readthedocs.io/en/latest/jax.html), the core functions are derivable and JIT-able whenever feasible and it is possible to sample free parameters from a network under given observations. It is conceived to facilitate manipulation and modularity, so the user can focus on modeling while interfacing smoothly with other libraries in the ecosystem for Bayesian inference or optimization. A binding with an implementation in [Rust](https://www.rust-lang.org/) - that will provide full flexibility on structures during inference - is also under active development. +hgf + +PyHGF is a Python library to create and manipulate dynamic probabilistic networks for predictive coding. The networks can approximate Bayesian inference and optimize beliefs through the diffusion of predictions and precision-weighted prediction errors, and their structure is flexible during both observation and inference. These systems can serve as biologically plausible cognitive models for computational psychiatry and reinforcement learning or as a generalisation of Bayesian filtering to arbitrarily sized dynamic graphical structures for signal processing or decision-making agents. The default implementation supports the generalisation and nodalisation of the Hierarchical Gaussian Filters for predictive coding (gHGF, Weber et al., 2024), but the framework is flexible enough to support any possible algorithm. The library is written on top of [JAX](https://jax.readthedocs.io/en/latest/jax.html), the core functions are derivable and JIT-able whenever feasible and it is possible to sample free parameters from a network under given observations. It is conceived to facilitate manipulation and modularity, so the user can focus on modeling while interfacing smoothly with other libraries in the ecosystem for Bayesian inference or optimization. A binding with an implementation in [Rust](https://www.rust-lang.org/) - that will provide full flexibility on structures during inference - is also under active development. * 📖 [API Documentation](https://ilabcode.github.io/pyhgf/api.html) * ✏️ [Tutorials and examples](https://ilabcode.github.io/pyhgf/learn.html) @@ -27,7 +27,7 @@ pip install “git+https://github.com/ilabcode/pyhgf.git” ### How does it work? -A dynamic hierarchical probabilistic network can be defined as a tuple containing the following variables: +Dynamic networks can be defined as a tuple containing the following variables: * The attributes (dictionary) that store each node's states and parameters (e.g. value, precision, learning rates, volatility coupling, ...). * The edges (tuple) that lists, for each node, the indexes of the parents and children. @@ -44,9 +44,9 @@ You can find a deeper introduction to how to create and manipulate networks unde ### The Generalized Hierarchical Gaussian Filter -Generalized Hierarchical Gaussian Filters (gHGF) are specific instances of dynamic probabilistic networks where each node encodes a Gaussian distribution that inherits its value (mean) and volatility (variance) from its parent. The presentation of a new observation at the lowest level of the hierarchy (i.e., the input node) triggers a recursive update of the nodes' belief (i.e., posterior distribution) through top-down predictions and bottom-up precision-weighted prediction errors. The resulting probabilistic network operates as a Bayesian filter, and a decision function can parametrize actions/decisions given the current beliefs. By comparing those behaviours with actual outcomes, a surprise function can be optimized over a set of free parameters. The Hierarchical Gaussian Filter for binary and continuous inputs was first described in Mathys et al. (2011, 2014), and later implemented in the Matlab HGF Toolbox (part of [TAPAS](https://translationalneuromodeling.github.io/tapas) (Frässle et al. 2021). +Generalized Hierarchical Gaussian Filters (gHGF) are specific instances of dynamic networks where node encodes a Gaussian distribution that can inherit its value (mean) and volatility (variance) from other nodes. The presentation of a new observation at the lowest level of the hierarchy (i.e., the input node) triggers a recursive update of the nodes' belief (i.e., posterior distribution) through top-down predictions and bottom-up precision-weighted prediction errors. The resulting probabilistic network operates as a Bayesian filter, and a response function can parametrize actions/decisions given the current beliefs. By comparing those behaviours with actual outcomes, a surprise function can be optimized over a set of free parameters. The Hierarchical Gaussian Filter for binary and continuous inputs was first described in Mathys et al. (2011, 2014), and later implemented in the Matlab HGF Toolbox (part of [TAPAS](https://translationalneuromodeling.github.io/tapas) (Frässle et al. 2021). -You can find a deeper introduction on how does the HGF works under the following link: +You can find a deeper introduction on how does the gHGF works under the following link: * 🎓 [Introduction to the Hierarchical Gaussian Filter](https://ilabcode.github.io/pyhgf/notebooks/0.2-Theory.html#theory) @@ -64,9 +64,8 @@ u, y = load_data("binary") # Create a two-level binary HGF from scratch hgf = ( Network() - .add_nodes(kind="binary-input") - .add_nodes(kind="binary-state", value_children=0) - .add_nodes(kind="continuous-state", value_children=1) + .add_nodes(kind="binary-state") + .add_nodes(kind="continuous-state", value_children=0) ) # add new observations @@ -96,7 +95,7 @@ print(f"Sum of surprises = {surprise.sum()}") ## Acknowledgments -This implementation of the Hierarchical Gaussian Filter was inspired by the original [Matlab HGF Toolbox](https://translationalneuromodeling.github.io/tapas). A Julia implementation with similar aims is also available [here](https://github.com/ilabcode/HGF.jl). +This implementation of the Hierarchical Gaussian Filter was inspired by the original [Matlab HGF Toolbox](https://translationalneuromodeling.github.io/tapas). A Julia implementation is also available [here](https://github.com/ilabcode/HGF.jl). ## References diff --git a/dev/index.html b/dev/index.html index e812fdf15..9bd5459b5 100644 --- a/dev/index.html +++ b/dev/index.html @@ -423,11 +423,11 @@
-

png

-

pre-commit license codecov black mypy Imports: isort pip

+

pre-commit license codecov black mypy Imports: isort pip

PyHGF: A Neural Network Library for Predictive Coding#

-

PyHGF is a Python library to create and manipulate dynamic hierarchical probabilistic networks for predictive coding. The networks can approximate Bayesian inference and optimize beliefs through the diffusion of predictions and precision-weighted prediction errors, and their structure is flexible during both observation and inference. These systems can serve as biologically plausible cognitive models for computational psychiatry and reinforcement learning or as a generalisation of Bayesian filtering to arbitrarily sized dynamic graphical structures for signal processing or decision-making agents. The default implementation supports the generalisation and nodalisation of the Hierarchical Gaussian Filters for predictive coding (gHGF, Weber et al., 2024), but the framework is flexible enough to support any possible algorithm. The library is written on top of JAX, the core functions are derivable and JIT-able whenever feasible and it is possible to sample free parameters from a network under given observations. It is conceived to facilitate manipulation and modularity, so the user can focus on modeling while interfacing smoothly with other libraries in the ecosystem for Bayesian inference or optimization. A binding with an implementation in Rust - that will provide full flexibility on structures during inference - is also under active development.

+hgf +

PyHGF is a Python library to create and manipulate dynamic probabilistic networks for predictive coding. The networks can approximate Bayesian inference and optimize beliefs through the diffusion of predictions and precision-weighted prediction errors, and their structure is flexible during both observation and inference. These systems can serve as biologically plausible cognitive models for computational psychiatry and reinforcement learning or as a generalisation of Bayesian filtering to arbitrarily sized dynamic graphical structures for signal processing or decision-making agents. The default implementation supports the generalisation and nodalisation of the Hierarchical Gaussian Filters for predictive coding (gHGF, Weber et al., 2024), but the framework is flexible enough to support any possible algorithm. The library is written on top of JAX, the core functions are derivable and JIT-able whenever feasible and it is possible to sample free parameters from a network under given observations. It is conceived to facilitate manipulation and modularity, so the user can focus on modeling while interfacing smoothly with other libraries in the ecosystem for Bayesian inference or optimization. A binding with an implementation in Rust - that will provide full flexibility on structures during inference - is also under active development.

  • 📖 API Documentation

  • ✏️ Tutorials and examples

  • @@ -447,7 +447,7 @@

    Installation

    How does it work?#

    -

    A dynamic hierarchical probabilistic network can be defined as a tuple containing the following variables:

    +

    Dynamic networks can be defined as a tuple containing the following variables:

    • The attributes (dictionary) that store each node’s states and parameters (e.g. value, precision, learning rates, volatility coupling, …).

    • The edges (tuple) that lists, for each node, the indexes of the parents and children.

    • @@ -462,8 +462,8 @@

      How does it work?

      The Generalized Hierarchical Gaussian Filter#

      -

      Generalized Hierarchical Gaussian Filters (gHGF) are specific instances of dynamic probabilistic networks where each node encodes a Gaussian distribution that inherits its value (mean) and volatility (variance) from its parent. The presentation of a new observation at the lowest level of the hierarchy (i.e., the input node) triggers a recursive update of the nodes’ belief (i.e., posterior distribution) through top-down predictions and bottom-up precision-weighted prediction errors. The resulting probabilistic network operates as a Bayesian filter, and a decision function can parametrize actions/decisions given the current beliefs. By comparing those behaviours with actual outcomes, a surprise function can be optimized over a set of free parameters. The Hierarchical Gaussian Filter for binary and continuous inputs was first described in Mathys et al. (2011, 2014), and later implemented in the Matlab HGF Toolbox (part of TAPAS (Frässle et al. 2021).

      -

      You can find a deeper introduction on how does the HGF works under the following link:

      +

      Generalized Hierarchical Gaussian Filters (gHGF) are specific instances of dynamic networks where node encodes a Gaussian distribution that can inherit its value (mean) and volatility (variance) from other nodes. The presentation of a new observation at the lowest level of the hierarchy (i.e., the input node) triggers a recursive update of the nodes’ belief (i.e., posterior distribution) through top-down predictions and bottom-up precision-weighted prediction errors. The resulting probabilistic network operates as a Bayesian filter, and a response function can parametrize actions/decisions given the current beliefs. By comparing those behaviours with actual outcomes, a surprise function can be optimized over a set of free parameters. The Hierarchical Gaussian Filter for binary and continuous inputs was first described in Mathys et al. (2011, 2014), and later implemented in the Matlab HGF Toolbox (part of TAPAS (Frässle et al. 2021).

      +

      You can find a deeper introduction on how does the gHGF works under the following link:

      @@ -480,9 +480,8 @@

      Model fitting# Create a two-level binary HGF from scratch hgf = ( Network() - .add_nodes(kind="binary-input") - .add_nodes(kind="binary-state", value_children=0) - .add_nodes(kind="continuous-state", value_children=1) + .add_nodes(kind="binary-state") + .add_nodes(kind="continuous-state", value_children=0) ) # add new observations @@ -510,7 +509,7 @@

      Model fitting

      Acknowledgments#

      -

      This implementation of the Hierarchical Gaussian Filter was inspired by the original Matlab HGF Toolbox. A Julia implementation with similar aims is also available here.

      +

      This implementation of the Hierarchical Gaussian Filter was inspired by the original Matlab HGF Toolbox. A Julia implementation is also available here.

References#

diff --git a/dev/notebooks/0.1-Theory.html b/dev/notebooks/0.1-Theory.html index aad1b507b..2cb92db02 100644 --- a/dev/notebooks/0.1-Theory.html +++ b/dev/notebooks/0.1-Theory.html @@ -931,11 +931,11 @@

System configuration diff --git a/dev/notebooks/0.2-Creating_networks.html b/dev/notebooks/0.2-Creating_networks.html index 045a6d393..4c3dd2394 100644 --- a/dev/notebooks/0.2-Creating_networks.html +++ b/dev/notebooks/0.2-Creating_networks.html @@ -778,7 +778,7 @@
Continuous value coupling -../_images/116ba179f38fe997ec8dd5339a7b7b45dfa4cde1ba660bc3e17fb7650e0e8251.png +../_images/24a47a30e61963b01e9fe86fc49f9457db4b4cba70774597cb0b25bd4df90686.png diff --git a/dev/notebooks/0.3-Generalised_filtering.html b/dev/notebooks/0.3-Generalised_filtering.html index 4016155b6..c41f10816 100644 --- a/dev/notebooks/0.3-Generalised_filtering.html +++ b/dev/notebooks/0.3-Generalised_filtering.html @@ -1000,13 +1000,13 @@

System configuration diff --git a/dev/notebooks/1.1-Binary_HGF.html b/dev/notebooks/1.1-Binary_HGF.html index 6ae0b0095..cf54f1124 100644 --- a/dev/notebooks/1.1-Binary_HGF.html +++ b/dev/notebooks/1.1-Binary_HGF.html @@ -52,7 +52,7 @@ - + @@ -803,7 +803,7 @@

Visualizing the model
-../_images/ecd192b619fcda3b40cdb5f737d2b936691486677eb7a4f82b5cbc7f55367e9e.svg +../_images/7d29572ae423fb4c8d4ea736f01dab651bf0ee09a3d53b5838bcf639ba2eaf01.svg

@@ -829,17 +829,14 @@

Sampling
NUTS: [tonic_volatility_2]
 
-

-

+

+

 
Sampling 2 chains for 1_000 tune and 1_000 draw iterations (2_000 + 2_000 draws total) took 5 seconds.
 
We recommend running at least 4 chains for robust computation of convergence diagnostics
 
-
The rhat statistic is larger than 1.01 for some parameters. This indicates problems during sampling. See https://arxiv.org/abs/1903.08008 for details
-
-
-../_images/5a99396fb2358fd3bde2ff8f77e2f78d0f7e3ccfc4c3dfae1a701d179cc8db48.png +../_images/444a5b2d70e469c857d0b6f9ff4444b2da08c87eb1a82cf600adef5ec0674682.png
@@ -886,7 +883,7 @@

Using the learned parameters -../_images/6354f5db8b71a5abba6da48fe89d82f65317368c8531aed7fb8329a7425e3bec.png +../_images/a736e444ca28d861f03c5b1dbdbf7a5534c2e37289ddb786f22fbed2cf8b8537.png @@ -974,9 +971,9 @@

Sampling#
NUTS: [tonic_volatility_2, tonic_volatility_3]
 
-

-

-
Sampling 2 chains for 1_000 tune and 1_000 draw iterations (2_000 + 2_000 draws total) took 8 seconds.
+

+

+
Sampling 2 chains for 1_000 tune and 1_000 draw iterations (2_000 + 2_000 draws total) took 9 seconds.
 
We recommend running at least 4 chains for robust computation of convergence diagnostics
@@ -993,7 +990,7 @@ 

Sampling#

-../_images/8bf90f4f5d0ef6dadf9792093612016fa74bc479b8d59f26cec6598902af92a1.png +../_images/b590b5cd35858b7bc5468f4ec04fb54d78f94f07ab100ccb8c0654aa00868bac.png
@@ -1031,7 +1028,7 @@

Using the learned parameters -../_images/73d8ac4564bd7c20f638b42d402ff89f69cb42565445a575c3ae7a7eaed6265a.png +../_images/233a6798deb950bae4abbce540aa2dfeecb8eed2dff2588e1274a89d750fa37b.png

diff --git a/dev/notebooks/1.2-Categorical_HGF.html b/dev/notebooks/1.2-Categorical_HGF.html index 6e3f820ac..4c532ef87 100644 --- a/dev/notebooks/1.2-Categorical_HGF.html +++ b/dev/notebooks/1.2-Categorical_HGF.html @@ -587,7 +587,7 @@

Simulating a dataset
-../_images/03fb89787c0643accb8e98ac41a9d68876aa156045737432f9b16d2298ee1722.png +../_images/c816db92f3ac56f0832f5324c2ee4379cc3e7a74400c2bd6c298ccb92ab42712.png
@@ -859,14 +859,14 @@

System configuration diff --git a/dev/notebooks/1.3-Continuous_HGF.html b/dev/notebooks/1.3-Continuous_HGF.html index a5a2800c1..356127e10 100644 --- a/dev/notebooks/1.3-Continuous_HGF.html +++ b/dev/notebooks/1.3-Continuous_HGF.html @@ -52,7 +52,7 @@ - + @@ -880,8 +880,8 @@

Sampling
NUTS: [tonic_volatility_1]
 
-

-
-../_images/1e72cff820cbd98e5bda7efefd8f287bfbe7f4e7ace42d66120f8d70f0b6cf7b.png +../_images/c2323feef5f512fa702bf0200886fedd958eff5909a06f494c20993ed655e808.png @@ -937,7 +937,7 @@

Using the learned parameters -../_images/0654015973a91d306adb272fbcc4682092de2e20d14e9438c2a0d62578a1f8bd.png +../_images/c411ee3d5073f99c48bd56f340be14983ec30e0e6d7608ae6da3ae1f9897a83f.png
@@ -947,7 +947,7 @@

Using the learned parameters -
Array(-1106.1259, dtype=float32)
+
Array(-1106.1246, dtype=float32)
 
@@ -1023,8 +1023,8 @@

Sampling#
NUTS: [tonic_volatility_1]
 
-

-

+

+

 
Sampling 2 chains for 1_000 tune and 1_000 draw iterations (2_000 + 2_000 draws total) took 9 seconds.
 
@@ -1040,7 +1040,7 @@

Sampling#

-../_images/f7d82d5f5d4e76e152d144cab2ec19d7306e6744f7beffa04d8bbefb09e155cb.png +../_images/c2addc030e95a741b204403278a335639b22c9f55b68c4cc241636030def7471.png

@@ -1074,7 +1074,7 @@

Using the learned parameters -../_images/dfd5447e2f78b946df72f1f7169ec6d98555857bcc7e2db1bfdc805be5fcb4fc.png +../_images/76b5d8f3b2720d8b557c96ba18307540d719cc34c421c5c0daea3276bc5e79cc.png
@@ -1084,7 +1084,7 @@

Using the learned parameters - diff --git a/dev/notebooks/2-Using_custom_response_functions.html b/dev/notebooks/2-Using_custom_response_functions.html index 68120897d..34bd62c50 100644 --- a/dev/notebooks/2-Using_custom_response_functions.html +++ b/dev/notebooks/2-Using_custom_response_functions.html @@ -52,7 +52,7 @@ - + @@ -890,8 +890,8 @@

Recovering HGF parameters from the observed behaviors
NUTS: [tonic_volatility_2]
 

-

-
../_images/43e79bcefd6590e092d3b59bc4dd131a58b705fd6ad7a83cba69ab5ea61c6a9d.png +../_images/153b556a97f25d970d6291b1327cb3fcb130c3b279d03dc7b8cde6ca0282360c.png

The results above indicate that given the responses provided by the participant, the most likely values for the parameter \(\omega_2\) are between -4.9 and -3.1, with a mean at -3.9 (you can find slightly different values if you sample different actions from the decisions function). We can consider this as an excellent estimate given the sparsity of the data, and the complexity of the model.

@@ -990,12 +990,12 @@

System configurationvar togglebuttonSelector = '.toggle, .admonition.dropdown'; - + @@ -806,7 +806,7 @@

Plot the computational graph -../_images/cd388337c92dcb3193299b1087136df0ab25680b6d2e7bbaa43435e0a2db95b6.svg +../_images/a98848f23487345169ba0443080bc719c8abc65be7ebe18b918c4a829074b564.svg @@ -832,17 +832,23 @@

Sampling
NUTS: [mu_volatility, sigma_volatility, volatility, mu_temperature, sigma_temperature, inverse_temperature]
 
-

-

-

The reference values on both posterior distributions indicate the mean of the distribution used for simulation.

@@ -896,17 +902,17 @@

Model comparison
Computed from 2000 posterior samples and 3200 observations log-likelihood matrix.
 
          Estimate       SE
-elpd_loo -1684.48    25.64
-p_loo       18.25        -
+elpd_loo -2511.06    76.83
+p_loo      739.62        -
 
 There has been a warning during the calculation. Please check the results.
 ------
 
 Pareto k diagnostic values:
                          Count   Pct.
-(-Inf, 0.70]   (good)     3187   99.6%
+(-Inf, 0.70]   (good)     2167   67.7%
    (0.70, 1]   (bad)         1    0.0%
-   (1, Inf)   (very bad)   12    0.4%
+   (1, Inf)   (very bad) 1032   32.2%
 

@@ -933,15 +939,15 @@

System configuration diff --git a/dev/notebooks/4-Parameter_recovery.html b/dev/notebooks/4-Parameter_recovery.html index 1eb0930ea..536fda6a1 100644 --- a/dev/notebooks/4-Parameter_recovery.html +++ b/dev/notebooks/4-Parameter_recovery.html @@ -50,7 +50,7 @@ - + @@ -676,9 +676,9 @@

Inference from the simulated behaviours
NUTS: [censored_volatility, inverse_temperature]
 
-

-

-
diff --git a/dev/notebooks/Example_1_Heart_rate_variability.html b/dev/notebooks/Example_1_Heart_rate_variability.html index 0af555f52..c026e5bbc 100644 --- a/dev/notebooks/Example_1_Heart_rate_variability.html +++ b/dev/notebooks/Example_1_Heart_rate_variability.html @@ -50,7 +50,7 @@ - + @@ -574,16 +574,16 @@

Loading and preprocessing physiological recording
Downloading ECG channel:   0%|          | 0/2 [00:00<?, ?it/s]
 
-
Downloading ECG channel:  50%|█████     | 1/2 [00:00<00:00,  1.56it/s]
+
Downloading ECG channel:  50%|█████     | 1/2 [00:00<00:00,  2.35it/s]
 
-
Downloading Respiration channel:  50%|█████     | 1/2 [00:00<00:00,  1.56it/s]
+
Downloading Respiration channel:  50%|█████     | 1/2 [00:00<00:00,  2.35it/s]
 
-
diff --git a/dev/notebooks/Example_3_Multi_armed_bandit.html b/dev/notebooks/Example_3_Multi_armed_bandit.html index ac0414608..a6cc9ef5c 100644 --- a/dev/notebooks/Example_3_Multi_armed_bandit.html +++ b/dev/notebooks/Example_3_Multi_armed_bandit.html @@ -52,7 +52,7 @@ - + @@ -1085,8 +1085,8 @@

Bayesian inference
NUTS: [omega]
 

-

-
@@ -1134,15 +1134,15 @@

System configuration

diff --git a/dev/notebooks/Exercise_1_Introduction_to_the_generalised_hierarchical_gaussian_filter.html b/dev/notebooks/Exercise_1_Introduction_to_the_generalised_hierarchical_gaussian_filter.html index 24e3f73fa..4073c574c 100644 --- a/dev/notebooks/Exercise_1_Introduction_to_the_generalised_hierarchical_gaussian_filter.html +++ b/dev/notebooks/Exercise_1_Introduction_to_the_generalised_hierarchical_gaussian_filter.html @@ -1044,13 +1044,13 @@

System configuration

diff --git a/dev/notebooks/Exercise_2_Bayesian_reinforcement_learning.html b/dev/notebooks/Exercise_2_Bayesian_reinforcement_learning.html index 3621b24e0..736b9578b 100644 --- a/dev/notebooks/Exercise_2_Bayesian_reinforcement_learning.html +++ b/dev/notebooks/Exercise_2_Bayesian_reinforcement_learning.html @@ -52,7 +52,7 @@ - + @@ -703,7 +703,7 @@

Parameters optimization
-../_images/7d29572ae423fb4c8d4ea736f01dab651bf0ee09a3d53b5838bcf639ba2eaf01.svg +../_images/ecd192b619fcda3b40cdb5f737d2b936691486677eb7a4f82b5cbc7f55367e9e.svg
-

-
-../_images/26758b7f65167119e7f137514a3bb762c860517b1390d4fcfe48baf410db71e9.png +../_images/ee706bd40c79698e726fe0acdf05a8694dc4031d023476e5da2318161cd5cf03.png
-

-

Assess model fitting, here using leave-one-out cross-validation from the Arviz library.

@@ -925,12 +925,12 @@

Rescorla-Wagner{"version_major": 2, "version_minor": 0, "model_id": "ae7ba9f4c882455e81f93c84712ed58a"}

We have saved the pointwise log probabilities as a variable, here we simply move this variable to the log_likelihoo field of the idata object, so Arviz knows that this can be used later for model comparison.

@@ -1147,12 +1147,12 @@

Three-level HGF
NUTS: [tonic_volatility_2]
 

-

-

The resulting samples show belief trajectories for 10 samples for each model (we are not depicting the biased random here for clarity). The trajectories are highly similar, but we can see that the two and three-level HGF are slightly adjusting their learning rates in a way that was more consistent with the observed behaviours.

@@ -1486,15 +1486,15 @@

System configuration diff --git a/dev/searchindex.js b/dev/searchindex.js index 8715207ab..f8d49274c 100644 --- a/dev/searchindex.js +++ b/dev/searchindex.js @@ -1 +1 @@ -Search.setIndex({"alltitles": {"": [[72, "exercise1.1"], [72, "exercise1.2"], [72, "exercise1.3"], [72, "exercise1.4"], [72, "exercise1.5"], [72, "exercise1.6"], [73, "exercise2.1"], [73, "exercise2.2"]], "API": [[0, "api"]], "Acknowledgments": [[57, "acknowledgments"]], "Add data": [[62, "add-data"], [62, "id4"], [64, "add-data"], [64, "id3"]], "Adding a drift to the random walk": [[59, "adding-a-drift-to-the-random-walk"]], "Autoregressive processes": [[59, "autoregressive-processes"]], "Bayesian inference": [[71, "bayesian-inference"]], "Beliefs trajectories": [[73, "beliefs-trajectories"]], "Biased random": [[73, "biased-random"]], "Binary nodes": [[0, "binary-nodes"]], "Bivariate normal distribution": [[61, "bivariate-normal-distribution"]], "Categorical nodes": [[0, "categorical-nodes"]], "Continuous nodes": [[0, "continuous-nodes"], [0, "id1"]], "Continuous value coupling": [[60, "continuous-value-coupling"]], "Continuous volatility coupling": [[60, "continuous-volatility-coupling"]], "Coupling with binary nodes": [[60, "coupling-with-binary-nodes"]], "Create the model": [[62, "create-the-model"], [62, "id3"], [64, "create-the-model"], [64, "id2"]], "Creating a new response function": [[65, "creating-a-new-response-function"]], "Creating a new response function: the binary surprise": [[65, "creating-a-new-response-function-the-binary-surprise"]], "Creating and manipulating networks of probabilistic nodes": [[60, null]], "Creating custom update functions": [[60, "creating-custom-update-functions"]], "Creating custom update sequences": [[60, "creating-custom-update-sequences"]], "Creating probabilistic nodes": [[60, "creating-probabilistic-nodes"]], "Creating the decision rule": [[65, "creating-the-decision-rule"]], "Creating the model": [[62, "creating-the-model"], [62, "id7"], [64, "creating-the-model"], [64, "id5"]], "Creating the probabilistic network": [[63, "creating-the-probabilistic-network"]], "Decision rule": [[71, "decision-rule"]], "Dirichlet processes": [[0, "dirichlet-processes"]], "Distribution": [[0, "distribution"]], "Dynamic assignation of update sequences": [[60, "dynamic-assignation-of-update-sequences"]], "Dynamic beliefs updating": [[59, "dynamic-beliefs-updating"]], "Example 1: Bayesian filtering of cardiac volatility": [[69, null]], "Example 2: Estimating the mean and precision of a time-varying Gaussian distributions": [[70, null]], "Example 3: A multi-armed bandit task with independent rewards and punishments": [[71, null]], "Exercises": [[58, "exercises"]], "Exponential family": [[0, "exponential-family"]], "Filtering the Sufficient Statistics of a Non-Stationary Distribution": [[61, "filtering-the-sufficient-statistics-of-a-non-stationary-distribution"]], "Filtering the Sufficient Statistics of a Stationary Distribution": [[61, "filtering-the-sufficient-statistics-of-a-stationary-distribution"]], "Fitting behaviours to different RL models": [[73, "fitting-behaviours-to-different-rl-models"]], "Fitting the binary HGF with fixed parameters": [[62, "fitting-the-binary-hgf-with-fixed-parameters"]], "Fitting the continuous HGF with fixed parameters": [[64, "fitting-the-continuous-hgf-with-fixed-parameters"]], "Fitting the model forwards": [[63, "fitting-the-model-forwards"]], "Frequency tracking": [[68, "frequency-tracking"]], "From Reinforcement Learning to Generalised Bayesian Filtering": [[61, null]], "Gaussian Random Walks": [[59, "gaussian-random-walks"], [72, "gaussian-random-walks"]], "Getting started": [[57, "getting-started"]], "Glossary": [[59, "glossary"], [65, "glossary"]], "Group-level inference": [[66, "group-level-inference"]], "Hierarchical Bayesian modelling with probabilistic neural networks": [[66, null]], "How does it work?": [[57, "how-does-it-work"]], "How to cite?": [[1, null]], "Imports": [[62, "imports"]], "Inference from the simulated behaviours": [[67, "inference-from-the-simulated-behaviours"]], "Inference using MCMC sampling": [[63, "inference-using-mcmc-sampling"]], "Installation": [[57, "installation"]], "Introduction to the Generalised Hierarchical Gaussian Filter": [[59, null]], "Kown mean, unknown precision": [[70, "kown-mean-unknown-precision"]], "Learn": [[58, null]], "Learning parameters with MCMC sampling": [[62, "learning-parameters-with-mcmc-sampling"], [64, "learning-parameters-with-mcmc-sampling"]], "Loading and preprocessing physiological recording": [[69, "loading-and-preprocessing-physiological-recording"]], "Math": [[0, "math"]], "Model": [[0, "model"], [69, "model"]], "Model comparison": [[66, "model-comparison"], [73, "model-comparison"]], "Model fitting": [[57, "model-fitting"]], "Model inversion: the generalized Hierarchical Gaussian Filter": [[72, "model-inversion-the-generalized-hierarchical-gaussian-filter"]], "Modifying the attributes": [[60, "modifying-the-attributes"]], "Modifying the edges": [[60, "modifying-the-edges"]], "Multivariate coupling": [[60, "multivariate-coupling"]], "Non-linear predictions": [[68, "non-linear-predictions"]], "Non-linear value coupling between continuous state nodes": [[68, null]], "Parameter recovery": [[71, "parameter-recovery"]], "Parameters optimization": [[73, "parameters-optimization"]], "Plot correlation": [[64, "plot-correlation"]], "Plot the computational graph": [[66, "plot-the-computational-graph"]], "Plot the signal with instantaneous heart rate derivations": [[69, "plot-the-signal-with-instantaneous-heart-rate-derivations"]], "Plot trajectories": [[62, "plot-trajectories"], [62, "id5"], [64, "plot-trajectories"], [64, "id4"]], "Plots": [[0, "plots"]], "Posterior predictive sampling": [[73, "posterior-predictive-sampling"]], "Posterior updates": [[0, "posterior-updates"]], "Practice: Filtering the worlds weather": [[72, "practice-filtering-the-worlds-weather"]], "Prediction error steps": [[0, "prediction-error-steps"]], "Prediction steps": [[0, "prediction-steps"]], "Preprocessing": [[69, "preprocessing"]], "Probabilistic coupling between nodes": [[72, "probabilistic-coupling-between-nodes"]], "PyHGF: A Neural Network Library for Predictive Coding": [[57, null]], "ReLU (rectified linear unit) activation function": [[68, "relu-rectified-linear-unit-activation-function"]], "Real-time decision and belief updating": [[71, "real-time-decision-and-belief-updating"]], "Recovering HGF parameters from the observed behaviors": [[65, "recovering-hgf-parameters-from-the-observed-behaviors"]], "Recovering computational parameters from observed behaviours": [[67, null]], "References": [[57, "references"], [74, null]], "Rescorla-Wagner": [[73, "rescorla-wagner"]], "Response": [[0, "response"]], "Sampling": [[62, "sampling"], [62, "id9"], [64, "sampling"], [64, "id7"], [66, "sampling"]], "Simulate a dataset": [[66, "simulate-a-dataset"], [71, "simulate-a-dataset"]], "Simulate behaviours from a one-armed bandit task": [[67, "simulate-behaviours-from-a-one-armed-bandit-task"]], "Simulate responses from a participant": [[71, "simulate-responses-from-a-participant"]], "Simulating a dataset": [[63, "simulating-a-dataset"]], "Solution to Exercise 1": [[72, "solution-exercise1.1"]], "Solution to Exercise 2": [[72, "solution-exercise1.2"]], "Solution to Exercise 3": [[72, "solution-exercise1.3"]], "Solution to Exercise 4": [[72, "solution-exercise1.4"]], "Solution to Exercise 5": [[72, "solution-exercise1.5"]], "Solution to Exercise 7": [[73, "solution-exercise2.1"]], "Solution to Exercise 8": [[73, "solution-exercise2.2"]], "Solutions": [[72, "solutions"], [73, "solutions"]], "Static assignation of update sequences": [[60, "static-assignation-of-update-sequences"]], "Surprise": [[62, "surprise"], [62, "id6"], [64, "surprise"]], "System configuration": [[59, "system-configuration"], [60, "system-configuration"], [61, "system-configuration"], [62, "system-configuration"], [63, "system-configuration"], [64, "system-configuration"], [65, "system-configuration"], [66, "system-configuration"], [67, "system-configuration"], [68, "system-configuration"], [69, "system-configuration"], [70, "system-configuration"], [71, "system-configuration"], [72, "system-configuration"], [73, "system-configuration"]], "Table of Contents": [[0, null]], "Task structure": [[71, "task-structure"]], "The Generalized Hierarchical Gaussian Filter": [[57, "the-generalized-hierarchical-gaussian-filter"]], "The Hierarchical Gaussian Filter": [[58, "the-hierarchical-gaussian-filter"]], "The Hierarchical Gaussian Filter in a network of predictive nodes": [[59, "the-hierarchical-gaussian-filter-in-a-network-of-predictive-nodes"]], "The binary HGF": [[73, "the-binary-hgf"]], "The binary Hierarchical Gaussian Filter": [[62, null]], "The case of multivariate ascendency": [[60, "the-case-of-multivariate-ascendency"]], "The case of multivariate descendency": [[60, "the-case-of-multivariate-descendency"]], "The categorical Hierarchical Gaussian Filter": [[63, null]], "The categorical state node": [[63, "the-categorical-state-node"]], "The categorical state-transition node": [[63, "the-categorical-state-transition-node"]], "The continuous Hierarchical Gaussian Filter": [[64, null]], "The generative model": [[59, "the-generative-model"], [72, "the-generative-model"]], "The propagation of prediction and prediction errors": [[59, "the-propagation-of-prediction-and-prediction-errors"]], "The three-level binary Hierarchical Gaussian Filter": [[62, "the-three-level-binary-hierarchical-gaussian-filter"]], "The three-level continuous Hierarchical Gaussian Filter": [[64, "the-three-level-continuous-hierarchical-gaussian-filter"]], "The two-level binary Hierarchical Gaussian Filter": [[62, "the-two-level-binary-hierarchical-gaussian-filter"]], "The two-level continuous Hierarchical Gaussian Filter": [[64, "the-two-level-continuous-hierarchical-gaussian-filter"]], "Theory": [[58, "theory"]], "Theory and implementation details": [[60, "theory-and-implementation-details"]], "Three-level HGF": [[73, "three-level-hgf"]], "Three-level model": [[62, "three-level-model"], [64, "three-level-model"]], "Time-varying update sequences": [[60, "time-varying-update-sequences"]], "Tutorials": [[58, "tutorials"]], "Two-level HGF": [[73, "two-level-hgf"]], "Two-level model": [[62, "two-level-model"], [64, "two-level-model"]], "Univariate normal distribution": [[61, "univariate-normal-distribution"]], "Unkown mean, known precision": [[70, "unkown-mean-known-precision"]], "Unkown mean, unknown precision": [[70, "unkown-mean-unknown-precision"]], "Update functions": [[60, "update-functions"]], "Updates functions": [[0, "updates-functions"]], "Use cases": [[58, "use-cases"]], "Using a dynamically adapted \\nu through a collection of Hierarchical Gaussian Filters": [[61, "using-a-dynamically-adapted-nu-through-a-collection-of-hierarchical-gaussian-filters"]], "Using a fixed \\nu": [[61, "using-a-fixed-nu"]], "Using custom response models": [[65, null]], "Using the learned parameters": [[62, "using-the-learned-parameters"], [62, "id10"], [64, "using-the-learned-parameters"], [64, "id8"]], "Utils": [[0, "utils"]], "Value coupling": [[59, "value-coupling"], [60, "value-coupling"], [72, "value-coupling"]], "Visualization of the posterior distributions": [[66, "visualization-of-the-posterior-distributions"]], "Visualizing parameters recovery": [[67, "visualizing-parameters-recovery"]], "Visualizing probabilistic networks": [[60, "visualizing-probabilistic-networks"]], "Visualizing the model": [[62, "visualizing-the-model"], [62, "id8"], [64, "visualizing-the-model"], [64, "id6"]], "Volatility coupling": [[59, "volatility-coupling"], [60, "volatility-coupling"], [72, "volatility-coupling"]], "Where to go next?": [[73, "where-to-go-next"]], "Working with missing or unobserved input sequences": [[60, "working-with-missing-or-unobserved-input-sequences"]], "Zurich CPC I: Introduction to the Generalised Hierarchical Gaussian Filter": [[72, null]], "Zurich CPC II: Application to reinforcement learning": [[73, null]], "pyhgf.distribution.HGFDistribution": [[2, null]], "pyhgf.distribution.HGFLogpGradOp": [[3, null]], "pyhgf.distribution.HGFPointwise": [[4, null]], "pyhgf.distribution.hgf_logp": [[5, null]], "pyhgf.distribution.logp": [[6, null]], "pyhgf.math.MultivariateNormal": [[7, null]], "pyhgf.math.Normal": [[8, null]], "pyhgf.math.binary_surprise": [[9, null]], "pyhgf.math.binary_surprise_finite_precision": [[10, null]], "pyhgf.math.dirichlet_kullback_leibler": [[11, null]], "pyhgf.math.gaussian_density": [[12, null]], "pyhgf.math.gaussian_predictive_distribution": [[13, null]], "pyhgf.math.gaussian_surprise": [[14, null]], "pyhgf.math.sigmoid": [[15, null]], "pyhgf.model.HGF": [[16, null]], "pyhgf.model.Network": [[17, null]], "pyhgf.plots.plot_correlations": [[18, null]], "pyhgf.plots.plot_network": [[19, null]], "pyhgf.plots.plot_nodes": [[20, null]], "pyhgf.plots.plot_trajectories": [[21, null]], "pyhgf.response.binary_softmax": [[22, null]], "pyhgf.response.binary_softmax_inverse_temperature": [[23, null]], "pyhgf.response.first_level_binary_surprise": [[24, null]], "pyhgf.response.first_level_gaussian_surprise": [[25, null]], "pyhgf.response.total_gaussian_surprise": [[26, null]], "pyhgf.updates.posterior.categorical.categorical_state_update": [[27, null]], "pyhgf.updates.posterior.continuous.continuous_node_posterior_update": [[28, null]], "pyhgf.updates.posterior.continuous.continuous_node_posterior_update_ehgf": [[29, null]], "pyhgf.updates.posterior.continuous.posterior_update_mean_continuous_node": [[30, null]], "pyhgf.updates.posterior.continuous.posterior_update_precision_continuous_node": [[31, null]], "pyhgf.updates.posterior.exponential.posterior_update_exponential_family": [[32, null]], "pyhgf.updates.prediction.binary.binary_state_node_prediction": [[33, null]], "pyhgf.updates.prediction.continuous.continuous_node_prediction": [[34, null]], "pyhgf.updates.prediction.continuous.predict_mean": [[35, null]], "pyhgf.updates.prediction.continuous.predict_precision": [[36, null]], "pyhgf.updates.prediction.dirichlet.dirichlet_node_prediction": [[37, null]], "pyhgf.updates.prediction_error.binary.binary_finite_state_node_prediction_error": [[38, null]], "pyhgf.updates.prediction_error.binary.binary_state_node_prediction_error": [[39, null]], "pyhgf.updates.prediction_error.categorical.categorical_state_prediction_error": [[40, null]], "pyhgf.updates.prediction_error.continuous.continuous_node_prediction_error": [[41, null]], "pyhgf.updates.prediction_error.continuous.continuous_node_value_prediction_error": [[42, null]], "pyhgf.updates.prediction_error.continuous.continuous_node_volatility_prediction_error": [[43, null]], "pyhgf.updates.prediction_error.dirichlet.clusters_likelihood": [[44, null]], "pyhgf.updates.prediction_error.dirichlet.create_cluster": [[45, null]], "pyhgf.updates.prediction_error.dirichlet.dirichlet_node_prediction_error": [[46, null]], "pyhgf.updates.prediction_error.dirichlet.get_candidate": [[47, null]], "pyhgf.updates.prediction_error.dirichlet.likely_cluster_proposal": [[48, null]], "pyhgf.updates.prediction_error.dirichlet.update_cluster": [[49, null]], "pyhgf.utils.add_edges": [[50, null]], "pyhgf.utils.beliefs_propagation": [[51, null]], "pyhgf.utils.fill_categorical_state_node": [[52, null]], "pyhgf.utils.get_input_idxs": [[53, null]], "pyhgf.utils.get_update_sequence": [[54, null]], "pyhgf.utils.list_branches": [[55, null]], "pyhgf.utils.to_pandas": [[56, null]]}, "docnames": ["api", "cite", "generated/pyhgf.distribution/pyhgf.distribution.HGFDistribution", "generated/pyhgf.distribution/pyhgf.distribution.HGFLogpGradOp", "generated/pyhgf.distribution/pyhgf.distribution.HGFPointwise", "generated/pyhgf.distribution/pyhgf.distribution.hgf_logp", "generated/pyhgf.distribution/pyhgf.distribution.logp", "generated/pyhgf.math/pyhgf.math.MultivariateNormal", "generated/pyhgf.math/pyhgf.math.Normal", "generated/pyhgf.math/pyhgf.math.binary_surprise", "generated/pyhgf.math/pyhgf.math.binary_surprise_finite_precision", "generated/pyhgf.math/pyhgf.math.dirichlet_kullback_leibler", "generated/pyhgf.math/pyhgf.math.gaussian_density", "generated/pyhgf.math/pyhgf.math.gaussian_predictive_distribution", "generated/pyhgf.math/pyhgf.math.gaussian_surprise", "generated/pyhgf.math/pyhgf.math.sigmoid", "generated/pyhgf.model/pyhgf.model.HGF", "generated/pyhgf.model/pyhgf.model.Network", "generated/pyhgf.plots/pyhgf.plots.plot_correlations", "generated/pyhgf.plots/pyhgf.plots.plot_network", "generated/pyhgf.plots/pyhgf.plots.plot_nodes", "generated/pyhgf.plots/pyhgf.plots.plot_trajectories", "generated/pyhgf.response/pyhgf.response.binary_softmax", "generated/pyhgf.response/pyhgf.response.binary_softmax_inverse_temperature", "generated/pyhgf.response/pyhgf.response.first_level_binary_surprise", "generated/pyhgf.response/pyhgf.response.first_level_gaussian_surprise", "generated/pyhgf.response/pyhgf.response.total_gaussian_surprise", "generated/pyhgf.updates.posterior.categorical/pyhgf.updates.posterior.categorical.categorical_state_update", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.continuous_node_posterior_update", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.continuous_node_posterior_update_ehgf", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.posterior_update_mean_continuous_node", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.posterior_update_precision_continuous_node", "generated/pyhgf.updates.posterior.exponential/pyhgf.updates.posterior.exponential.posterior_update_exponential_family", "generated/pyhgf.updates.prediction.binary/pyhgf.updates.prediction.binary.binary_state_node_prediction", "generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.continuous_node_prediction", "generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.predict_mean", "generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.predict_precision", "generated/pyhgf.updates.prediction.dirichlet/pyhgf.updates.prediction.dirichlet.dirichlet_node_prediction", "generated/pyhgf.updates.prediction_error.binary/pyhgf.updates.prediction_error.binary.binary_finite_state_node_prediction_error", "generated/pyhgf.updates.prediction_error.binary/pyhgf.updates.prediction_error.binary.binary_state_node_prediction_error", "generated/pyhgf.updates.prediction_error.categorical/pyhgf.updates.prediction_error.categorical.categorical_state_prediction_error", "generated/pyhgf.updates.prediction_error.continuous/pyhgf.updates.prediction_error.continuous.continuous_node_prediction_error", "generated/pyhgf.updates.prediction_error.continuous/pyhgf.updates.prediction_error.continuous.continuous_node_value_prediction_error", "generated/pyhgf.updates.prediction_error.continuous/pyhgf.updates.prediction_error.continuous.continuous_node_volatility_prediction_error", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.clusters_likelihood", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.create_cluster", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.dirichlet_node_prediction_error", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.get_candidate", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.likely_cluster_proposal", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.update_cluster", "generated/pyhgf.utils/pyhgf.utils.add_edges", "generated/pyhgf.utils/pyhgf.utils.beliefs_propagation", "generated/pyhgf.utils/pyhgf.utils.fill_categorical_state_node", "generated/pyhgf.utils/pyhgf.utils.get_input_idxs", "generated/pyhgf.utils/pyhgf.utils.get_update_sequence", "generated/pyhgf.utils/pyhgf.utils.list_branches", "generated/pyhgf.utils/pyhgf.utils.to_pandas", "index", "learn", "notebooks/0.1-Theory", "notebooks/0.2-Creating_networks", "notebooks/0.3-Generalised_filtering", "notebooks/1.1-Binary_HGF", "notebooks/1.2-Categorical_HGF", "notebooks/1.3-Continuous_HGF", "notebooks/2-Using_custom_response_functions", "notebooks/3-Multilevel_HGF", "notebooks/4-Parameter_recovery", "notebooks/5-Non_linear_value_coupling", "notebooks/Example_1_Heart_rate_variability", "notebooks/Example_2_Input_node_volatility_coupling", "notebooks/Example_3_Multi_armed_bandit", "notebooks/Exercise_1_Introduction_to_the_generalised_hierarchical_gaussian_filter", "notebooks/Exercise_2_Bayesian_reinforcement_learning", "references"], "envversion": {"sphinx": 64, "sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.viewcode": 1, "sphinxcontrib.bibtex": 9}, "filenames": ["api.rst", "cite.md", "generated/pyhgf.distribution/pyhgf.distribution.HGFDistribution.rst", "generated/pyhgf.distribution/pyhgf.distribution.HGFLogpGradOp.rst", "generated/pyhgf.distribution/pyhgf.distribution.HGFPointwise.rst", "generated/pyhgf.distribution/pyhgf.distribution.hgf_logp.rst", "generated/pyhgf.distribution/pyhgf.distribution.logp.rst", "generated/pyhgf.math/pyhgf.math.MultivariateNormal.rst", "generated/pyhgf.math/pyhgf.math.Normal.rst", "generated/pyhgf.math/pyhgf.math.binary_surprise.rst", "generated/pyhgf.math/pyhgf.math.binary_surprise_finite_precision.rst", "generated/pyhgf.math/pyhgf.math.dirichlet_kullback_leibler.rst", "generated/pyhgf.math/pyhgf.math.gaussian_density.rst", "generated/pyhgf.math/pyhgf.math.gaussian_predictive_distribution.rst", "generated/pyhgf.math/pyhgf.math.gaussian_surprise.rst", "generated/pyhgf.math/pyhgf.math.sigmoid.rst", "generated/pyhgf.model/pyhgf.model.HGF.rst", "generated/pyhgf.model/pyhgf.model.Network.rst", "generated/pyhgf.plots/pyhgf.plots.plot_correlations.rst", "generated/pyhgf.plots/pyhgf.plots.plot_network.rst", "generated/pyhgf.plots/pyhgf.plots.plot_nodes.rst", "generated/pyhgf.plots/pyhgf.plots.plot_trajectories.rst", "generated/pyhgf.response/pyhgf.response.binary_softmax.rst", "generated/pyhgf.response/pyhgf.response.binary_softmax_inverse_temperature.rst", "generated/pyhgf.response/pyhgf.response.first_level_binary_surprise.rst", "generated/pyhgf.response/pyhgf.response.first_level_gaussian_surprise.rst", "generated/pyhgf.response/pyhgf.response.total_gaussian_surprise.rst", "generated/pyhgf.updates.posterior.categorical/pyhgf.updates.posterior.categorical.categorical_state_update.rst", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.continuous_node_posterior_update.rst", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.continuous_node_posterior_update_ehgf.rst", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.posterior_update_mean_continuous_node.rst", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.posterior_update_precision_continuous_node.rst", "generated/pyhgf.updates.posterior.exponential/pyhgf.updates.posterior.exponential.posterior_update_exponential_family.rst", "generated/pyhgf.updates.prediction.binary/pyhgf.updates.prediction.binary.binary_state_node_prediction.rst", "generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.continuous_node_prediction.rst", "generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.predict_mean.rst", "generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.predict_precision.rst", "generated/pyhgf.updates.prediction.dirichlet/pyhgf.updates.prediction.dirichlet.dirichlet_node_prediction.rst", "generated/pyhgf.updates.prediction_error.binary/pyhgf.updates.prediction_error.binary.binary_finite_state_node_prediction_error.rst", "generated/pyhgf.updates.prediction_error.binary/pyhgf.updates.prediction_error.binary.binary_state_node_prediction_error.rst", "generated/pyhgf.updates.prediction_error.categorical/pyhgf.updates.prediction_error.categorical.categorical_state_prediction_error.rst", "generated/pyhgf.updates.prediction_error.continuous/pyhgf.updates.prediction_error.continuous.continuous_node_prediction_error.rst", "generated/pyhgf.updates.prediction_error.continuous/pyhgf.updates.prediction_error.continuous.continuous_node_value_prediction_error.rst", "generated/pyhgf.updates.prediction_error.continuous/pyhgf.updates.prediction_error.continuous.continuous_node_volatility_prediction_error.rst", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.clusters_likelihood.rst", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.create_cluster.rst", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.dirichlet_node_prediction_error.rst", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.get_candidate.rst", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.likely_cluster_proposal.rst", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.update_cluster.rst", "generated/pyhgf.utils/pyhgf.utils.add_edges.rst", "generated/pyhgf.utils/pyhgf.utils.beliefs_propagation.rst", "generated/pyhgf.utils/pyhgf.utils.fill_categorical_state_node.rst", "generated/pyhgf.utils/pyhgf.utils.get_input_idxs.rst", "generated/pyhgf.utils/pyhgf.utils.get_update_sequence.rst", "generated/pyhgf.utils/pyhgf.utils.list_branches.rst", "generated/pyhgf.utils/pyhgf.utils.to_pandas.rst", "index.md", "learn.md", "notebooks/0.1-Theory.ipynb", "notebooks/0.2-Creating_networks.ipynb", "notebooks/0.3-Generalised_filtering.ipynb", "notebooks/1.1-Binary_HGF.ipynb", "notebooks/1.2-Categorical_HGF.ipynb", "notebooks/1.3-Continuous_HGF.ipynb", "notebooks/2-Using_custom_response_functions.ipynb", "notebooks/3-Multilevel_HGF.ipynb", "notebooks/4-Parameter_recovery.ipynb", "notebooks/5-Non_linear_value_coupling.ipynb", "notebooks/Example_1_Heart_rate_variability.ipynb", "notebooks/Example_2_Input_node_volatility_coupling.ipynb", "notebooks/Example_3_Multi_armed_bandit.ipynb", "notebooks/Exercise_1_Introduction_to_the_generalised_hierarchical_gaussian_filter.ipynb", "notebooks/Exercise_2_Bayesian_reinforcement_learning.ipynb", "references.md"], "indexentries": {"__init__() (pyhgf.distribution.hgfdistribution method)": [[2, "pyhgf.distribution.HGFDistribution.__init__", false]], "__init__() (pyhgf.distribution.hgflogpgradop method)": [[3, "pyhgf.distribution.HGFLogpGradOp.__init__", false]], "__init__() (pyhgf.distribution.hgfpointwise method)": [[4, "pyhgf.distribution.HGFPointwise.__init__", false]], "__init__() (pyhgf.math.multivariatenormal method)": [[7, "pyhgf.math.MultivariateNormal.__init__", false]], "__init__() (pyhgf.math.normal method)": [[8, "pyhgf.math.Normal.__init__", false]], "__init__() (pyhgf.model.hgf method)": [[16, "pyhgf.model.HGF.__init__", false]], "__init__() (pyhgf.model.network method)": [[17, "pyhgf.model.Network.__init__", false]], "add_edges() (in module pyhgf.utils)": [[50, "pyhgf.utils.add_edges", false]], "beliefs_propagation() (in module pyhgf.utils)": [[51, "pyhgf.utils.beliefs_propagation", false]], "binary_finite_state_node_prediction_error() (in module pyhgf.updates.prediction_error.binary)": [[38, "pyhgf.updates.prediction_error.binary.binary_finite_state_node_prediction_error", false]], "binary_softmax() (in module pyhgf.response)": [[22, "pyhgf.response.binary_softmax", false]], "binary_softmax_inverse_temperature() (in module pyhgf.response)": [[23, "pyhgf.response.binary_softmax_inverse_temperature", false]], "binary_state_node_prediction() (in module pyhgf.updates.prediction.binary)": [[33, "pyhgf.updates.prediction.binary.binary_state_node_prediction", false]], "binary_state_node_prediction_error() (in module pyhgf.updates.prediction_error.binary)": [[39, "pyhgf.updates.prediction_error.binary.binary_state_node_prediction_error", false]], "binary_surprise() (in module pyhgf.math)": [[9, "pyhgf.math.binary_surprise", false]], "binary_surprise_finite_precision() (in module pyhgf.math)": [[10, "pyhgf.math.binary_surprise_finite_precision", false]], "categorical_state_prediction_error() (in module pyhgf.updates.prediction_error.categorical)": [[40, "pyhgf.updates.prediction_error.categorical.categorical_state_prediction_error", false]], "categorical_state_update() (in module pyhgf.updates.posterior.categorical)": [[27, "pyhgf.updates.posterior.categorical.categorical_state_update", false]], "clusters_likelihood() (in module pyhgf.updates.prediction_error.dirichlet)": [[44, "pyhgf.updates.prediction_error.dirichlet.clusters_likelihood", false]], "continuous_node_posterior_update() (in module pyhgf.updates.posterior.continuous)": [[28, "pyhgf.updates.posterior.continuous.continuous_node_posterior_update", false]], "continuous_node_posterior_update_ehgf() (in module pyhgf.updates.posterior.continuous)": [[29, "pyhgf.updates.posterior.continuous.continuous_node_posterior_update_ehgf", false]], "continuous_node_prediction() (in module pyhgf.updates.prediction.continuous)": [[34, "pyhgf.updates.prediction.continuous.continuous_node_prediction", false]], "continuous_node_prediction_error() (in module pyhgf.updates.prediction_error.continuous)": [[41, "pyhgf.updates.prediction_error.continuous.continuous_node_prediction_error", false]], "continuous_node_value_prediction_error() (in module pyhgf.updates.prediction_error.continuous)": [[42, "pyhgf.updates.prediction_error.continuous.continuous_node_value_prediction_error", false]], "continuous_node_volatility_prediction_error() (in module pyhgf.updates.prediction_error.continuous)": [[43, "pyhgf.updates.prediction_error.continuous.continuous_node_volatility_prediction_error", false]], "create_cluster() (in module pyhgf.updates.prediction_error.dirichlet)": [[45, "pyhgf.updates.prediction_error.dirichlet.create_cluster", false]], "decision rule": [[65, "term-Decision-rule", true]], "dirichlet_kullback_leibler() (in module pyhgf.math)": [[11, "pyhgf.math.dirichlet_kullback_leibler", false]], "dirichlet_node_prediction() (in module pyhgf.updates.prediction.dirichlet)": [[37, "pyhgf.updates.prediction.dirichlet.dirichlet_node_prediction", false]], "dirichlet_node_prediction_error() (in module pyhgf.updates.prediction_error.dirichlet)": [[46, "pyhgf.updates.prediction_error.dirichlet.dirichlet_node_prediction_error", false]], "fill_categorical_state_node() (in module pyhgf.utils)": [[52, "pyhgf.utils.fill_categorical_state_node", false]], "first_level_binary_surprise() (in module pyhgf.response)": [[24, "pyhgf.response.first_level_binary_surprise", false]], "first_level_gaussian_surprise() (in module pyhgf.response)": [[25, "pyhgf.response.first_level_gaussian_surprise", false]], "gaussian random walk": [[59, "term-Gaussian-Random-Walk", true]], "gaussian_density() (in module pyhgf.math)": [[12, "pyhgf.math.gaussian_density", false]], "gaussian_predictive_distribution() (in module pyhgf.math)": [[13, "pyhgf.math.gaussian_predictive_distribution", false]], "gaussian_surprise() (in module pyhgf.math)": [[14, "pyhgf.math.gaussian_surprise", false]], "get_candidate() (in module pyhgf.updates.prediction_error.dirichlet)": [[47, "pyhgf.updates.prediction_error.dirichlet.get_candidate", false]], "get_input_idxs() (in module pyhgf.utils)": [[53, "pyhgf.utils.get_input_idxs", false]], "get_update_sequence() (in module pyhgf.utils)": [[54, "pyhgf.utils.get_update_sequence", false]], "hgf (class in pyhgf.model)": [[16, "pyhgf.model.HGF", false]], "hgf_logp() (in module pyhgf.distribution)": [[5, "pyhgf.distribution.hgf_logp", false]], "hgfdistribution (class in pyhgf.distribution)": [[2, "pyhgf.distribution.HGFDistribution", false]], "hgflogpgradop (class in pyhgf.distribution)": [[3, "pyhgf.distribution.HGFLogpGradOp", false]], "hgfpointwise (class in pyhgf.distribution)": [[4, "pyhgf.distribution.HGFPointwise", false]], "likely_cluster_proposal() (in module pyhgf.updates.prediction_error.dirichlet)": [[48, "pyhgf.updates.prediction_error.dirichlet.likely_cluster_proposal", false]], "list_branches() (in module pyhgf.utils)": [[55, "pyhgf.utils.list_branches", false]], "logp() (in module pyhgf.distribution)": [[6, "pyhgf.distribution.logp", false]], "multivariatenormal (class in pyhgf.math)": [[7, "pyhgf.math.MultivariateNormal", false]], "network (class in pyhgf.model)": [[17, "pyhgf.model.Network", false]], "node": [[59, "term-Node", true]], "normal (class in pyhgf.math)": [[8, "pyhgf.math.Normal", false]], "perceptual model": [[65, "term-Perceptual-model", true]], "plot_correlations() (in module pyhgf.plots)": [[18, "pyhgf.plots.plot_correlations", false]], "plot_network() (in module pyhgf.plots)": [[19, "pyhgf.plots.plot_network", false]], "plot_nodes() (in module pyhgf.plots)": [[20, "pyhgf.plots.plot_nodes", false]], "plot_trajectories() (in module pyhgf.plots)": [[21, "pyhgf.plots.plot_trajectories", false]], "posterior_update_exponential_family() (in module pyhgf.updates.posterior.exponential)": [[32, "pyhgf.updates.posterior.exponential.posterior_update_exponential_family", false]], "posterior_update_mean_continuous_node() (in module pyhgf.updates.posterior.continuous)": [[30, "pyhgf.updates.posterior.continuous.posterior_update_mean_continuous_node", false]], "posterior_update_precision_continuous_node() (in module pyhgf.updates.posterior.continuous)": [[31, "pyhgf.updates.posterior.continuous.posterior_update_precision_continuous_node", false]], "predict_mean() (in module pyhgf.updates.prediction.continuous)": [[35, "pyhgf.updates.prediction.continuous.predict_mean", false]], "predict_precision() (in module pyhgf.updates.prediction.continuous)": [[36, "pyhgf.updates.prediction.continuous.predict_precision", false]], "prediction": [[59, "term-Prediction", true]], "prediction error": [[59, "term-Prediction-error", true]], "response function": [[65, "term-Response-function", true]], "response model": [[65, "term-Response-model", true]], "sigmoid() (in module pyhgf.math)": [[15, "pyhgf.math.sigmoid", false]], "to_pandas() (in module pyhgf.utils)": [[56, "pyhgf.utils.to_pandas", false]], "total_gaussian_surprise() (in module pyhgf.response)": [[26, "pyhgf.response.total_gaussian_surprise", false]], "update": [[59, "term-Update", true]], "update_cluster() (in module pyhgf.updates.prediction_error.dirichlet)": [[49, "pyhgf.updates.prediction_error.dirichlet.update_cluster", false]], "vape": [[59, "term-VAPE", true]], "vope": [[59, "term-VOPE", true]]}, "objects": {"pyhgf.distribution": [[2, 0, 1, "", "HGFDistribution"], [3, 0, 1, "", "HGFLogpGradOp"], [4, 0, 1, "", "HGFPointwise"], [5, 2, 1, "", "hgf_logp"], [6, 2, 1, "", "logp"]], "pyhgf.distribution.HGFDistribution": [[2, 1, 1, "", "__init__"]], "pyhgf.distribution.HGFLogpGradOp": [[3, 1, 1, "", "__init__"]], "pyhgf.distribution.HGFPointwise": [[4, 1, 1, "", "__init__"]], "pyhgf.math": [[7, 0, 1, "", "MultivariateNormal"], [8, 0, 1, "", "Normal"], [9, 2, 1, "", "binary_surprise"], [10, 2, 1, "", "binary_surprise_finite_precision"], [11, 2, 1, "", "dirichlet_kullback_leibler"], [12, 2, 1, "", "gaussian_density"], [13, 2, 1, "", "gaussian_predictive_distribution"], [14, 2, 1, "", "gaussian_surprise"], [15, 2, 1, "", "sigmoid"]], "pyhgf.math.MultivariateNormal": [[7, 1, 1, "", "__init__"]], "pyhgf.math.Normal": [[8, 1, 1, "", "__init__"]], "pyhgf.model": [[16, 0, 1, "", "HGF"], [17, 0, 1, "", "Network"]], "pyhgf.model.HGF": [[16, 1, 1, "", "__init__"]], "pyhgf.model.Network": [[17, 1, 1, "", "__init__"]], "pyhgf.plots": [[18, 2, 1, "", "plot_correlations"], [19, 2, 1, "", "plot_network"], [20, 2, 1, "", "plot_nodes"], [21, 2, 1, "", "plot_trajectories"]], "pyhgf.response": [[22, 2, 1, "", "binary_softmax"], [23, 2, 1, "", "binary_softmax_inverse_temperature"], [24, 2, 1, "", "first_level_binary_surprise"], [25, 2, 1, "", "first_level_gaussian_surprise"], [26, 2, 1, "", "total_gaussian_surprise"]], "pyhgf.updates.posterior.categorical": [[27, 2, 1, "", "categorical_state_update"]], "pyhgf.updates.posterior.continuous": [[28, 2, 1, "", "continuous_node_posterior_update"], [29, 2, 1, "", "continuous_node_posterior_update_ehgf"], [30, 2, 1, "", "posterior_update_mean_continuous_node"], [31, 2, 1, "", "posterior_update_precision_continuous_node"]], "pyhgf.updates.posterior.exponential": [[32, 2, 1, "", "posterior_update_exponential_family"]], "pyhgf.updates.prediction.binary": [[33, 2, 1, "", "binary_state_node_prediction"]], "pyhgf.updates.prediction.continuous": [[34, 2, 1, "", "continuous_node_prediction"], [35, 2, 1, "", "predict_mean"], [36, 2, 1, "", "predict_precision"]], "pyhgf.updates.prediction.dirichlet": [[37, 2, 1, "", "dirichlet_node_prediction"]], "pyhgf.updates.prediction_error.binary": [[38, 2, 1, "", "binary_finite_state_node_prediction_error"], [39, 2, 1, "", "binary_state_node_prediction_error"]], "pyhgf.updates.prediction_error.categorical": [[40, 2, 1, "", "categorical_state_prediction_error"]], "pyhgf.updates.prediction_error.continuous": [[41, 2, 1, "", "continuous_node_prediction_error"], [42, 2, 1, "", "continuous_node_value_prediction_error"], [43, 2, 1, "", "continuous_node_volatility_prediction_error"]], "pyhgf.updates.prediction_error.dirichlet": [[44, 2, 1, "", "clusters_likelihood"], [45, 2, 1, "", "create_cluster"], [46, 2, 1, "", "dirichlet_node_prediction_error"], [47, 2, 1, "", "get_candidate"], [48, 2, 1, "", "likely_cluster_proposal"], [49, 2, 1, "", "update_cluster"]], "pyhgf.utils": [[50, 2, 1, "", "add_edges"], [51, 2, 1, "", "beliefs_propagation"], [52, 2, 1, "", "fill_categorical_state_node"], [53, 2, 1, "", "get_input_idxs"], [54, 2, 1, "", "get_update_sequence"], [55, 2, 1, "", "list_branches"], [56, 2, 1, "", "to_pandas"]]}, "objnames": {"0": ["py", "class", "Python class"], "1": ["py", "method", "Python method"], "2": ["py", "function", "Python function"]}, "objtypes": {"0": "py:class", "1": "py:method", "2": "py:function"}, "terms": {"": [1, 2, 17, 20, 21, 24, 25, 26, 35, 50, 51, 54, 57, 59, 60, 61, 62, 64, 65, 67, 68, 69, 71, 72, 73], "0": [0, 2, 3, 4, 5, 6, 9, 10, 14, 15, 16, 20, 21, 22, 23, 35, 48, 50, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "00": [69, 72, 73], "000000": 73, "000000e": 73, "00039": [1, 57, 74], "00745": 62, "00825": [1, 57, 74], "01": [61, 62, 67, 68, 69, 72, 73], "011": 65, "012830": 73, "013": 73, "016": [65, 74], "016216": 65, "018": 72, "0183": 64, "018425": 73, "019": 73, "02": [61, 72], "027": 2, "03": [68, 72], "030": [13, 32], "038": 2, "04": [20, 21, 64, 72], "042027": 73, "05": [60, 68, 71, 73], "060": 74, "061": 72, "064361": 65, "065": 2, "067450": 65, "068": 74, "068983": 65, "077038": 65, "08": 74, "08008": [62, 67], "081": 65, "09045": 62, "1": [1, 2, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 20, 21, 22, 23, 28, 29, 30, 31, 32, 33, 34, 35, 36, 38, 41, 42, 43, 46, 50, 51, 54, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 70, 71, 73, 74], "10": [1, 13, 28, 29, 30, 31, 32, 34, 35, 36, 38, 41, 42, 43, 57, 59, 60, 61, 63, 64, 66, 68, 69, 70, 71, 73, 74], "100": [61, 67, 69], "1000": [2, 59, 60, 61, 68, 69, 70, 72], "10000": [16, 59], "1007": [13, 32, 74], "1016": 74, "1017": 74, "109": 73, "10937": [28, 29, 30, 31, 34, 35, 36, 38, 41, 42, 43, 57, 74], "11": [2, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74], "1106": 64, "1117": 64, "111725": 73, "112": 73, "113": 73, "114": 74, "1153": 65, "117590": 74, "118765": 73, "12": [2, 20, 21, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "1224": 74, "123": [59, 60, 61, 66, 67, 70, 71, 72, 73], "1239": 74, "124": 72, "125": [59, 72], "1251": 74, "1259": 64, "1265": 74, "128": [61, 72], "13": [20, 21, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "138": 57, "14": [2, 65], "1413": 74, "1432": 74, "147": 72, "15": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "150": 63, "1500": 60, "152736": 73, "16": [2, 61], "1662": 1, "16625161": 1, "1684": 66, "17": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "18": [20, 21, 65, 66], "185465": 65, "1903": [62, 67], "1910": 64, "1938": 66, "196": 72, "1999": 67, "1_000": [62, 64, 65, 66, 67, 69, 71, 73], "1d": [2, 4], "1e1": [20, 21, 62, 64, 69], "1e2": 72, "1e4": [16, 20, 21, 60, 62, 64, 65, 69, 70, 72], "1i": [11, 63], "1rst": 62, "2": [2, 3, 4, 5, 6, 11, 13, 14, 16, 17, 20, 21, 28, 29, 30, 31, 43, 46, 51, 54, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 73, 74], "20": [1, 62, 63, 64, 65, 66, 67, 68, 69, 71, 73, 74], "200": [59, 60, 61, 72], "2000": [60, 66], "20000": [47, 48], "2001": 11, "2010": 64, "2011": [1, 57, 59, 60, 64, 74], "2013": 57, "2014": [1, 57, 59, 60, 66, 72, 74], "2016": [66, 72, 74], "2017": [71, 74], "2019": [67, 72, 74], "202": 62, "2020": [13, 32, 61, 74], "2021": [57, 62, 65, 73, 74], "2023": [0, 28, 29, 30, 31, 34, 35, 36, 38, 41, 42, 43, 57, 59, 60, 72, 74], "2024": [57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "203": 62, "205": 65, "206": 62, "21": 63, "21596": 62, "21629826": 1, "22": 73, "222": 73, "224": 72, "226": 74, "227702": 73, "2305": [28, 29, 30, 31, 34, 35, 36, 38, 41, 42, 43, 57, 74], "230946": 65, "232583": 65, "233799": 65, "234603": 65, "235004": 65, "24": 72, "244": 72, "245": 72, "247": 72, "249": 72, "25": [61, 63, 66, 70, 71, 73], "250": [59, 60, 63, 68, 70, 72], "2516081684": 64, "252411": 73, "256": 61, "26": [59, 60, 61, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73], "260191": 65, "2633": 62, "2679": 64, "27": [65, 74], "270900": 65, "27879": 74, "28": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "283697": 65, "296556": 65, "2_000": [62, 64, 65, 66, 67, 69, 71, 73], "2_i": 66, "2a2a2a": 63, "2i": [11, 63], "2nd": 62, "3": [2, 3, 4, 5, 13, 16, 17, 20, 21, 32, 51, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 73, 74], "30": [59, 60, 61, 72, 74], "301674": 65, "308": 72, "30963": 64, "31": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "3187": 66, "32": 61, "3200": 66, "3389": [1, 57, 74], "345082": 73, "345825": 73, "35": 61, "350": 68, "35667497": 9, "38": 73, "387": 72, "389923": 65, "392067": 73, "4": [57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74], "40": 71, "400": [60, 61, 68], "402": 73, "4093": 64, "416410": 65, "42": [48, 68], "43": 68, "440874e": 73, "44it": 69, "45": [60, 66], "458906": 65, "45it": 69, "466356": 65, "471469": 65, "472": 72, "474077": 65, "479": 73, "48": 66, "482": 65, "48550": [28, 29, 30, 31, 34, 35, 36, 38, 41, 42, 43, 57], "49547": 74, "4c72b0": [59, 60, 65, 72, 73], "5": [0, 1, 2, 20, 21, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74], "50": [69, 70], "500": [66, 70], "500000": 65, "506923": 65, "510971": 65, "512": 61, "5161": 1, "518301": 65, "52": [13, 32, 74], "520583": 65, "522182": 73, "526894": 73, "53006": 62, "530355": 65, "530717": 65, "53662109": 66, "536678": 65, "5377": 72, "54": 65, "540697": 65, "55": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "550": 68, "551": 62, "55585": 62, "55a868": [59, 67, 73], "566859": 65, "568": 73, "56it": 69, "58": [13, 32, 74], "582766": [61, 70], "59": 67, "593": 73, "596582": 73, "5d1e51": 73, "6": [21, 59, 60, 61, 66, 67, 70, 71, 72, 73, 74], "60": [67, 69], "600": [60, 61, 68], "602961": 65, "609412": 73, "6174": 64, "622459": 65, "624085": 65, "627284": 65, "631975": 65, "635": 72, "638038": 65, "64": [61, 66], "64919": [13, 32], "650": 68, "66": 73, "680811": 57, "696796": 73, "698": 64, "7": [9, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 74], "70": 66, "701": 72, "731660": 65, "745316": 65, "750": 60, "7554": 74, "76": 73, "766": 2, "776": 2, "795485": 73, "7_7": [13, 32], "7f7f7f": 63, "8": [1, 11, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 74], "80": 71, "800": [60, 61], "806": 2, "828": 64, "834867": 65, "850": 68, "864538": 73, "865": 72, "87854": 65, "886": 64, "893": 65, "8992462158203": 57, "9": [11, 20, 21, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74], "90": 60, "900": 60, "903": 64, "910": 64, "9189386": 14, "9297": 64, "931": 72, "938": 2, "94": 73, "943": 65, "944": 2, "944643": 73, "946": 65, "950": 68, "964": 64, "965": 64, "9681": 64, "9696": 74, "978": [13, 32], "984523": 73, "99": 66, "999": 61, "A": [0, 1, 2, 3, 4, 5, 16, 17, 20, 21, 23, 28, 29, 30, 31, 34, 35, 36, 38, 41, 42, 43, 48, 51, 54, 55, 58, 59, 60, 62, 64, 65, 66, 67, 68, 72, 73, 74], "And": 65, "As": [60, 66, 71], "At": [58, 59, 72], "Being": 65, "But": [60, 64, 65, 66, 72], "By": [2, 3, 4, 29, 35, 57, 64, 65], "For": [1, 6, 17, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 45, 46, 49, 53, 59, 60, 61, 65, 67, 68, 72, 73], "If": [1, 2, 3, 4, 16, 20, 21, 30, 35, 50, 55, 59, 63, 65, 66, 68, 71, 73], "In": [1, 13, 32, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74], "It": [1, 16, 27, 40, 50, 57, 59, 60, 61, 64, 65, 67, 68, 70, 71, 73], "NOT": 73, "OR": 72, "On": 65, "One": [60, 62, 64, 73], "Or": 72, "Such": [59, 61, 73], "That": 73, "The": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 61, 65, 66, 67, 68, 69, 70, 71, 74], "Then": [68, 72], "There": [65, 66, 67, 71, 72, 73], "These": [1, 57, 59, 62], "To": [59, 62, 64, 65, 66, 68, 72, 73], "With": [59, 68], "_": [21, 23, 30, 31, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 71, 72, 73], "_1": [65, 66], "__init__": [2, 3, 4, 7, 8, 16, 17], "_a": [33, 35, 36], "_b": [30, 31, 33], "_i": 59, "_j": [30, 31, 42, 43], "a_custom_hgf": 60, "aarhu": [68, 72], "aarhus_weather_df": 72, "ab": [62, 67], "aberr": 64, "abil": 67, "abl": [57, 62, 65, 66, 68], "about": [1, 58, 59, 60, 61, 62, 63, 64, 65, 71, 72, 73], "abov": [55, 59, 60, 61, 64, 65, 68, 71, 72, 73], "absenc": [67, 71], "abstract": [1, 61, 74], "ac": 11, "acceler": 64, "accept": [62, 64, 68], "access": [2, 3, 4, 60, 65], "accommod": 1, "accord": [0, 65, 68], "accordingli": [5, 59, 62, 64, 71, 72], "account": [1, 59, 60, 71], "accumul": 51, "accur": [67, 73], "acetylcholin": 1, "achiev": 61, "across": [21, 26, 59, 61, 62, 64, 71], "act": [62, 64, 65, 66], "action": [57, 65, 66, 73], "actionmodel": 65, "activ": [13, 32, 57, 65, 73, 74], "actual": [57, 60, 63, 71, 73], "acycl": 60, "ad": [62, 63, 64, 68, 70, 71, 72], "adapt": [1, 58, 59, 64, 65, 73], "adapt_diag": [62, 64, 65, 66, 67, 69, 71, 73], "add": [50, 57, 59, 68, 71, 72, 73], "add_group": [66, 73], "add_nod": [2, 3, 4, 57, 60, 61, 63, 64, 68, 70, 71, 72, 73], "addit": [2, 3, 4, 5, 6, 60, 61, 64, 65], "addition": [67, 73], "additionn": [22, 23, 24, 25, 26], "adjac": 60, "adjacencylist": [17, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 45, 46, 49, 50, 51, 53, 60], "adjust": 73, "adopt": [62, 64], "advanc": 58, "advantag": [59, 60, 73], "aesara": [62, 64], "affect": [5, 6, 16, 64, 71, 74], "after": [0, 17, 20, 27, 28, 29, 38, 51, 61, 62, 66, 67, 71, 72, 73], "afterward": [2, 3, 4, 16], "again": [63, 64], "against": 64, "agent": [1, 57, 58, 60, 61, 62, 64, 65, 66, 67, 69, 71, 72, 73], "agnost": 1, "aim": [57, 64], "air": 72, "aki": 74, "al": [0, 57, 59, 60, 62, 65, 66, 72, 73], "algorithm": [1, 57, 59, 62, 69, 72], "align": [59, 61, 65], "alin": 74, "all": [0, 1, 2, 5, 16, 21, 24, 50, 53, 54, 55, 62, 64, 65, 66, 67, 68, 69, 71, 72, 73], "alloc": 46, "allow": [1, 60, 62, 64, 65, 68, 71, 72], "alon": 72, "along": [5, 73], "alpha": [60, 61, 63, 65, 67, 68, 70, 71, 72, 73], "alpha_": [11, 63, 68], "alpha_1": 11, "alpha_2": 11, "alreadi": [55, 60, 65, 66], "also": [16, 20, 34, 36, 41, 55, 57, 59, 60, 62, 64, 65, 66, 68, 70, 71, 72, 73], "altern": [51, 54, 60, 64, 65, 71, 73], "alternative\u00e6li": 66, "alwai": [46, 63, 66, 67, 71, 72, 73], "among": 65, "amount": 64, "an": [1, 2, 3, 4, 5, 6, 7, 8, 14, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 32, 41, 47, 49, 51, 53, 54, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "analys": [1, 73], "analyt": 1, "andrew": 74, "ani": [0, 1, 28, 29, 38, 53, 55, 57, 58, 59, 61, 62, 63, 64, 65, 66, 68], "anim": 61, "ann": 74, "anna": 74, "anoth": [59, 63, 64, 68, 70, 72, 73], "another_custom_hgf": 60, "answer": 67, "anymor": [35, 59, 61], "anyth": [59, 63], "api": [57, 62, 63, 64, 65, 66, 67, 69, 71, 73], "apont": 57, "appar": 59, "appear": [60, 68], "append": [20, 59, 61, 66, 67, 71, 72, 73], "appli": [17, 51, 54, 58, 60, 61, 63, 65, 66, 67, 71, 72, 73], "applic": [1, 6, 58, 60, 61, 64, 65, 67], "apply_along_axi": 61, "approach": [59, 61, 62, 63, 66, 67], "appropri": 70, "approxim": [1, 29, 57, 59, 60, 72], "april": [64, 74], "ar": [0, 1, 2, 4, 5, 16, 17, 20, 27, 50, 51, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "ar1": [59, 71], "arang": [60, 61, 63, 65, 68, 71, 73], "arbitrari": [2, 60, 65, 68, 72], "arbitrarili": 57, "area": [20, 72], "arg": [7, 8, 27, 28, 29, 32, 33, 34, 37, 38, 39, 40, 41, 46], "argument": [2, 3, 4, 60, 62, 64, 65, 68], "arm": [58, 65, 66, 73], "around": [20, 21, 58, 59, 60, 64, 65, 73], "arrai": [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 22, 23, 27, 35, 36, 39, 42, 44, 47, 48, 51, 60, 61, 62, 63, 64, 65, 66, 67, 68, 71, 72, 73], "arrang": 72, "arriv": 59, "articl": [1, 74], "artifici": 68, "arviz": [2, 62, 64, 65, 66, 67, 69, 71, 73], "arxiv": [28, 29, 30, 31, 34, 35, 36, 38, 41, 42, 43, 57, 62, 67, 74], "as_tensor_vari": [63, 71, 73], "asarrai": [63, 71], "ask": [1, 64], "aspect": 63, "assert": [60, 62, 64], "assess": [46, 62, 64, 73], "assign": [51, 62, 63, 64, 65, 66, 67, 69, 71, 73], "associ": [2, 3, 4, 5, 6, 54, 57, 63, 65, 66, 67, 68, 71, 73, 74], "assum": [1, 28, 29, 32, 50, 59, 60, 62, 64, 65, 66, 67, 68, 70, 71, 72, 73], "assumpt": [70, 73], "astyp": [68, 71], "atmospher": 72, "attribut": [2, 3, 4, 16, 17, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 49, 50, 51, 57, 61, 63, 66, 67, 70, 71], "au": 68, "august": [64, 74], "author": [1, 68], "auto": [62, 63, 64, 65, 66, 67, 69, 71, 73], "autoconnect": [35, 59, 68], "autoconnection_strength": [68, 70], "autocorrel": 68, "autom": 72, "automat": [60, 62, 64, 66], "autoregress": 35, "avail": [0, 57, 72], "averag": [62, 72, 73], "avoid": 67, "awai": 61, "ax": [18, 20, 21, 59, 60, 61, 63, 67, 68, 70, 71, 73], "axi": [5, 59, 61, 66], "axvlin": 71, "az": [2, 62, 63, 64, 65, 66, 67, 69, 71, 73], "b": [30, 31, 33, 35, 57, 61, 68, 71], "back": [35, 59, 66], "backgroud": 20, "backslash": 1, "backward": 60, "bad": 66, "badg": 58, "bandit": [58, 65, 66, 73], "bank": 64, "base": [1, 48, 59, 62, 63, 64, 65, 66, 67, 69, 71, 73], "batch": [5, 71], "bay": 1, "bayesian": [1, 57, 58, 59, 62, 63, 64, 65, 73, 74], "becaus": [59, 60, 62, 63, 64, 68, 71, 72], "becom": 59, "been": [54, 59, 60, 61, 63, 64, 65, 66, 72, 73], "befor": [0, 20, 31, 54, 59, 60, 61, 64, 65, 66, 67, 71, 72], "beforehand": [30, 64, 73], "begin": [9, 13, 58, 59, 61, 65, 68, 73], "behav": [1, 62, 64, 68, 72], "behavior": [1, 73, 74], "behaviour": [5, 6, 57, 58, 59, 62, 64, 65, 66, 68, 69, 71], "behind": [58, 59, 72], "being": [59, 60, 62, 66, 68, 69, 73], "belief": [0, 6, 17, 20, 48, 51, 57, 58, 60, 61, 64, 65, 66, 67, 68, 72], "beliefs_propag": [17, 61, 71], "belong": [55, 61], "below": [0, 59, 62, 63, 65, 68, 71, 72, 73], "bernoulli": [9, 73], "best": [1, 47, 64, 68, 69, 73], "beta": [71, 73], "better": [29, 64, 65, 66, 67, 72, 73], "between": [0, 1, 5, 6, 11, 16, 30, 31, 33, 50, 51, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 71, 73], "beyond": 59, "bia": [66, 73, 74], "biased_random": 73, "biased_random_idata": 73, "biased_random_model": 73, "bibtex": 1, "big": 59, "binari": [2, 3, 4, 5, 6, 9, 10, 16, 21, 22, 23, 24, 27, 40, 52, 57, 58, 59, 61, 63, 64, 66, 67, 71], "binary_hgf": 73, "binary_input_upd": [27, 40], "binary_paramet": [52, 63], "binary_precis": [16, 21, 62], "binary_softmax": [65, 73], "binary_softmax_inverse_temperatur": [57, 66, 67], "binary_states_idx": 52, "binary_surpris": [65, 71], "bind": [57, 60], "binomi": [60, 65, 66, 67, 71], "biolog": 57, "bit": [64, 66], "bivariate_hgf": 61, "bla": [62, 63, 64, 65, 66, 67, 69, 71, 73], "blackjax": 65, "blank": 63, "block": [59, 62, 64, 71], "blog": 63, "blue": [65, 68], "bollmann": 57, "bool": [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 44, 47, 48, 51], "bool_": [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 22, 23, 44, 47, 48, 51], "boolean": [27, 51, 63, 64, 73], "boom": 74, "both": [1, 35, 57, 58, 59, 60, 63, 65, 66, 68, 70, 71, 72, 73], "bottom": [21, 57, 59, 72], "brain": 1, "branch": [46, 55, 57, 65, 71], "branch_list": 55, "break": 72, "briefli": 73, "broad": 63, "broadcast": [5, 66], "broader": 61, "brodersen": [1, 57, 74], "broken": 64, "brown": [71, 74], "bucklei": 74, "build": [58, 59, 62, 64, 68, 72], "built": [60, 62, 64, 72, 73], "burst": 60, "c": [1, 13, 28, 29, 30, 31, 32, 34, 35, 36, 38, 41, 42, 43, 57, 62, 63, 64, 65, 66, 67, 69, 71, 73, 74], "c44e52": [59, 61, 65, 67, 73], "ca": 68, "calcul": [66, 68], "call": [0, 27, 59, 61, 62, 64, 65, 66, 71, 72, 73], "callabl": [0, 2, 3, 4, 5, 6, 32, 50, 51, 54, 65], "cambridg": 74, "can": [0, 1, 2, 3, 4, 5, 6, 16, 30, 50, 51, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "candid": [44, 46, 47, 48, 71], "cannot": [16, 60, 61, 71], "capabl": [59, 68], "capitalis": 59, "captur": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "capture_output": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "cardiac": [58, 64], "carlo": [1, 62, 64, 73], "carri": 73, "carryov": 51, "case": [9, 13, 59, 61, 63, 64, 65, 66, 68, 69, 71, 73], "categor": [16, 52, 58, 61, 66, 71], "categori": [10, 61, 63, 71], "categorical_hgf": 63, "categorical_idata": 63, "categorical_surpris": 63, "caus": 29, "cbo9781139087759": 74, "cdot": 68, "cedric": 74, "cell": [59, 64, 72], "censor": 67, "censored_volatil": 67, "centr": [63, 64], "central": [59, 60, 64, 68, 73], "certain": [1, 59, 60], "chain": [1, 2, 62, 63, 64, 65, 66, 67, 69, 71, 72, 73], "cham": 74, "chanc": 71, "chance_conting": 71, "chang": [59, 60, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73], "channel": 69, "chaotic": 71, "check": [64, 66], "chf": [20, 21], "child": [0, 30, 31, 46, 53, 59, 60, 61, 68, 72], "children": [0, 16, 17, 20, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 45, 46, 49, 50, 53, 54, 55, 57, 59, 60, 68], "children_idx": 50, "children_input": 20, "choic": 60, "cholinerg": 74, "choos": [61, 64, 71], "chose": [23, 46, 61, 65, 71], "chosen": 71, "christoph": [1, 74], "chunck": 68, "ci": [20, 21], "circl": 65, "circumst": 29, "citi": 72, "clarifi": 66, "clariti": [64, 73], "class": [0, 2, 3, 4, 7, 8, 16, 17, 19, 20, 21, 32, 60, 61, 62, 63, 64, 65, 66, 71, 73], "classic": [64, 73], "cldtot": 72, "clear": [65, 72], "clearli": [60, 65], "clock": 68, "close": [65, 67], "closer": 68, "cloud": 72, "cloudi": 72, "cluster": [44, 45, 46, 47, 48, 49], "cm": 70, "cmap": [63, 67], "co": 61, "code": [17, 58, 59, 60, 61, 65, 66, 68, 72, 73], "coeffici": [59, 67], "cognit": [57, 69, 74], "colab": [58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "collect": [0, 63], "colleg": 11, "collin": [67, 74], "color": [20, 59, 60, 61, 63, 65, 67, 68, 70, 71, 72, 73], "column": 51, "column_stack": [61, 71], "com": [57, 72], "combin": [1, 35, 59, 60], "come": [1, 59, 61, 65, 66, 68, 72], "command": 73, "common": [60, 63], "commonli": [65, 68, 72], "commun": [13, 59], "compar": [1, 57, 64, 66, 73], "compare_df": 73, "comparison": [4, 58, 67], "compat": [2, 60, 62, 63, 64, 65, 66], "complet": [59, 72, 73], "complex": [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 22, 23, 44, 47, 48, 51, 58, 59, 60, 65, 72], "complexifi": 59, "compli": 65, "complic": 1, "compon": [59, 60, 64, 66, 71], "compromis": 60, "comput": [0, 1, 2, 3, 4, 5, 6, 10, 11, 13, 24, 25, 30, 31, 32, 35, 36, 39, 42, 43, 54, 57, 58, 59, 60, 61, 62, 63, 64, 65, 69, 71, 72, 73, 74], "computation": 1, "concaten": 71, "conceiv": 57, "concentr": 11, "concept": [59, 66, 72], "concern": 59, "concis": 72, "cond": 68, "condit": 73, "connect": [1, 6, 16, 59, 60, 65, 68, 72], "consequ": [59, 60], "consid": [54, 59, 60, 62, 64, 65, 68, 71, 72, 73], "consider": 1, "consist": [17, 51, 59, 60, 61, 63, 65, 67, 68, 71, 73], "constand": 68, "constant": [14, 59, 61, 68], "constitud": 59, "constitut": [68, 72], "constrained_layout": [59, 60, 61, 62, 64, 65, 66, 68, 69, 71, 73], "contain": [0, 1, 2, 3, 4, 16, 18, 22, 23, 35, 36, 46, 51, 57, 59, 60, 66, 69, 72], "context": [2, 4, 51, 61, 62, 64, 65, 71, 72, 73], "contextu": 1, "contin": 3, "conting": [60, 63, 65, 71, 73], "contingencylist": 60, "continu": [1, 2, 3, 4, 5, 6, 16, 20, 21, 25, 38, 57, 58, 59, 61, 62, 63, 65, 66, 69, 70, 71, 72, 73], "continuous_input_upd": [27, 40], "continuous_node_prediction_error": [42, 43], "continuous_node_value_prediction_error": [30, 31, 41, 43], "continuous_node_volatility_prediction_error": [30, 41, 42], "continuous_precis": 16, "contrari": 60, "control": [1, 59, 60, 66, 72, 73], "conveni": [59, 65], "converg": [62, 64, 65, 66, 67, 69, 71, 73], "convert": [20, 21, 59, 62, 63, 69, 71, 73], "core": [2, 17, 57, 60, 62, 64, 65, 66, 67, 69, 71, 73], "correct": [61, 74], "correctli": [19, 67], "correl": [0, 18, 67], "correspond": [16, 20, 21, 61, 62, 65, 66, 67, 68, 71, 72], "cost": 71, "could": [24, 25, 26, 60, 63, 64, 65, 68, 71, 73], "count": [13, 61, 66], "counterpart": [60, 62], "coupl": [0, 1, 5, 6, 16, 20, 27, 30, 31, 34, 35, 36, 40, 41, 50, 54, 57, 58, 62, 70, 71, 73], "coupling_fn": [50, 60, 68], "coupling_strength": 50, "cours": [58, 72], "covari": 61, "cover": [59, 72, 73], "cpc": 58, "cpython": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "creat": [0, 2, 3, 4, 16, 20, 21, 45, 46, 57, 58, 61, 66, 67, 68, 69, 71, 72, 73], "create_belief_propagation_fn": 71, "creation": [60, 65, 72, 73], "crisi": 64, "critic": [1, 60, 65], "cross": [4, 66, 73, 74], "crucial": 66, "csv": 72, "cumsum": [59, 68, 72], "currenc": 64, "current": [0, 1, 33, 50, 57, 59, 60, 61, 65, 72, 74], "current_belief": 73, "curv": 20, "custom": [16, 58, 62, 63, 66, 71, 72, 73], "custom_op": [63, 71], "customdist": [66, 73], "customis": 58, "customop": [63, 71], "d": [1, 11, 57, 61, 74], "dai": 72, "dark": 72, "dash": 59, "data": [0, 1, 2, 3, 4, 5, 6, 20, 21, 24, 25, 26, 51, 56, 57, 59, 61, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74], "data2": 61, "databas": 72, "datafram": 56, "dataset": [65, 69, 72, 73], "daunizeau": [1, 57, 74], "de": 74, "deadlock": 73, "deal": [1, 71], "debug": 72, "decid": [59, 64, 65, 73], "decis": [1, 6, 22, 23, 57, 62, 63, 66, 67, 73], "declar": [60, 66, 68], "decreas": 71, "dedic": 64, "deeper": 57, "def": [60, 61, 63, 65, 66, 68, 71, 73], "default": [2, 3, 4, 5, 6, 16, 20, 21, 24, 25, 31, 51, 53, 54, 57, 59, 60, 61, 62, 64, 65, 66, 67, 68, 69, 71, 73], "defin": [12, 16, 17, 20, 57, 59, 60, 61, 62, 63, 64, 65, 66, 68, 72, 73], "definit": [54, 65], "degre": [61, 62, 64, 68], "deliv": 72, "delta": [61, 68], "delta_j": [30, 31, 42, 43], "demonstr": [1, 57, 61, 62, 65, 67, 69, 70], "denmark": 68, "denot": 59, "densiti": [0, 2, 11, 12, 13, 62, 64, 66, 70, 72], "depend": [5, 30, 33, 59, 62, 64, 65, 66, 68, 72], "depict": [21, 59, 73], "deriv": [1, 57, 59, 61, 68], "describ": [0, 57, 58, 59, 60, 61, 62, 65, 72], "descript": [1, 59, 72], "design": [58, 60, 63, 65, 66, 71, 72, 73], "despin": [59, 60, 61, 63, 66, 67, 68, 70, 71, 72, 73], "detail": [59, 62, 67, 71, 72], "detect": 69, "determin": 1, "determinist": [1, 66, 73], "develop": [57, 60, 73], "deviat": [20, 21, 44, 47, 48, 66, 69], "df": [61, 62, 64], "diagnos": 73, "diagnost": [62, 64, 65, 66, 67, 69, 71, 73], "dict": [16, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 49, 50, 51, 52], "dictionari": [16, 51, 57, 60, 62, 64, 72], "did": [64, 66], "differ": [1, 2, 3, 4, 5, 16, 28, 29, 38, 50, 59, 60, 61, 62, 64, 65, 66, 68, 71, 72], "differenti": [61, 62, 64, 68], "difficult": [1, 61, 72], "diffus": [57, 60], "dimens": [3, 5, 6, 59, 60, 66], "dimension": [61, 71], "dir": 11, "direct": [59, 60], "directli": [27, 60, 62, 64, 65, 66, 68, 71], "dirichlet": [11, 27, 61, 63], "dirichlet_nod": 37, "disambigu": 60, "disappear": 68, "discrep": [62, 64], "discret": [1, 63, 73], "discuss": [1, 59, 71, 73], "displai": [61, 66, 68, 73], "dissoci": [0, 60], "dist": 67, "dist_mean": 70, "dist_std": 70, "distanc": 61, "distant": 61, "distinguish": [66, 72], "distribut": [7, 8, 9, 10, 11, 13, 14, 27, 32, 48, 57, 58, 59, 60, 62, 63, 64, 65, 67, 69, 72, 73], "dive": [59, 60], "diverg": [0, 11, 63, 66, 67, 71, 73], "dk": 68, "do": [57, 60, 62, 63, 64, 65, 66, 68, 72, 73], "documatt": 60, "document": [57, 63, 72, 73], "doe": [61, 63, 65, 72, 73], "doesn": 68, "doi": [1, 13, 28, 29, 30, 31, 32, 34, 35, 36, 38, 41, 42, 43, 57, 74], "dollar": 64, "domain": [64, 73], "don": [59, 72], "done": 60, "dopamin": 1, "dopaminerg": 74, "dot": 64, "down": [0, 57, 59, 61, 72], "download": [57, 69, 72], "drag": 64, "drai": 62, "draw": [1, 20, 21, 62, 64, 65, 66, 67, 69, 71, 73], "drift": [5, 6, 16, 35, 60, 68, 72], "dse": 73, "dtype": [9, 14, 48, 61, 62, 63, 64, 65, 71, 72, 73], "due": 60, "duplic": [66, 67], "dure": [0, 17, 36, 48, 57, 60, 62, 64, 66, 67, 68, 74], "dx": 74, "dynam": [17, 57, 58, 65, 68, 69, 72, 73], "e": [1, 2, 5, 6, 16, 20, 23, 28, 29, 30, 31, 33, 34, 35, 36, 38, 41, 42, 43, 50, 51, 55, 57, 58, 59, 60, 62, 64, 65, 66, 67, 69, 71, 72, 73, 74], "e49547": 74, "each": [2, 3, 4, 17, 20, 21, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 44, 45, 46, 48, 49, 51, 53, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73], "easili": [60, 63, 65, 72, 73], "ecg": 69, "ecg_peak": 69, "ecosystem": 57, "edg": [17, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 45, 46, 49, 50, 51, 53, 54, 55, 57, 61, 71], "edgecolor": [60, 61, 65, 67, 71, 73], "editor": 74, "ef": 61, "effect": [30, 31, 36, 64, 67, 74], "effective_precis": 36, "effici": [1, 59], "ehgf": [29, 30, 54], "either": [46, 60, 65, 66, 68, 72], "ekaterina": [1, 74], "elaps": [31, 59, 71], "electrocardiographi": 69, "electron": 1, "element": 68, "elicit": 14, "elif": 74, "ellicit": 9, "elpd": 66, "elpd_diff": 73, "elpd_loo": [66, 73], "els": [67, 71], "emb": [62, 64], "embed": [0, 58, 62, 64, 66], "empir": 1, "empti": 17, "en": [7, 8], "enabl": 1, "encapsul": [63, 71], "encod": [1, 57, 59, 63, 65, 67, 72, 73], "end": [9, 13, 59, 61, 65, 68], "endogen": 36, "energi": [1, 74], "enlarg": 61, "enno": 74, "enough": 57, "ensur": [54, 62, 64, 66, 67, 71, 72], "enter": 59, "entir": 60, "entri": 16, "enumer": [59, 61, 73], "environ": [1, 59, 60, 65, 66, 72, 73], "environment": [1, 60, 67], "eq": 11, "equal": [1, 3, 29, 51, 68], "equat": [1, 11, 59, 62, 63, 64, 65, 68, 71, 72], "equival": [61, 65], "erdem": 74, "eric": 74, "error": [1, 30, 31, 39, 40, 41, 42, 43, 46, 51, 54, 57, 60, 61, 64, 68, 69, 72, 73, 74], "especi": [59, 66, 71, 73], "ess": 67, "ess_bulk": [2, 65, 73], "ess_tail": [2, 65, 73], "estim": [0, 1, 2, 20, 21, 58, 59, 61, 65, 66, 67, 71, 72, 73], "et": [0, 57, 59, 60, 62, 65, 66, 72, 73], "eta": 61, "eta0": [10, 16, 21, 62], "eta1": [10, 16, 21, 62], "etc": 60, "euro": 64, "european": 74, "eval": 66, "evalu": [13, 59, 63, 65, 71, 74], "even": [1, 59, 68], "event": [1, 64, 70], "everi": [58, 59, 60, 63, 66, 71, 72, 73], "everyth": 65, "evid": [6, 61, 73], "evidenc": 61, "evolut": [59, 62, 64, 65, 72, 73], "evolv": [58, 59, 71], "exact": [59, 65, 72], "exactli": [59, 63, 65, 66], "exampl": [1, 2, 9, 14, 20, 21, 57, 58, 59, 60, 62, 63, 64, 65, 66, 68, 72, 73], "excel": 65, "except": [30, 31, 62, 64, 65, 73], "exchang": 64, "exclud": [55, 71], "exclus": 55, "execut": [0, 60], "exert": [59, 60], "exhibit": [62, 64], "exist": [44, 46, 47, 48, 49, 60], "exogen": 36, "exot": 63, "exp": [36, 59, 61, 66, 71, 72], "expect": [0, 5, 6, 9, 10, 14, 16, 20, 21, 23, 27, 29, 30, 31, 33, 34, 35, 36, 47, 59, 60, 61, 62, 64, 65, 66, 68, 69, 70, 71, 72, 73], "expected_mean": [9, 10, 14, 35, 44, 47, 48, 59, 60, 65, 66, 67, 70, 71, 73], "expected_precis": [10, 14, 36, 60, 70], "expected_sigma": [44, 47, 48], "experi": [65, 73], "experiment": [1, 58, 65, 66, 67, 71, 73], "explain": [66, 72, 73], "explan": 73, "explicit": 65, "explicitli": [1, 60, 66, 69], "explor": 73, "exponenti": [7, 8, 13, 58, 59, 61, 72], "exponential_famili": [7, 8], "export": [56, 65], "express": [1, 60, 61, 63, 64, 68, 71, 72], "extend": [60, 61, 62, 64, 66], "extens": [1, 58, 73], "extract": [62, 64, 69, 70, 73], "extrem": [1, 64, 71], "f": [35, 57, 59, 60, 68, 72], "f_1": 60, "f_i": 60, "f_n": 60, "f_x": 61, "facilit": [57, 60], "fact": [68, 71], "fail": 29, "fairli": 67, "fall": 64, "fals": [20, 21, 68, 73], "famili": [7, 8, 13, 32, 58, 59, 61, 72], "familiar": 65, "far": [60, 64, 65, 72, 73], "fashion": 1, "fast": [68, 71, 73], "feasibl": 57, "featur": [60, 66, 69, 72], "februari": 74, "fed": 66, "feed": [20, 21, 71], "fewer": 70, "field": [1, 60, 65, 73], "fig": [61, 63, 67, 68, 70], "figsiz": [20, 21, 59, 60, 61, 63, 65, 67, 68, 70, 71, 72, 73], "figur": [20, 21, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 71, 72, 73], "fil": 11, "file": 1, "fill": 67, "fill_between": [63, 70, 71], "filter": [0, 1, 5, 6, 13, 16, 28, 29, 30, 31, 32, 34, 35, 36, 38, 41, 42, 43, 60, 65, 66, 67, 70, 71, 73, 74], "final": [1, 72, 73], "find": [47, 57, 58, 60, 64, 65, 72], "finit": [10, 38], "fir": 69, "firebrick": 71, "first": [0, 1, 3, 5, 6, 10, 16, 25, 28, 29, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 71, 72, 73], "first_level_binary_surpris": [62, 73], "first_level_gaussian_surpris": [64, 69, 72], "firt": 23, "fit": [2, 3, 4, 5, 6, 24, 25, 26, 65, 66, 67, 68, 71, 72], "fix": [2, 32, 59, 65, 66, 68, 72, 73], "flatten": 66, "flexibl": [1, 57, 63, 72, 73], "flexibli": 61, "flight": 64, "float": [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 22, 23, 24, 25, 26, 30, 31, 44, 47, 48, 50, 51, 66, 71], "float32": [9, 14, 62, 64, 65, 72, 73], "float64": [63, 71], "floor": 64, "fluctuat": 59, "flux": 72, "fn": 73, "fnhum": [1, 57, 74], "focu": 57, "focus": [60, 71], "folder": 57, "follow": [1, 11, 54, 57, 59, 60, 61, 62, 63, 64, 68, 71, 72, 73], "forc": 71, "fork": [62, 73], "form": [1, 59, 60, 61, 66, 68, 72], "formal": 59, "format": 1, "formul": 1, "forward": [57, 59, 62, 64, 66, 67, 71, 72, 73], "found": [1, 59, 60, 62, 64, 72], "foundat": [1, 57, 72, 74], "four": [1, 60, 71, 73], "fpsyt": 57, "frac": [11, 13, 14, 20, 23, 30, 31, 32, 33, 35, 36, 43, 59, 61, 63, 66, 71], "fraction": 72, "frame": [56, 59, 61, 69, 72], "framework": [1, 57, 58, 59, 60, 61], "franc": 64, "free": [1, 57, 62, 65, 67], "freedom": 61, "friston": [1, 57, 74], "from": [0, 1, 2, 5, 6, 9, 11, 13, 14, 20, 21, 22, 23, 30, 31, 40, 51, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 68, 69, 70, 72, 73], "frontier": [1, 57, 74], "frontiersin": [1, 74], "fry": 48, "fr\u00e4ssle": 57, "full": [1, 6, 57, 61], "fulli": [59, 72], "func": 61, "funcanim": 61, "function": [1, 2, 3, 4, 5, 6, 15, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 50, 51, 54, 55, 57, 58, 59, 61, 62, 63, 64, 66, 67, 69, 71, 72, 73], "fundament": 59, "further": [59, 60, 66, 70, 71], "fusion": 65, "futur": [0, 59, 74], "g": [1, 5, 6, 30, 31, 57, 59, 65, 67, 68, 73], "g_": [61, 68], "gabri": 74, "gamma": [11, 13, 61, 63], "gamma_a": 36, "gamma_j": [30, 31], "gaussian": [0, 1, 2, 5, 6, 12, 13, 14, 16, 20, 25, 26, 28, 29, 30, 31, 32, 34, 35, 36, 38, 41, 42, 43, 60, 65, 66, 67, 68, 69, 71, 73, 74], "gaussian_predictive_distribut": 61, "gcc": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "ge": 74, "gelman": 74, "gener": [1, 28, 29, 30, 31, 34, 35, 36, 38, 41, 42, 43, 52, 54, 58, 60, 61, 62, 63, 65, 66, 67, 68, 71, 73, 74], "generalis": [57, 58, 63, 65], "generalised_filt": 61, "get": [33, 60, 61, 64, 65, 66, 67, 70, 71, 72, 73], "get_legend_handles_label": [59, 73], "get_network": [61, 71], "get_update_sequ": 60, "ghgf": [57, 72, 73], "gif": 61, "git": 57, "github": [11, 57], "githubusercont": 72, "give": [62, 64, 65, 68, 71, 73], "given": [0, 6, 9, 11, 14, 20, 23, 24, 25, 26, 27, 30, 31, 32, 35, 36, 38, 42, 43, 47, 48, 55, 57, 59, 60, 61, 62, 63, 64, 65, 67, 68, 71, 72, 73], "global": [1, 64], "go": [59, 62, 64, 65, 66, 71, 72], "goe": 63, "good": [65, 66, 67, 71], "googl": [58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "grad": [63, 71], "gradient": [3, 63, 71], "grai": 71, "grandpar": 60, "graph": [51, 58, 60, 63, 71], "graphic": 57, "graphviz": [19, 62, 64], "greater": 60, "greatli": 61, "greec": 64, "green": [67, 68], "grei": [20, 59, 61, 64, 67, 70], "grid": [59, 61, 67, 68, 70, 72, 73], "ground": 72, "group": [58, 59, 67, 73], "grow": 63, "grw": [59, 72], "grw_1": 72, "grw_2": 72, "guid": 59, "gz": [63, 71], "h": [1, 28, 29, 30, 31, 34, 35, 36, 38, 41, 42, 43, 57, 59, 61, 73, 74], "ha": [1, 17, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 45, 46, 49, 50, 53, 59, 60, 61, 62, 63, 64, 65, 66, 71, 72, 73], "had": [65, 66, 73], "halfnorm": 66, "hamiltonian": [62, 64, 73], "hand": [31, 58, 65], "handi": 68, "handl": [58, 59, 61, 63, 65, 66, 73], "happen": [59, 65, 68, 72], "harrison": [57, 74], "hat": [9, 14, 20, 23, 30, 31, 33, 35, 36, 42, 43, 59, 65, 66, 68], "have": [1, 27, 40, 54, 59, 60, 62, 63, 64, 65, 66, 68, 71, 72, 73], "hdi_3": [2, 65, 73], "hdi_97": [2, 65, 73], "he": 65, "head": [65, 72], "heart": [0, 59, 60], "heartbeat": 69, "heatmap": 18, "heavi": 60, "hedvig": 74, "height": [20, 21, 72], "heinzl": 57, "help": [64, 66, 72], "her": 65, "here": [1, 2, 22, 23, 24, 25, 26, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 71, 72, 73], "hgf": [0, 1, 2, 3, 4, 5, 6, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 52, 57, 58, 59, 60, 61, 63, 66, 67, 68, 69, 70, 71, 72], "hgf_loglik": [62, 64, 65, 67, 69, 73], "hgf_logp_op": [2, 62, 64, 65, 66, 67, 69, 73], "hgf_logp_op_pointwis": [66, 73], "hgf_mcmc": [62, 64], "hgfdistribut": [62, 63, 64, 65, 66, 67, 69, 73], "hgfpointwis": [66, 73], "hhgf_loglik": 2, "hidden": [1, 59, 71, 72, 73], "hide": 71, "hierarch": [0, 1, 5, 6, 13, 16, 28, 29, 30, 31, 32, 34, 35, 36, 38, 41, 42, 43, 60, 65, 67, 69, 70, 71, 73, 74], "hierarchi": [0, 1, 2, 3, 4, 16, 57, 59, 60, 62, 64, 72], "hierarchicalgaussianfilt": 65, "high": [70, 71], "high_nois": 68, "high_prob": 71, "higher": [59, 62, 64, 66, 67, 68, 72, 73], "highest": 1, "highli": [1, 64, 73], "hist": 71, "hold": [59, 65], "home": 1, "hood": 61, "hostedtoolcach": 73, "hour": [58, 72], "hourli": [72, 74], "how": [58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "howev": [1, 59, 60, 61, 63, 64, 65, 66, 68, 69, 73], "html": 11, "http": [1, 7, 8, 11, 28, 29, 30, 31, 32, 34, 35, 36, 38, 41, 42, 43, 57, 62, 67, 72, 74], "human": [1, 57, 74], "hyper": 66, "hyperparamet": [13, 32, 61], "hyperprior": [66, 67], "i": [0, 1, 2, 3, 4, 5, 6, 9, 11, 13, 14, 16, 17, 20, 21, 23, 24, 25, 27, 28, 29, 30, 31, 32, 34, 35, 36, 40, 41, 42, 43, 46, 50, 51, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74], "iain": 74, "idata": [2, 69, 71, 73], "idata_kwarg": 73, "idea": [59, 60, 64, 65, 67], "ident": 68, "identifi": 67, "idx": [63, 67], "iglesia": [1, 57, 62, 65, 73, 74], "ignor": [5, 6], "ii": [1, 58], "iii": 1, "ilabcod": [57, 72], "illustr": [1, 59, 60, 63, 64, 65, 68, 69, 71, 72, 73], "imagin": 68, "impact": 71, "implement": [0, 16, 32, 35, 57, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "impli": [27, 52, 59, 61, 63, 64, 71, 72], "implicitli": 65, "import": [2, 9, 14, 20, 21, 57, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "import_dataset1": 69, "importantli": [59, 60], "imposs": 54, "improv": [54, 73], "imshow": 63, "includ": [5, 6, 16, 59, 60, 61, 62, 64, 65, 66, 68, 69, 73], "incom": [59, 72], "incompat": 73, "incorpor": [16, 34, 41, 61, 65, 66], "incorrect": 68, "increas": [61, 62, 64, 66, 67, 68, 71, 72, 73], "increment": [51, 59], "inde": 66, "independ": [58, 61, 67], "index": [17, 20, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 45, 46, 49, 50, 51, 52, 53, 55, 57, 60], "indic": [50, 59, 62, 64, 65, 66, 67, 68, 69, 71, 73], "individu": [1, 57, 67, 74], "inf": [5, 16, 21, 24, 25, 26, 62, 63, 66, 71], "infer": [0, 1, 5, 6, 13, 32, 51, 57, 58, 59, 60, 64, 65, 70, 73, 74], "inferred_paramet": 67, "infin": 72, "infinit": [63, 71], "influenc": [0, 1, 35, 59, 60, 61, 62, 64, 66, 68, 71, 72, 73], "inform": [1, 13, 17, 51, 60, 61, 62, 63, 64, 66, 68, 71, 72, 73], "infti": 64, "ingredi": 65, "inherit": [5, 6, 57, 59, 72], "initi": [2, 3, 4, 16, 17, 60, 61, 62, 64, 65, 66, 67, 69, 71, 72, 73], "initial_belief": 73, "initial_mean": [16, 20, 21, 62, 64, 65, 66, 67, 69, 73], "initial_precis": [16, 20, 21, 62, 64, 65, 69, 73], "initv": 67, "inplac": 63, "input": [0, 1, 2, 3, 4, 5, 6, 16, 17, 20, 21, 22, 23, 24, 25, 26, 27, 30, 31, 37, 38, 40, 41, 45, 46, 47, 49, 51, 53, 55, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "input_convers": 69, "input_data": [2, 3, 4, 5, 6, 20, 21, 57, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "input_idx": [51, 61, 71], "input_nodes_idx": 37, "input_precis": [5, 6], "input_typ": 69, "insert": 59, "insid": [65, 68, 71, 73], "inspir": [57, 59, 60], "instal": [19, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "instanc": [0, 6, 18, 19, 20, 21, 22, 23, 24, 25, 26, 52, 54, 57, 60, 62, 64, 65, 66, 72], "instanti": [63, 71], "instead": [2, 3, 4, 30, 31, 64, 71, 72, 73], "instruct": 60, "instrument": 68, "int": [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 61, 63, 68, 71], "int32": 73, "integ": [2, 3, 4, 60], "integr": [1, 61, 73], "inter": 1, "interact": [58, 59, 73], "intercept": 59, "interest": [59, 66, 67, 71, 72], "interestingli": 61, "interfac": [57, 65], "interleav": [0, 61, 71], "intern": [32, 58, 63, 65, 66, 68, 72, 74], "interocept": 58, "interpol": 63, "interpret": 1, "intersect": 58, "interv": [33, 61, 68, 69], "interven": 64, "intervent": 64, "introduc": [1, 58, 59, 63, 72, 73], "introduct": [57, 58], "introductori": 72, "intuit": [1, 58, 65], "invers": [1, 5, 6, 23, 57, 58, 59, 65, 66, 67, 71], "inverse_temperatur": [66, 67], "invert": [1, 72, 73], "involv": 1, "io": [11, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "ion": 11, "ipykernel_3226": 64, "ipython": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "irrespect": 48, "isbn": 1, "isclos": [62, 64], "isnan": [63, 71], "issn": 1, "item": [2, 3, 4], "iter": [59, 62, 64, 65, 66, 67, 69, 70, 71, 73], "its": [1, 33, 35, 46, 50, 57, 58, 59, 60, 62, 64, 65, 66, 68, 69, 72, 73], "itself": [59, 60, 62, 68, 72], "iv": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "j": [1, 30, 31, 36, 43, 57, 74], "jacobian": [63, 71], "jan": 74, "jax": [0, 5, 17, 21, 22, 23, 48, 51, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "jaxlib": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "jean": [1, 74], "jit": [57, 63, 71], "jitted_custom_op_jax": [63, 71], "jitted_vjp_custom_op_jax": [63, 71], "jitter": [62, 64, 65, 66, 67, 69, 71, 73], "jl": 65, "jnp": [16, 21, 24, 25, 26, 61, 62, 63, 64, 65, 67, 68, 71], "job": [62, 64, 65, 66, 67, 69, 71, 73], "joint": [60, 61], "jonah": 74, "journal": [1, 74], "julia": [57, 60, 65], "jump": 59, "just": [65, 66, 67, 68, 72, 73], "k": [1, 11, 22, 23, 28, 29, 30, 31, 33, 34, 35, 36, 38, 41, 42, 43, 57, 59, 60, 61, 63, 65, 66, 67, 68, 71, 72, 73], "kai": [1, 74], "kalman": [59, 65], "kappa": 59, "kappa_1": 59, "kappa_j": [30, 31, 36], "karl": [1, 74], "kasper": [57, 74], "kdeplot": 67, "keep": [68, 72], "kei": [1, 48, 59, 60, 73], "keyword": [1, 60, 65], "kg": 72, "kind": [30, 50, 57, 59, 60, 61, 63, 64, 66, 68, 71, 72, 73], "kl": [11, 63], "kl_diverg": 63, "klaa": [1, 74], "knew": [62, 64], "know": [59, 65, 68, 73], "knowledg": 72, "known": 68, "kora": 68, "kullback": [11, 63], "kwarg": [7, 8], "l": [13, 28, 29, 30, 31, 32, 34, 35, 36, 38, 41, 42, 43, 57, 59, 73, 74], "l_a": 71, "l_b": 71, "label": [59, 60, 61, 63, 65, 66, 70, 71, 72, 73], "laew": 1, "lambda": [59, 66, 68], "lambda_1": 59, "lambda_2": [59, 68], "lambda_2x_2": 68, "lambda_3": [59, 68], "lambda_a": [35, 59, 68], "land": 72, "lanillo": 74, "lar": 74, "larg": [60, 61, 72], "larger": [60, 61, 62, 67, 72], "last": [51, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "latent": 59, "later": [36, 57, 59, 66, 73], "latter": 71, "lax": [17, 51, 68, 71], "layer": [5, 59, 64, 72, 73], "layout": 64, "lead": [59, 64, 73], "learn": [1, 57, 59, 63, 67, 68, 70, 72, 74], "learning_r": 73, "learnt": 68, "least": [0, 62, 64, 65, 66, 67, 69, 71, 73], "leav": [0, 51, 59, 66, 72, 73, 74], "lee": [66, 74], "left": [11, 13, 30, 31, 35, 36, 43, 59, 61, 63, 65, 72], "leftarrow": [32, 61], "legend": [59, 60, 61, 65, 66, 68, 70, 71, 72, 73], "legrand": [28, 29, 30, 31, 34, 35, 36, 38, 41, 42, 43, 57, 68, 74], "leibler": [11, 63], "len": [63, 65, 71, 73], "length": [2, 3, 4, 17, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 45, 46, 49, 51, 53, 65, 66], "leq": 68, "less": [16, 60, 65], "let": [59, 60, 61, 63, 65, 68, 72, 73], "level": [0, 1, 2, 5, 6, 16, 20, 21, 23, 25, 57, 58, 59, 60, 61, 65, 67, 68, 69, 70, 71, 72], "leverag": 66, "li": 59, "lib": 73, "librari": [0, 60, 62, 64, 73], "like": [48, 62, 63, 64, 65, 66, 68, 72, 73], "likelihood": [44, 46, 64, 65, 66, 73], "lilian": 74, "limit": [1, 29, 59, 61, 65, 68, 71, 73], "line": [59, 60, 64, 65, 68], "linear": [30, 31, 50, 58], "linear_hgf": 68, "linearli": 61, "linestyl": [59, 60, 61, 65, 67, 68, 70, 73], "linewidth": [59, 61, 63, 72, 73], "link": [1, 50, 57, 60, 66], "linspac": [66, 67, 70], "list": [2, 3, 4, 5, 17, 20, 21, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 45, 46, 49, 50, 51, 52, 53, 55, 57, 60, 63, 65, 66, 71, 72], "lit": 1, "ln": [11, 63], "load": [57, 72, 73], "load_data": [2, 20, 21, 57, 62, 64, 65, 66, 67, 72, 73], "load_ext": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "loc": [59, 61, 63, 70, 71, 72], "log": [2, 4, 5, 6, 9, 14, 20, 57, 62, 64, 65, 66, 71, 72, 73], "log_likelihoo": 73, "log_likelihood": [66, 73], "log_prob": 5, "logist": 15, "logit": [62, 73], "lognorm": 66, "logp": [5, 66, 73], "logp_fn": 71, "logp_pointwis": [66, 73], "lomakina": [1, 57, 74], "london": 11, "long": [68, 74], "loo": 66, "loo_hgf": 66, "look": [62, 63, 64, 68, 73], "loop": [59, 71, 72, 73], "loos": 71, "loss": 71, "loss_arm1": 71, "loss_arm2": 71, "lot": 62, "low": [70, 71], "low_nois": 68, "low_prob": 71, "lower": [59, 60, 61, 62, 63, 67], "lower_bound": 15, "lowest": 57, "luckili": 66, "m": [57, 59, 60], "m2": 72, "m3": 72, "m_1": 59, "m_a": 35, "made": [16, 60, 65, 66, 71, 72, 73], "magic": 72, "mai": [1, 63, 74], "main": [0, 19, 20, 21, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "major": 1, "make": [1, 57, 59, 60, 62, 63, 65, 66, 70, 71, 72, 73], "make_nod": [63, 71], "manag": 68, "mani": [1, 2, 59, 60, 63, 65, 66], "manipul": [0, 17, 57, 58, 62, 65, 66, 71, 72], "manka": 74, "manual": [60, 61, 66, 68, 73], "many_binary_children_hgf": 60, "many_value_children_hgf": 60, "many_value_parents_hgf": 60, "many_volatility_children_hgf": 60, "many_volatility_parents_hgf": 60, "map": 66, "marker": 68, "market": 64, "markov": 1, "mask": [51, 61, 71], "master": 57, "match": [5, 60, 68, 73], "math": [2, 32, 35, 61, 67, 71], "mathcal": [2, 13, 59, 60, 61, 65, 66, 72], "mathemat": [14, 59, 72], "mathi": [1, 13, 28, 29, 30, 31, 32, 34, 35, 36, 38, 41, 42, 43, 57, 59, 60, 61, 72, 74], "matlab": [57, 59, 64], "matplotlib": [18, 20, 21, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "matrix": [66, 71], "matter": [65, 73], "maxim": 64, "mayb": 66, "mcmc": [2, 58, 73], "mcse_mean": [2, 65, 73], "mcse_sd": [2, 65, 73], "mead": 1, "mean": [1, 2, 5, 6, 9, 12, 14, 16, 20, 21, 28, 29, 30, 31, 33, 34, 35, 44, 47, 48, 54, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73], "mean_1": [2, 5, 6, 64], "mean_2": [5, 6], "mean_3": [5, 6], "mean_hgf": 70, "mean_mu_g0": 48, "mean_precision_hgf": 70, "measur": [63, 65, 67, 68, 69, 72], "mechan": 1, "media": 57, "mention": 59, "mere": 65, "messag": 60, "meta": [60, 64], "meter": 72, "method": [1, 2, 3, 4, 7, 8, 16, 17, 24, 25, 32, 60, 62, 64, 65, 66, 69, 72], "metric": 65, "michael": 74, "might": [2, 3, 4, 16, 65, 73], "min": 63, "mind": 73, "minim": [1, 60, 62, 64, 72, 73], "minimis": 69, "miss": [68, 71], "missing_inputs_u": 71, "mix": 72, "mm": 72, "modal": 69, "model": [1, 2, 3, 4, 5, 6, 18, 20, 21, 22, 23, 24, 25, 26, 29, 52, 54, 58, 60, 61, 67, 68, 70, 71, 74], "model_to_graphviz": [62, 64, 66, 69, 73], "model_typ": [2, 3, 4, 16, 20, 21, 24, 60, 62, 64, 65, 66, 67, 69, 73], "modifi": 65, "modul": [0, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "modular": [57, 59, 60, 73], "mont": [1, 62, 64, 73], "montemagno": 68, "month": 72, "more": [58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 72, 73], "moreov": 66, "most": [16, 59, 60, 61, 62, 63, 64, 65, 71, 72], "mostli": 71, "move": [59, 66, 73], "mu": [9, 14, 23, 30, 31, 33, 35, 42, 59, 62, 64, 65, 66, 72], "mu_1": [59, 64, 68, 72], "mu_2": [59, 68], "mu_3": 68, "mu_a": [35, 36, 68], "mu_b": [30, 31, 68], "mu_i": 59, "mu_j": [30, 31, 42], "mu_temperatur": 66, "mu_volatil": 66, "much": [60, 61, 64, 72, 73], "multi": [58, 66, 67], "multiarm": 58, "multilevel": [58, 66, 73], "multinomi": 63, "multipl": [1, 5, 20, 50, 60, 63, 65, 66, 68, 69, 71], "multipleloc": 61, "multipli": 60, "multiprocess": 73, "multithread": 73, "multivari": [7, 61], "multivariatenorm": 61, "must": [50, 68], "m\u00f8ller": [28, 29, 30, 31, 34, 35, 36, 38, 41, 42, 43, 57, 74], "m\u00fcller": 57, "n": [2, 4, 28, 29, 30, 31, 34, 35, 36, 38, 41, 42, 43, 51, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "n1662": 1, "n_": [30, 31, 36], "n_1": 60, "n_categori": 63, "n_j": 60, "n_level": [2, 3, 4, 5, 6, 16, 20, 21, 60, 62, 64, 65, 66, 67, 69, 73], "n_node": [60, 61, 68, 71], "n_sampl": [47, 48], "name": 59, "nan": [2, 3, 4, 5, 73], "nativ": [62, 64, 66, 68], "natur": [1, 59, 61], "ncol": [59, 67], "ndarrai": [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 22, 23, 44, 47, 48, 51], "necessarili": 1, "need": [27, 28, 29, 38, 40, 60, 61, 63, 65, 66, 67, 68, 71, 72, 73], "neg": [5, 6, 20, 29, 62, 64, 65, 68, 71, 72], "nelder": 1, "nest": [63, 65, 71, 72], "network": [0, 5, 6, 18, 19, 20, 21, 25, 26, 35, 36, 37, 45, 46, 49, 50, 51, 52, 53, 54, 55, 56, 58, 61, 62, 64, 65, 67, 68, 69, 70, 71, 72, 73], "neural": [0, 17, 37, 45, 46, 49, 50, 54, 58, 59, 60, 68, 73], "neuroimag": 74, "neuromodel": 57, "neuromodul": 1, "neuromodulatori": 1, "neurosci": [1, 57, 62, 64, 66, 74], "new": [0, 20, 21, 30, 31, 33, 35, 36, 44, 45, 46, 47, 48, 51, 57, 59, 60, 61, 62, 63, 64, 66, 67, 68, 71, 72, 73], "new_attribut": 60, "new_belief": 73, "new_input_precision_1": 60, "new_input_precision_2": 60, "new_mean": 61, "new_mu": 48, "new_observ": 73, "new_sigma": 48, "newaxi": [2, 62, 64, 65, 66, 69, 73], "next": [1, 59, 62, 64, 65, 72], "nicola": [68, 74], "nodal": 69, "nodalis": [57, 72], "node": [2, 3, 4, 5, 6, 16, 17, 19, 20, 21, 24, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 61, 62, 64, 65, 66, 69, 70, 71, 73], "node_idx": [20, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 49, 52, 55, 60, 63, 71], "node_paramet": [60, 61], "node_precis": 30, "node_trajectori": [17, 63, 65, 66, 67, 70, 71, 73], "node_typ": 60, "nois": [1, 60, 68], "noisi": [60, 61, 68], "noisier": [68, 73], "non": [30, 31, 45, 49, 58], "non_sequ": 73, "none": [2, 3, 4, 6, 16, 17, 20, 21, 24, 25, 26, 27, 50, 59, 60, 62, 63, 65, 66, 68], "nonlinear_hgf": 68, "noon": 72, "norm": [61, 70], "normal": [1, 2, 7, 10, 11, 32, 58, 59, 60, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "note": [16, 19, 27, 30, 31, 34, 40, 41, 50, 59, 62, 64, 65, 66, 68, 71, 72, 73], "notebook": [58, 59, 60, 62, 64, 65, 66, 68, 70, 71, 73], "notic": 68, "notion": [59, 60], "nov": 74, "novel": 1, "novemb": 74, "now": [59, 60, 62, 64, 65, 66, 68, 71, 72, 73], "np": [2, 5, 13, 59, 60, 61, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73], "nrow": [59, 61, 63, 71], "nu": [13, 32], "nu_": 61, "num": 67, "num_sampl": 73, "number": [1, 2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 17, 20, 21, 22, 23, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 44, 45, 46, 47, 48, 49, 51, 53, 60, 61, 62, 63, 64, 65, 66, 67, 68, 71, 73], "numer": [1, 63, 71], "numpi": [2, 4, 5, 21, 22, 23, 48, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "nut": [62, 64, 65, 66, 67, 69, 71, 73], "nutshel": 65, "o": [57, 72, 73], "o_": 65, "object": [67, 73], "observ": [0, 9, 10, 13, 14, 20, 27, 30, 31, 40, 44, 46, 47, 48, 51, 57, 58, 59, 60, 61, 62, 63, 64, 66, 68, 69, 71, 72, 73], "obtain": 65, "occur": [29, 63, 66], "oct": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "octob": 74, "offer": [1, 59], "offici": [57, 63], "often": [29, 59, 60, 65, 66, 67], "omega": [62, 63, 64, 66, 69, 71, 72], "omega_": [62, 64, 66], "omega_1": [59, 64, 72], "omega_2": [2, 59, 62, 63, 64, 65, 69, 73], "omega_3": [62, 64], "omega_a": 36, "omega_j": [30, 31], "onc": [59, 60, 73], "one": [1, 2, 3, 4, 20, 30, 31, 32, 35, 59, 60, 61, 65, 66, 71, 72, 73, 74], "ones": [61, 63, 67, 68, 71], "onli": [0, 6, 16, 21, 24, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72], "onlin": 1, "oop": 72, "op": [3, 63, 71], "open": [57, 69], "oper": [57, 61, 63, 65, 71, 72], "operand": [45, 49], "opt": 73, "optim": [1, 54, 57, 59, 60, 62, 64, 71], "optimis": [62, 64, 65], "option": [23, 35, 64, 65], "orang": 64, "order": [50, 57, 59, 60, 61, 62, 64, 65, 68, 73], "org": [1, 7, 8, 28, 29, 30, 31, 32, 34, 35, 36, 38, 41, 42, 43, 57, 62, 67, 74], "organ": 0, "origin": [54, 57, 68], "orphan": 59, "oscil": 68, "oscillatori": 68, "other": [30, 31, 55, 57, 59, 60, 62, 64, 65, 68, 71, 72, 73], "otherwis": 71, "our": [1, 59, 61, 62, 64, 65, 66, 68, 69, 71, 73], "ourselv": [62, 64], "out": [59, 66, 73, 74], "outcom": [9, 14, 57, 58, 60, 62, 65, 66, 71, 73], "outcome_1": 73, "outcome_2": 73, "output": [63, 65, 71, 74], "output_gradi": [63, 71], "output_typ": 69, "outputs_info": 73, "outsid": 68, "over": [2, 5, 6, 13, 57, 58, 59, 60, 61, 62, 64, 65, 66, 68, 69, 71, 72, 73], "overal": [1, 64, 65], "overcom": 68, "overfit": [64, 71], "overlai": 48, "overtim": 70, "overview": 59, "own": [35, 59, 72], "p": [11, 23, 28, 29, 30, 31, 34, 35, 36, 38, 41, 42, 43, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "p1": 63, "p2": 63, "p3": 63, "p_a": [35, 68, 71], "p_loo": [66, 73], "pablo": 74, "packag": [1, 57, 60, 65], "page": 1, "pair": 59, "pan": 69, "panda": [56, 65, 69, 72], "panel": [21, 60, 64, 65], "paper": [1, 59], "paralel": 61, "parallel": [3, 5, 6, 66], "paramet": [0, 1, 2, 3, 4, 5, 6, 9, 10, 11, 13, 14, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 66, 68, 69, 72], "parameter": [16, 59], "parameter_structur": 51, "parametr": [11, 13, 17, 23, 44, 46, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 73], "parametris": [71, 72, 73], "paraticip": [22, 23], "parent": [0, 5, 6, 16, 17, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 45, 46, 49, 50, 53, 54, 55, 57, 59, 60, 61, 62, 64, 68, 69, 70, 71, 72], "parent_idx": 50, "pareto": 66, "part": [5, 6, 16, 57, 59, 60, 63, 64, 65, 66, 68, 72, 73], "partial": [63, 67, 71], "particip": [65, 66, 67, 69, 73], "particular": [59, 72], "pass": [2, 3, 4, 5, 6, 17, 27, 40, 59, 60, 61, 62, 64, 65, 68, 71, 72], "past": [61, 65], "patholog": 1, "pattern": 74, "pct": 66, "pd": 72, "pdf": [1, 61, 70], "peak": 69, "penni": 11, "per": [66, 67], "percept": [1, 57, 74], "perceptu": [1, 2, 3, 4, 16, 65, 66, 67], "pereira": 57, "perform": [1, 5, 6, 29, 35, 51, 54, 58, 59, 60, 62, 63, 64, 65, 68, 69, 71, 72, 73], "perspect": [62, 64], "peter": 74, "petzschner": 57, "pfenning": [72, 74], "phasic": [5, 6, 16, 35, 36, 59, 72], "phenomena": 60, "phenomenon": 68, "phi": 59, "physio_df": 69, "physiolog": [58, 64], "pi": [13, 14, 20, 30, 31, 33, 36, 43, 59, 61, 62, 64, 68], "pi_1": 59, "pi_a": 36, "pi_b": [30, 31], "pi_i": 59, "pi_j": [30, 31, 43], "pid": 73, "piec": 73, "pip": [57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "pjitfunct": 5, "place": [59, 60, 66, 71], "plai": [1, 64], "plausibl": 57, "pleas": 66, "plot": [59, 60, 61, 63, 65, 67, 68, 70, 71, 72, 73], "plot_compar": 73, "plot_correl": 64, "plot_network": [60, 61, 62, 63, 64, 68, 70, 71, 72, 73], "plot_nod": [60, 63, 68, 71], "plot_posterior": [66, 71], "plot_raw": 69, "plot_trac": [62, 63, 64, 65, 69, 73], "plot_trajectori": [57, 60, 62, 64, 68, 69, 72, 73], "plt": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "plu": 71, "pm": [2, 62, 63, 64, 65, 66, 67, 69, 71, 73], "pmid": 1, "point": [13, 24, 25, 26, 33, 51, 59, 60, 61, 62, 63, 64, 65, 66, 71, 72], "pointer": [27, 28, 29, 30, 31, 32, 33, 34, 37, 38, 39, 40, 41, 42, 43, 45, 46, 49], "pointwis": [4, 66, 73], "pointwise_loglikelihood": [66, 73], "pool": 67, "poor": 72, "popen_fork": 73, "popul": 66, "popular": 73, "posit": [60, 65, 66, 72], "possess": 68, "possibl": [10, 35, 53, 57, 58, 60, 61, 63, 65, 66, 68, 69, 72, 73], "post": 63, "posterior": [1, 2, 20, 21, 38, 51, 54, 57, 58, 59, 61, 72], "posterior_mean": 30, "posterior_precis": 31, "posterior_update_mean_continuous_nod": [28, 29, 31], "posterior_update_precision_continuous_nod": [28, 29, 30], "posteriori": 66, "potenti": [2, 62, 63, 64, 65, 67, 69, 71, 73], "power": [73, 74], "pp": [13, 32], "ppg": 69, "pr": [62, 65], "practic": [58, 60, 61, 65, 74], "pre": [16, 17, 44, 46, 48, 62, 63, 64, 73], "precipit": 72, "precis": [1, 5, 6, 10, 12, 14, 16, 20, 21, 28, 29, 30, 31, 33, 34, 36, 38, 39, 47, 54, 57, 58, 59, 60, 61, 62, 63, 64, 68, 71, 72], "precision_1": [2, 5, 6], "precision_2": [2, 5, 6], "precision_3": [5, 6], "precsnoland": 72, "prectotland": 72, "predict": [1, 13, 14, 17, 30, 31, 39, 40, 41, 42, 43, 46, 51, 54, 58, 60, 61, 64, 65, 66, 69, 71, 72, 74], "predict_precis": 30, "prediction_error": [30, 31], "prediction_sequ": 54, "presenc": 67, "present": [57, 58, 59, 60, 62, 64, 65, 66, 71, 72], "press": 74, "previou": [0, 1, 31, 33, 46, 47, 59, 60, 62, 63, 64, 65, 66, 68, 72, 73], "previous": [59, 65, 72], "principl": [1, 54, 59, 60, 61, 65, 72, 73], "print": [2, 57], "prior": [2, 58, 60, 61, 62, 64, 65, 66, 69, 72, 73], "probabilist": [0, 1, 2, 17, 20, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 49, 53, 57, 58, 59, 61, 64, 65, 69, 71, 73], "probabl": [0, 1, 2, 4, 5, 6, 9, 10, 13, 20, 23, 27, 32, 44, 58, 59, 61, 62, 64, 65, 66, 67, 71, 72, 73], "problem": [58, 62, 67], "procedur": [60, 66, 73], "proceed": 66, "process": [1, 28, 29, 35, 37, 45, 46, 49, 57, 58, 60, 61, 68, 71, 72, 73], "produc": [66, 71, 73], "product": [63, 71], "programmat": 65, "progress": [60, 63, 68], "propag": [0, 17, 51, 60, 61, 65, 72, 73], "propens": [59, 66], "properti": [1, 60], "proport": 61, "propos": 54, "provid": [1, 2, 3, 4, 5, 16, 20, 23, 50, 57, 59, 60, 62, 63, 64, 65, 66, 68, 71, 72, 73], "proxim": 60, "pseudo": [13, 61, 66], "psi": [11, 27, 40, 63], "psychiatri": [57, 58, 65, 66, 72], "psycholog": 65, "pt": [63, 66, 71, 73], "public": [1, 11, 63], "publish": [32, 74], "pulcu": [71, 74], "punish": [58, 74], "purpos": [59, 65, 70], "put": 64, "pv": 74, "pval": 63, "py": [64, 73], "pyhgf": [1, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "pymc": [0, 2, 5, 6, 62, 63, 64, 65, 66, 67, 69, 71, 73], "pyplot": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "pytensor": [62, 63, 64, 65, 66, 67, 69, 71, 73], "python": [57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "python3": 73, "pytre": 60, "pytress": 60, "q": [11, 63], "qualiti": 66, "quantiti": [66, 70, 71, 72, 73], "question": 61, "quickli": [64, 73], "quit": 64, "r": [59, 61, 68, 69, 71], "r_a": 61, "r_hat": [2, 65, 73], "rain": 72, "raman": 57, "rand": 61, "randn": 61, "random": [1, 5, 6, 16, 35, 48, 60, 61, 63, 65, 66, 67, 68, 70, 71], "randomli": [59, 67, 73], "rang": [59, 60, 61, 63, 65, 66, 67, 70, 71, 72], "rank": 73, "rate": [35, 57, 59, 61, 62, 64, 65, 70, 71, 72, 73], "rather": 73, "ratio": 61, "ration": 74, "ravel": [61, 71], "raw": 72, "rcparam": [59, 60, 61, 62, 64, 65, 66, 68, 69, 71, 73], "reach": 60, "react": 64, "read": [20, 21, 72, 73], "read_csv": 72, "reader": 59, "readi": [71, 73], "real": [1, 60, 61, 62, 64, 65, 68, 69, 72, 73], "reanalysi": 74, "reason": [60, 62, 64, 65, 66], "recap": 73, "receiv": [0, 27, 35, 46, 51, 57, 59, 60, 61, 63, 65, 66, 68, 71, 73], "recent": 1, "recis": 61, "recommend": [62, 64, 65, 66, 67, 69, 71, 73], "reconstruct": 73, "record": [58, 71, 72], "recov": [0, 58, 71], "recoveri": [58, 65, 73], "recurs": [55, 57], "red": 67, "reduc": 54, "ref": 67, "ref_val": 66, "refer": [7, 8, 11, 13, 28, 29, 30, 31, 32, 34, 35, 36, 38, 41, 42, 43, 59, 60, 61, 63, 65, 66, 67, 71, 72], "reflect": [60, 72], "regist": [60, 68, 73], "regular": [29, 59, 62, 73], "reinforc": [1, 57, 58, 59, 62, 63], "relat": [1, 65, 69], "relationship": 50, "relax": 70, "releas": 57, "relev": [16, 62, 64, 68], "reli": [59, 61, 66], "reliabl": 67, "remain": 71, "rememb": 73, "remot": 59, "remov": 72, "reparameter": [66, 67, 71, 73], "repeat": [59, 66, 71, 72], "replac": [63, 71], "report": [1, 67], "repres": [1, 5, 6, 16, 35, 59, 60, 61, 63, 65, 66, 68, 72], "requier": [63, 71], "requir": [4, 19, 22, 24, 25, 26, 35, 60, 61, 65, 66, 71, 72, 73], "rescorla": [59, 62, 67], "research": [1, 65], "resembl": 65, "resolut": 1, "respect": [11, 59, 60, 64, 73], "respir": 69, "respond": 73, "respons": [2, 3, 4, 5, 6, 57, 58, 62, 64, 66, 67, 69, 72, 73, 74], "response_funct": [2, 3, 4, 6, 57, 62, 64, 65, 66, 67, 69, 72, 73], "response_function_input": [2, 3, 4, 5, 6, 22, 23, 24, 25, 26, 57, 65, 66, 67, 73], "response_function_paramet": [5, 6, 22, 23, 24, 25, 26, 57, 62, 65, 66, 67], "rest": 1, "restrict": [60, 64], "result": [1, 2, 57, 60, 62, 63, 64, 65, 66, 69, 71, 72, 73], "retriev": [60, 64, 69, 73], "return": [0, 4, 5, 6, 9, 10, 11, 13, 14, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 54, 55, 56, 57, 60, 61, 62, 63, 64, 65, 66, 68, 69, 71, 72, 73], "revert": [35, 59], "review": [59, 72], "reward": [58, 65, 73, 74], "rf": [61, 66], "rhat": [62, 67], "rho": [59, 68], "rho_1": 59, "rho_2": 68, "rho_3": 68, "rho_a": [35, 68], "rhoa": 72, "right": [11, 13, 30, 31, 35, 36, 43, 59, 61, 63, 65, 71], "rise": 64, "rl": 1, "robert": 74, "robust": [62, 64, 65, 66, 67, 69, 71, 73], "rocket": 66, "role": [0, 1, 64], "root": [0, 51, 55, 59, 60, 72], "row": 20, "rr": 69, "rr_": 69, "rule": [73, 74], "run": [58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73], "runtimewarn": 73, "rust": 57, "rw": 73, "rw_idata": 73, "rw_model": 73, "rw_updat": 73, "s11222": 74, "s_0": 65, "s_1": 65, "sa": [57, 73], "sake": 65, "salient": 64, "same": [1, 2, 3, 4, 17, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 45, 46, 49, 50, 53, 59, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73], "sampl": [1, 2, 47, 48, 54, 57, 58, 59, 60, 61, 65, 67, 69, 70, 71, 72], "sampler": [62, 64, 65, 66, 67, 69, 71, 73], "samuel": 74, "sandra": [1, 74], "satellit": 74, "save": [36, 61, 66, 67, 73], "scalar": 61, "scale": [59, 61, 70, 72, 73], "scall": 59, "scan": [17, 51, 71, 73], "scan_fn": 17, "scat": 61, "scat2": 61, "scatter": [60, 61, 65, 67, 71, 73], "scatterplot": 67, "scheme": [1, 60], "schrader": 57, "sch\u00f6bi": 57, "scienc": 13, "scipi": [61, 70], "scope": 59, "scratch": 57, "sd": [2, 65, 73], "se": [66, 73], "seaborn": [59, 60, 61, 63, 66, 67, 68, 70, 71, 72, 73], "seagreen": 71, "search": 55, "second": [0, 1, 2, 5, 6, 10, 16, 58, 59, 60, 62, 64, 65, 66, 67, 68, 69, 71, 72, 73], "section": [58, 59, 62, 63, 64, 66, 72, 73], "see": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 71, 72, 73], "seed": [59, 60, 61, 65, 66, 67, 68, 70, 71, 72], "seen": [59, 72, 73], "select": [65, 71, 72], "self": [63, 71, 73], "send": [59, 60, 64], "sens": [1, 59, 63, 65], "sensori": [1, 59, 72, 73, 74], "sensory_precis": 47, "separ": [61, 66, 67, 73], "septemb": 64, "sequenc": [17, 51, 54, 57, 59, 61, 63, 65, 66, 71, 73], "sequenti": [62, 63, 64, 65, 66, 67, 69, 71, 73], "seri": [1, 2, 3, 4, 5, 6, 13, 24, 32, 56, 57, 59, 60, 61, 62, 63, 64, 66, 69, 72, 73, 74], "serotonin": 1, "serv": 57, "session": 58, "set": [16, 20, 21, 50, 52, 55, 57, 59, 60, 61, 62, 64, 65, 66, 67, 68, 70, 71, 73], "set_minor_loc": 61, "set_offset": 61, "set_palett": 66, "set_titl": [61, 63, 67], "set_xdata": 61, "set_xlabel": [61, 67, 70], "set_ydata": 61, "set_ylabel": [61, 63, 67, 70, 71], "sever": [1, 64, 73], "sfreq": 69, "shad": 20, "shape": [0, 1, 3, 60, 61, 63, 66, 67, 68, 71, 72], "share": [60, 62], "sharei": 71, "sharex": [59, 63, 71], "she": 65, "shoot": 64, "shortwav": 72, "should": [0, 2, 4, 5, 20, 21, 27, 32, 35, 36, 40, 47, 50, 60, 61, 63, 65, 66, 71, 73], "show": [20, 21, 60, 64, 73], "show_heart_r": 69, "show_posterior": [20, 21, 68], "show_surpris": [20, 21, 68], "show_total_surpris": [21, 62, 64], "shown": [59, 61, 68], "side": [60, 65, 66], "sidecar": 73, "sigma": [47, 59, 60, 66, 72], "sigma_1": [59, 72], "sigma_2": [59, 72], "sigma_mu_g0": 48, "sigma_pi_g0": 48, "sigma_temperatur": 66, "sigma_volatil": 66, "sigmoid": [59, 66, 67, 71, 73], "sigmoid_hgf": 65, "sigmoid_hgf_idata": 65, "sigmoid_inverse_temperatur": 67, "signal": [0, 57, 58, 68], "sim": [2, 59, 66, 68, 72], "similar": [30, 31, 57, 62, 64, 69, 71, 73], "similarli": [60, 64], "simpl": [2, 59, 60, 61, 65, 67, 71, 72, 73, 74], "simpler": [59, 60, 73], "simplest": [59, 65], "simplex": 1, "simpli": [0, 60, 61, 66, 67, 72, 73], "simplifi": [68, 72], "simpul": 59, "simul": [1, 47, 48, 59, 60, 61, 65, 68, 72, 73, 74], "simultan": 66, "sin": [60, 61, 68], "sinc": [59, 68], "singl": [6, 60, 71, 73], "sinusoid": [60, 68], "sinusoid_linear_hgf": 68, "sinusoid_nonlinear_hgf": 68, "situat": [1, 59, 60, 63, 65, 66, 71], "size": [1, 5, 57, 59, 60, 62, 64, 67, 70, 72], "skew": 63, "slightli": [64, 65, 73], "slope": [59, 68], "slow": [71, 73], "smaller": 67, "smooth": 58, "smoother": 61, "smoothli": 57, "sn": [59, 60, 61, 63, 66, 67, 68, 70, 71, 72, 73], "snoma": 72, "snow": 72, "so": [57, 60, 62, 64, 65, 68, 72, 73], "sofmax": [22, 23], "softmax": [5, 6, 57, 65, 71], "softwar": 57, "solar": 72, "sole": 71, "solid": 73, "solut": 61, "some": [29, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 71, 72], "someth": [59, 60, 65, 68, 70, 73], "sometim": [60, 64, 65, 72, 73], "sort": 61, "sourc": [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57], "space": [54, 64, 66, 68], "sparsiti": 65, "special": 71, "specif": [1, 35, 57, 58, 59, 60, 61, 62, 63, 65, 66, 68, 71], "specifi": [2, 50, 59, 63, 68, 69, 71], "spike": 64, "spiral": 61, "split": [60, 65], "springer": [32, 74], "sqrt": [13, 20, 61, 70], "squar": 66, "stabil": 1, "stabl": 64, "stable_conting": 71, "stack": 61, "staffel": [72, 74], "standard": [0, 20, 21, 28, 30, 44, 47, 48, 54, 58, 59, 60, 62, 63, 64, 65, 66, 70, 72, 73], "start": [2, 3, 4, 51, 54, 59, 61, 63, 65, 66, 71, 72, 73], "stat": [61, 70], "state": [0, 1, 6, 24, 30, 31, 33, 35, 36, 39, 40, 42, 43, 48, 50, 52, 53, 57, 58, 59, 60, 61, 62, 64, 65, 66, 71, 72, 73], "static": [37, 45, 49], "statist": [0, 13, 18, 20, 21, 32, 56, 59, 60, 62, 65, 67, 70, 74], "statproofbook": 11, "std": [68, 70], "steep": 68, "steeper": 68, "stefan": 74, "step": [1, 5, 6, 17, 28, 29, 30, 31, 36, 51, 54, 58, 59, 60, 61, 62, 65, 66, 67, 68, 71, 72, 73], "stephan": [1, 28, 29, 30, 31, 34, 35, 36, 38, 41, 42, 43, 57, 74], "still": [63, 71], "stim_1": 73, "stim_2": 73, "stimuli": [65, 66, 73], "stimulu": [65, 66, 73], "stochast": [59, 61, 63, 68, 72], "storag": 72, "store": [36, 41, 57, 60, 65, 66], "str": [2, 3, 4, 16, 20, 32, 37, 45, 46, 49, 51, 54], "straight": 59, "straightforward": [59, 61, 71], "straigthforwar": 72, "strength": [16, 27, 30, 31, 34, 35, 36, 40, 41, 50, 59, 62, 68], "string": 60, "structur": [0, 16, 17, 20, 21, 27, 34, 40, 41, 51, 54, 55, 56, 57, 59, 60, 62, 63, 64, 65, 67, 68, 72, 73], "student": 61, "studi": [1, 58, 64, 66], "sub": [0, 60, 62], "subject": [1, 73], "subplot": [59, 61, 63, 67, 68, 70, 71, 73], "subtl": 73, "success": 67, "suffici": [0, 13, 18, 20, 21, 32, 56, 59, 60, 65, 70, 74], "sufficient_statist": 61, "sufficient_stats_fn": 32, "suggest": [61, 73], "suitabl": 71, "sum": [5, 21, 26, 35, 36, 57, 62, 63, 64, 65, 66, 69, 71, 72, 73], "sum_": [11, 30, 31, 36, 63, 65], "summari": [2, 62, 64, 65, 67, 69, 73], "summer": 72, "sun": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "support": [5, 57, 59, 60], "suppos": 68, "sure": [63, 65, 71, 73], "surfac": 72, "surpris": [0, 2, 3, 4, 5, 6, 9, 10, 14, 20, 21, 22, 23, 24, 25, 26, 56, 57, 60, 63, 69, 71, 72, 73], "surprise_fn": 63, "suspect": 64, "swgdn": 72, "swiss": 64, "switch": [61, 62, 73], "swtdn": 72, "sy": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "system": 57, "systol": 69, "t": [23, 28, 29, 30, 31, 32, 34, 35, 36, 38, 41, 42, 43, 57, 59, 60, 61, 62, 63, 65, 66, 68, 71, 72, 73], "t2m": 72, "tailor": [62, 63], "take": [0, 1, 59, 62, 65, 66, 72, 73], "tapa": 57, "target": [51, 57, 61, 72], "target_accept": [66, 67, 71, 73], "task": [57, 58, 60, 62, 65, 66, 69, 73], "techniqu": 67, "tediou": 64, "tem": 72, "temp": 66, "temperatur": [5, 6, 23, 57, 65, 66, 67, 71, 72], "temporari": 46, "ten": 74, "tensor": [62, 63, 64, 65, 66, 67, 69, 71, 73], "term": [1, 36, 59, 60, 65, 68, 74], "terminologi": [63, 66], "test": [66, 67], "text": [9, 65, 68], "th": 66, "than": [16, 29, 59, 61, 62, 63, 64, 66, 67, 68], "thank": [66, 73], "thecomput": 58, "thei": [0, 60, 61, 62, 63, 64, 65, 66, 67, 73], "them": [59, 65, 71, 72], "theoret": [58, 72], "theori": [1, 59, 73], "therefor": [24, 59, 60, 61, 63, 64, 65, 66, 68, 71, 72, 73], "thestrup": 74, "theta": [60, 61, 68], "theta_": 60, "theta_1": [60, 68], "theta_2": 68, "thi": [0, 1, 2, 4, 5, 6, 13, 16, 17, 19, 20, 21, 24, 27, 29, 30, 31, 32, 36, 46, 51, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "thing": [63, 66, 72], "think": [59, 65], "third": [1, 5, 6, 60, 62, 64], "those": [57, 60, 61, 62, 65, 66], "three": [0, 5, 6, 16, 20, 21, 59, 60, 63, 70, 71], "three_level_hgf": [64, 69], "three_level_hgf_idata": [62, 64], "three_level_trajectori": 73, "three_levels_binary_hgf": [62, 73], "three_levels_continuous_hgf": 64, "three_levels_continuous_hgf_bi": 64, "three_levels_hgf": [21, 62], "three_levels_idata": 73, "threshold": 68, "through": [0, 57, 58, 59, 60, 65, 66, 68, 72, 73], "thu": [1, 72], "ticker": 61, "tight": 64, "tight_layout": [61, 64], "tile": [59, 71, 72], "tim": 74, "time": [1, 2, 3, 4, 5, 6, 13, 22, 23, 24, 25, 26, 30, 31, 32, 33, 35, 36, 51, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 72, 73, 74], "time_step": [2, 3, 4, 5, 6, 31, 33, 65, 71], "timeseri": [2, 20, 21, 64, 72], "timestep": 68, "titl": [1, 59, 61, 63, 66, 68, 70, 73], "tmp": 64, "to_numpi": [72, 73], "to_panda": [61, 62, 64, 65], "toa": 72, "togeth": [21, 62, 64, 65, 73], "tolist": 67, "tomkin": 69, "tonic": [2, 5, 6, 16, 35, 36, 59, 64, 66, 67, 68, 70, 71, 72, 73], "tonic_drift": [16, 20, 21, 62, 68, 69], "tonic_drift_1": [5, 6], "tonic_drift_2": [5, 6], "tonic_drift_3": [5, 6], "tonic_volatil": [16, 20, 21, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "tonic_volatility_1": [5, 6, 64, 69], "tonic_volatility_2": [2, 5, 6, 62, 63, 64, 65, 66, 67, 69, 73], "tonic_volatility_3": [5, 6, 62, 64], "too": 71, "took": [62, 64, 65, 66, 67, 69, 71, 73], "tool": 66, "toolbox": [57, 59, 64, 65], "top": [0, 20, 21, 57, 59, 62, 64, 65, 70, 72], "total": [35, 36, 59, 62, 64, 65, 66, 67, 68, 69, 71, 72, 73], "total_gaussian_surpris": [2, 69], "total_surpris": 65, "toussaint": 57, "toward": [71, 73], "trace": 68, "track": [59, 60, 61, 62, 65, 70, 72, 73], "tradition": 65, "trajectori": [0, 6, 18, 20, 21, 56, 57, 61, 65, 66, 67, 69, 70, 71, 72], "trajectories_df": 56, "transform": [59, 60, 62, 65, 66, 68, 73], "transit": [52, 58, 61], "translat": 57, "transmiss": 72, "transpar": 60, "treat": 66, "tree": 60, "tree_util": [63, 71], "tri": [60, 62, 65, 73], "trial": [1, 59, 64, 65, 71, 73], "trigger": [0, 57, 59, 72], "tristan": 68, "trivial": 65, "true": [9, 14, 20, 21, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 73], "try": [64, 65, 68, 70, 71, 72, 73], "tune": [2, 62, 64, 65, 66, 67, 69, 71, 73], "tupl": [2, 3, 4, 17, 20, 21, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 45, 46, 47, 48, 49, 50, 51, 53, 54, 55, 57, 60, 61, 65, 68, 71], "turn": [58, 59, 72], "tutori": [57, 59, 62, 65, 66, 67, 68, 71, 72, 73], "two": [0, 1, 5, 6, 11, 16, 20, 21, 28, 29, 51, 57, 59, 60, 61, 63, 65, 66, 67, 68, 69, 70, 71, 72], "two_armed_bandit_hgf": 71, "two_armed_bandit_missing_inputs_hgf": 71, "two_bandits_logp": 71, "two_level_hgf": 64, "two_level_hgf_idata": [62, 64, 66, 67, 73], "two_level_trajectori": 73, "two_levels_binary_hgf": [62, 66, 67, 73], "two_levels_continuous_hgf": [64, 72], "two_levels_hgf": [62, 73], "two_levels_idata": 73, "type": [2, 3, 4, 5, 16, 17, 22, 23, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 45, 46, 48, 49, 50, 53, 54, 60, 61, 63, 65, 66, 71, 73], "typic": 60, "u": [21, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "u1": 68, "u2": 68, "u_0": 60, "u_0_prob": 60, "u_1": [59, 60, 68], "u_1_prob": 60, "u_2": [59, 68], "u_loss_arm1": 71, "u_loss_arm2": 71, "u_win_arm1": 71, "u_win_arm2": 71, "ucl": 11, "uk": 11, "uncertain": [1, 60], "uncertainti": [1, 20, 21, 57, 58, 59, 71, 72, 73, 74], "under": [1, 6, 9, 10, 14, 22, 23, 29, 44, 46, 48, 57, 59, 61, 62, 64, 65, 66, 73, 74], "undergo": [65, 66], "underli": [10, 60, 62, 63, 64, 65, 67, 68], "underpin": [59, 61], "understand": [1, 59, 68, 73], "underw": 65, "unexpect": [61, 62, 64], "uniform": [62, 67, 73], "union": [22, 23, 48, 50], "uniqu": [59, 60, 73], "unit": [2, 3, 4, 51, 66], "univari": [8, 32], "univariate_hgf": 61, "univers": [11, 68, 74], "unlik": [59, 64], "unobserv": 71, "until": [63, 68], "up": [20, 21, 57, 59, 64, 72], "updat": [1, 13, 17, 51, 52, 54, 57, 58, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 73], "update_binary_input_par": 34, "update_continuous_input_par": 34, "update_fn": 60, "update_fn1": 60, "update_fn2": 60, "update_sequ": [17, 51, 54, 60, 61, 71], "update_typ": 54, "upon": 59, "upper": [59, 60, 67, 71], "upper_bound": 15, "url": [1, 11, 74], "us": [0, 1, 2, 3, 4, 5, 6, 16, 19, 20, 27, 28, 29, 30, 31, 35, 36, 48, 57, 59, 60, 66, 67, 68, 69, 70, 71, 72, 73, 74], "usd": [20, 21], "user": [57, 59, 65], "userwarn": 64, "usual": [0, 51, 59, 60, 67, 70], "util": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "v": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "valid": [4, 13, 24, 60, 62, 64, 66, 73, 74], "valu": [0, 2, 5, 6, 10, 16, 17, 20, 21, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 44, 45, 46, 47, 49, 50, 51, 53, 57, 58, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73], "valuat": 64, "value_children": [57, 60, 61, 64, 68, 70, 71, 72, 73], "value_coupling_children": [16, 34, 41], "value_coupling_par": [16, 34, 41], "value_par": 60, "vape": 59, "var_nam": [2, 62, 65, 66, 67, 73], "vari": [58, 59, 61, 65, 66, 68], "variabl": [1, 13, 35, 51, 57, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73], "varianc": [5, 6, 16, 57, 58, 59, 60, 64, 72], "variat": [0, 1, 60, 61], "varieti": 60, "variou": [1, 60, 72], "vartheta": 61, "vector": [2, 3, 4, 5, 16, 48, 61, 63, 65, 66, 67, 71, 73], "vectorized_logp": 5, "vehtari": [66, 74], "verbelen": 74, "veri": [1, 59, 64, 66, 69, 72], "versatil": 72, "version": [17, 28, 29, 30, 31, 34, 35, 36, 38, 41, 42, 43, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "via": [59, 60], "view": 71, "visibl": 64, "visual": [0, 19, 20, 21, 57, 61, 70, 72, 73], "vizualis": 61, "vjp": [63, 71], "vjp_custom_op": [63, 71], "vjp_custom_op_jax": [63, 71], "vjp_fn": [63, 71], "vjpcustomop": [63, 71], "vol": 57, "volatil": [0, 1, 2, 5, 6, 16, 17, 20, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 43, 45, 46, 49, 50, 53, 54, 57, 58, 61, 62, 64, 65, 66, 67, 68, 70, 71, 73], "volatile_conting": 71, "volatility_children": [60, 61, 64, 70, 72], "volatility_coupl": [16, 20, 21, 27, 40, 62, 69], "volatility_coupling_1": [5, 6], "volatility_coupling_2": [5, 6], "volatility_coupling_children": [16, 34, 41], "volatility_coupling_par": [16, 34, 41], "volatility_par": 60, "volum": 1, "vopa": 36, "vope": 59, "vstack": 63, "w": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "w_a": 71, "w_b": 71, "wa": [30, 31, 54, 57, 60, 62, 63, 64, 65, 68, 71, 73], "waad": [28, 29, 30, 31, 34, 35, 36, 38, 41, 42, 43, 57, 74], "wagenmak": [66, 74], "wagner": [59, 62, 67], "wai": [1, 59, 60, 61, 62, 63, 64, 65, 66, 68, 71, 72, 73], "waic": 74, "walk": [1, 5, 6, 16, 35, 68, 71], "want": [2, 60, 62, 64, 65, 66, 68, 69, 70, 71, 72, 73], "warmup": 2, "warn": [62, 63, 64, 65, 66, 67, 69, 71, 73], "watermark": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "wave": [60, 68], "we": [0, 1, 2, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "weak_typ": [9, 14], "weber": [0, 13, 28, 29, 30, 31, 32, 34, 35, 36, 38, 41, 42, 43, 57, 59, 60, 61, 72, 74], "weigh": [61, 72], "weight": [1, 48, 57, 59, 60, 61, 73], "weigth": 48, "well": [1, 51, 60, 67, 72, 73], "were": [59, 62, 65, 66, 67, 71, 73], "what": [60, 63, 64, 65, 68, 71, 72, 73], "when": [2, 4, 5, 6, 24, 35, 46, 59, 60, 61, 62, 63, 64, 65, 66, 68, 71, 72, 73], "whenev": 57, "where": [0, 3, 4, 5, 6, 14, 20, 21, 23, 30, 31, 35, 36, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72], "wherea": 69, "whether": 20, "which": [1, 5, 6, 13, 35, 54, 59, 60, 61, 62, 63, 64, 65, 66, 68, 71, 72, 73], "while": [57, 59, 60, 61, 65, 66, 68, 69, 71, 72, 73], "whole": [59, 61, 71], "wide": [16, 62], "width": [20, 21], "wiki": [7, 8], "wikipedia": [7, 8], "william": 11, "wilson": [67, 74], "win": 71, "win_arm1": 71, "win_arm2": 71, "wind": 74, "wine": 71, "wishart": 11, "within": 1, "without": [1, 35, 53, 58, 60, 61, 65, 66, 68], "won": 62, "word": [60, 62, 64, 73], "work": [19, 58, 63, 65, 66, 71, 73], "workflow": [66, 73], "workshop": 72, "world": [59, 61, 65, 73], "worri": [62, 64], "worth": 66, "would": [62, 64, 66, 68, 71, 72], "wpenni": 11, "wrap": [0, 62, 63, 64, 71], "write": [63, 65, 68, 72, 73], "written": [57, 61], "www": [1, 11, 74], "x": [9, 12, 13, 14, 15, 32, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72], "x1": [59, 68], "x2": [59, 68], "x3": 68, "x64": 73, "x_": [59, 62, 72], "x_0": [6, 64], "x_0_expected_mean": 65, "x_0_expected_precis": 65, "x_0_mean": 65, "x_0_precis": 65, "x_0_surpris": [62, 64, 65], "x_1": [6, 59, 61, 68, 72], "x_1_1": 59, "x_1_2": 59, "x_1_3": 59, "x_1_expected_mean": 65, "x_1_expected_precis": 65, "x_1_mean": 65, "x_1_precis": 65, "x_1_surpris": [62, 64, 65], "x_1_xis_0": 61, "x_2": [6, 59, 61, 68, 72], "x_2_1": 59, "x_2_2": 59, "x_2_3": 59, "x_2_surpris": [62, 64], "x_3": [6, 68], "x_b": 35, "x_i": 61, "xaxi": 61, "xflr6": 19, "xi": [13, 32, 60, 61, 63], "xi_": [13, 60, 61], "xi_1": 60, "xi_k": 60, "xi_x": [13, 61], "xlabel": [59, 61, 63, 65, 68, 72, 73], "xlim": 61, "y": [13, 57, 61, 65, 67, 71, 73], "y1": 63, "y2": 63, "yaxi": 61, "ye": 68, "year": [1, 72, 74], "yet": 71, "ylabel": [59, 61, 63, 68, 72, 73], "ylim": 61, "you": [1, 57, 58, 60, 63, 65, 68, 71, 72, 73], "your": [1, 72, 73], "z": [61, 66], "z_": 66, "zero": 68, "zip": [59, 61, 67, 70, 71, 73], "zoom": 68, "zorder": [60, 63, 67], "zurich": 58, "\u03c9_2": 2}, "titles": ["API", "How to cite?", "pyhgf.distribution.HGFDistribution", "pyhgf.distribution.HGFLogpGradOp", "pyhgf.distribution.HGFPointwise", "pyhgf.distribution.hgf_logp", "pyhgf.distribution.logp", "pyhgf.math.MultivariateNormal", "pyhgf.math.Normal", "pyhgf.math.binary_surprise", "pyhgf.math.binary_surprise_finite_precision", "pyhgf.math.dirichlet_kullback_leibler", "pyhgf.math.gaussian_density", "pyhgf.math.gaussian_predictive_distribution", "pyhgf.math.gaussian_surprise", "pyhgf.math.sigmoid", "pyhgf.model.HGF", "pyhgf.model.Network", "pyhgf.plots.plot_correlations", "pyhgf.plots.plot_network", "pyhgf.plots.plot_nodes", "pyhgf.plots.plot_trajectories", "pyhgf.response.binary_softmax", "pyhgf.response.binary_softmax_inverse_temperature", "pyhgf.response.first_level_binary_surprise", "pyhgf.response.first_level_gaussian_surprise", "pyhgf.response.total_gaussian_surprise", "pyhgf.updates.posterior.categorical.categorical_state_update", "pyhgf.updates.posterior.continuous.continuous_node_posterior_update", "pyhgf.updates.posterior.continuous.continuous_node_posterior_update_ehgf", "pyhgf.updates.posterior.continuous.posterior_update_mean_continuous_node", "pyhgf.updates.posterior.continuous.posterior_update_precision_continuous_node", "pyhgf.updates.posterior.exponential.posterior_update_exponential_family", "pyhgf.updates.prediction.binary.binary_state_node_prediction", "pyhgf.updates.prediction.continuous.continuous_node_prediction", "pyhgf.updates.prediction.continuous.predict_mean", "pyhgf.updates.prediction.continuous.predict_precision", "pyhgf.updates.prediction.dirichlet.dirichlet_node_prediction", "pyhgf.updates.prediction_error.binary.binary_finite_state_node_prediction_error", "pyhgf.updates.prediction_error.binary.binary_state_node_prediction_error", "pyhgf.updates.prediction_error.categorical.categorical_state_prediction_error", "pyhgf.updates.prediction_error.continuous.continuous_node_prediction_error", "pyhgf.updates.prediction_error.continuous.continuous_node_value_prediction_error", "pyhgf.updates.prediction_error.continuous.continuous_node_volatility_prediction_error", "pyhgf.updates.prediction_error.dirichlet.clusters_likelihood", "pyhgf.updates.prediction_error.dirichlet.create_cluster", "pyhgf.updates.prediction_error.dirichlet.dirichlet_node_prediction_error", "pyhgf.updates.prediction_error.dirichlet.get_candidate", "pyhgf.updates.prediction_error.dirichlet.likely_cluster_proposal", "pyhgf.updates.prediction_error.dirichlet.update_cluster", "pyhgf.utils.add_edges", "pyhgf.utils.beliefs_propagation", "pyhgf.utils.fill_categorical_state_node", "pyhgf.utils.get_input_idxs", "pyhgf.utils.get_update_sequence", "pyhgf.utils.list_branches", "pyhgf.utils.to_pandas", "PyHGF: A Neural Network Library for Predictive Coding", "Learn", "Introduction to the Generalised Hierarchical Gaussian Filter", "Creating and manipulating networks of probabilistic nodes", "From Reinforcement Learning to Generalised Bayesian Filtering", "The binary Hierarchical Gaussian Filter", "The categorical Hierarchical Gaussian Filter", "The continuous Hierarchical Gaussian Filter", "Using custom response models", "Hierarchical Bayesian modelling with probabilistic neural networks", "Recovering computational parameters from observed behaviours", "Non-linear value coupling between continuous state nodes", "Example 1: Bayesian filtering of cardiac volatility", "Example 2: Estimating the mean and precision of a time-varying Gaussian distributions", "Example 3: A multi-armed bandit task with independent rewards and punishments", "Zurich CPC I: Introduction to the Generalised Hierarchical Gaussian Filter", "Zurich CPC II: Application to reinforcement learning", "References"], "titleterms": {"1": [69, 72], "2": [70, 72], "3": [71, 72], "4": 72, "5": 72, "7": 73, "8": 73, "A": [57, 71], "The": [57, 58, 59, 60, 62, 63, 64, 72, 73], "acknowledg": 57, "activ": 68, "ad": 59, "adapt": 61, "add": [62, 64], "add_edg": 50, "api": 0, "applic": 73, "arm": [67, 71], "ascend": 60, "assign": 60, "attribut": 60, "autoregress": 59, "bandit": [67, 71], "bayesian": [61, 66, 69, 71], "behavior": 65, "behaviour": [67, 73], "belief": [59, 71, 73], "beliefs_propag": 51, "between": [68, 72], "bias": 73, "binari": [0, 33, 38, 39, 60, 62, 65, 73], "binary_finite_state_node_prediction_error": 38, "binary_softmax": 22, "binary_softmax_inverse_temperatur": 23, "binary_state_node_predict": 33, "binary_state_node_prediction_error": 39, "binary_surpris": 9, "binary_surprise_finite_precis": 10, "bivari": 61, "cardiac": 69, "case": [58, 60], "categor": [0, 27, 40, 63], "categorical_state_prediction_error": 40, "categorical_state_upd": 27, "cite": 1, "clusters_likelihood": 44, "code": 57, "collect": 61, "comparison": [66, 73], "comput": [66, 67], "configur": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "content": 0, "continu": [0, 28, 29, 30, 31, 34, 35, 36, 41, 42, 43, 60, 64, 68], "continuous_node_posterior_upd": 28, "continuous_node_posterior_update_ehgf": 29, "continuous_node_predict": 34, "continuous_node_prediction_error": 41, "continuous_node_value_prediction_error": 42, "continuous_node_volatility_prediction_error": 43, "correl": 64, "coupl": [59, 60, 68, 72], "cpc": [72, 73], "creat": [60, 62, 63, 64, 65], "create_clust": 45, "custom": [60, 65], "data": [62, 64], "dataset": [63, 66, 71], "decis": [65, 71], "deriv": 69, "descend": 60, "detail": 60, "differ": 73, "dirichlet": [0, 37, 44, 45, 46, 47, 48, 49], "dirichlet_kullback_leibl": 11, "dirichlet_node_predict": 37, "dirichlet_node_prediction_error": 46, "distribut": [0, 2, 3, 4, 5, 6, 61, 66, 70], "doe": 57, "drift": 59, "dynam": [59, 60, 61], "edg": 60, "error": [0, 59], "estim": 70, "exampl": [69, 70, 71], "exercis": [58, 72, 73], "exponenti": [0, 32], "famili": 0, "fill_categorical_state_nod": 52, "filter": [57, 58, 59, 61, 62, 63, 64, 69, 72], "first_level_binary_surpris": 24, "first_level_gaussian_surpris": 25, "fit": [57, 62, 63, 64, 73], "fix": [61, 62, 64], "forward": 63, "frequenc": 68, "from": [61, 65, 67, 71], "function": [0, 60, 65, 68], "gaussian": [57, 58, 59, 61, 62, 63, 64, 70, 72], "gaussian_dens": 12, "gaussian_predictive_distribut": 13, "gaussian_surpris": 14, "gener": [57, 59, 72], "generalis": [59, 61, 72], "get": 57, "get_candid": 47, "get_input_idx": 53, "get_update_sequ": 54, "glossari": [59, 65], "go": 73, "graph": 66, "group": 66, "heart": 69, "hgf": [16, 62, 64, 65, 73], "hgf_logp": 5, "hgfdistribut": 2, "hgflogpgradop": 3, "hgfpointwis": 4, "hierarch": [57, 58, 59, 61, 62, 63, 64, 66, 72], "how": [1, 57], "i": 72, "ii": 73, "implement": 60, "import": 62, "independ": 71, "infer": [63, 66, 67, 71], "input": 60, "instal": 57, "instantan": 69, "introduct": [59, 72], "invers": 72, "known": 70, "kown": 70, "learn": [58, 61, 62, 64, 73], "level": [62, 64, 66, 73], "librari": 57, "likely_cluster_propos": 48, "linear": 68, "list_branch": 55, "load": 69, "logp": 6, "manipul": 60, "math": [0, 7, 8, 9, 10, 11, 12, 13, 14, 15], "mcmc": [62, 63, 64], "mean": 70, "miss": 60, "model": [0, 16, 17, 57, 59, 62, 63, 64, 65, 66, 69, 72, 73], "modifi": 60, "multi": 71, "multivari": 60, "multivariatenorm": 7, "network": [17, 57, 59, 60, 63, 66], "neural": [57, 66], "new": 65, "next": 73, "node": [0, 59, 60, 63, 68, 72], "non": [61, 68], "normal": [8, 61], "nu": 61, "observ": [65, 67], "one": 67, "optim": 73, "paramet": [62, 64, 65, 67, 71, 73], "particip": 71, "physiolog": 69, "plot": [0, 18, 19, 20, 21, 62, 64, 66, 69], "plot_correl": 18, "plot_network": 19, "plot_nod": 20, "plot_trajectori": 21, "posterior": [0, 27, 28, 29, 30, 31, 32, 66, 73], "posterior_update_exponential_famili": 32, "posterior_update_mean_continuous_nod": 30, "posterior_update_precision_continuous_nod": 31, "practic": 72, "precis": 70, "predict": [0, 33, 34, 35, 36, 37, 57, 59, 68, 73], "predict_mean": 35, "predict_precis": 36, "prediction_error": [38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49], "preprocess": 69, "probabilist": [60, 63, 66, 72], "process": [0, 59], "propag": 59, "punish": 71, "pyhgf": [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57], "random": [59, 72, 73], "rate": 69, "real": 71, "record": 69, "recov": [65, 67], "recoveri": [67, 71], "rectifi": 68, "refer": [57, 74], "reinforc": [61, 73], "relu": 68, "rescorla": 73, "respons": [0, 22, 23, 24, 25, 26, 65, 71], "reward": 71, "rl": 73, "rule": [65, 71], "sampl": [62, 63, 64, 66, 73], "sequenc": 60, "sigmoid": 15, "signal": 69, "simul": [63, 66, 67, 71], "solut": [72, 73], "start": 57, "state": [63, 68], "static": 60, "stationari": 61, "statist": 61, "step": 0, "structur": 71, "suffici": 61, "surpris": [62, 64, 65], "system": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "tabl": 0, "task": [67, 71], "theori": [58, 60], "three": [62, 64, 73], "through": 61, "time": [60, 70, 71], "to_panda": 56, "total_gaussian_surpris": 26, "track": 68, "trajectori": [62, 64, 73], "transit": 63, "tutori": 58, "two": [62, 64, 73], "unit": 68, "univari": 61, "unknown": 70, "unkown": 70, "unobserv": 60, "updat": [0, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 59, 60, 71], "update_clust": 49, "us": [58, 61, 62, 63, 64, 65], "util": [0, 50, 51, 52, 53, 54, 55, 56], "valu": [59, 60, 68, 72], "vari": [60, 70], "visual": [60, 62, 64, 66, 67], "volatil": [59, 60, 69, 72], "wagner": 73, "walk": [59, 72], "weather": 72, "where": 73, "work": [57, 60], "world": 72, "zurich": [72, 73]}}) \ No newline at end of file +Search.setIndex({"alltitles": {"": [[72, "exercise1.1"], [72, "exercise1.2"], [72, "exercise1.3"], [72, "exercise1.4"], [72, "exercise1.5"], [72, "exercise1.6"], [73, "exercise2.1"], [73, "exercise2.2"]], "API": [[0, "api"]], "Acknowledgments": [[57, "acknowledgments"]], "Add data": [[62, "add-data"], [62, "id4"], [64, "add-data"], [64, "id3"]], "Adding a drift to the random walk": [[59, "adding-a-drift-to-the-random-walk"]], "Autoregressive processes": [[59, "autoregressive-processes"]], "Bayesian inference": [[71, "bayesian-inference"]], "Beliefs trajectories": [[73, "beliefs-trajectories"]], "Biased random": [[73, "biased-random"]], "Binary nodes": [[0, "binary-nodes"]], "Bivariate normal distribution": [[61, "bivariate-normal-distribution"]], "Categorical nodes": [[0, "categorical-nodes"]], "Continuous nodes": [[0, "continuous-nodes"], [0, "id1"]], "Continuous value coupling": [[60, "continuous-value-coupling"]], "Continuous volatility coupling": [[60, "continuous-volatility-coupling"]], "Coupling with binary nodes": [[60, "coupling-with-binary-nodes"]], "Create the model": [[62, "create-the-model"], [62, "id3"], [64, "create-the-model"], [64, "id2"]], "Creating a new response function": [[65, "creating-a-new-response-function"]], "Creating a new response function: the binary surprise": [[65, "creating-a-new-response-function-the-binary-surprise"]], "Creating and manipulating networks of probabilistic nodes": [[60, null]], "Creating custom update functions": [[60, "creating-custom-update-functions"]], "Creating custom update sequences": [[60, "creating-custom-update-sequences"]], "Creating probabilistic nodes": [[60, "creating-probabilistic-nodes"]], "Creating the decision rule": [[65, "creating-the-decision-rule"]], "Creating the model": [[62, "creating-the-model"], [62, "id7"], [64, "creating-the-model"], [64, "id5"]], "Creating the probabilistic network": [[63, "creating-the-probabilistic-network"]], "Decision rule": [[71, "decision-rule"]], "Dirichlet processes": [[0, "dirichlet-processes"]], "Distribution": [[0, "distribution"]], "Dynamic assignation of update sequences": [[60, "dynamic-assignation-of-update-sequences"]], "Dynamic beliefs updating": [[59, "dynamic-beliefs-updating"]], "Example 1: Bayesian filtering of cardiac volatility": [[69, null]], "Example 2: Estimating the mean and precision of a time-varying Gaussian distributions": [[70, null]], "Example 3: A multi-armed bandit task with independent rewards and punishments": [[71, null]], "Exercises": [[58, "exercises"]], "Exponential family": [[0, "exponential-family"]], "Filtering the Sufficient Statistics of a Non-Stationary Distribution": [[61, "filtering-the-sufficient-statistics-of-a-non-stationary-distribution"]], "Filtering the Sufficient Statistics of a Stationary Distribution": [[61, "filtering-the-sufficient-statistics-of-a-stationary-distribution"]], "Fitting behaviours to different RL models": [[73, "fitting-behaviours-to-different-rl-models"]], "Fitting the binary HGF with fixed parameters": [[62, "fitting-the-binary-hgf-with-fixed-parameters"]], "Fitting the continuous HGF with fixed parameters": [[64, "fitting-the-continuous-hgf-with-fixed-parameters"]], "Fitting the model forwards": [[63, "fitting-the-model-forwards"]], "Frequency tracking": [[68, "frequency-tracking"]], "From Reinforcement Learning to Generalised Bayesian Filtering": [[61, null]], "Gaussian Random Walks": [[59, "gaussian-random-walks"], [72, "gaussian-random-walks"]], "Getting started": [[57, "getting-started"]], "Glossary": [[59, "glossary"], [65, "glossary"]], "Group-level inference": [[66, "group-level-inference"]], "Hierarchical Bayesian modelling with probabilistic neural networks": [[66, null]], "How does it work?": [[57, "how-does-it-work"]], "How to cite?": [[1, null]], "Imports": [[62, "imports"]], "Inference from the simulated behaviours": [[67, "inference-from-the-simulated-behaviours"]], "Inference using MCMC sampling": [[63, "inference-using-mcmc-sampling"]], "Installation": [[57, "installation"]], "Introduction to the Generalised Hierarchical Gaussian Filter": [[59, null]], "Kown mean, unknown precision": [[70, "kown-mean-unknown-precision"]], "Learn": [[58, null]], "Learning parameters with MCMC sampling": [[62, "learning-parameters-with-mcmc-sampling"], [64, "learning-parameters-with-mcmc-sampling"]], "Loading and preprocessing physiological recording": [[69, "loading-and-preprocessing-physiological-recording"]], "Math": [[0, "math"]], "Model": [[0, "model"], [69, "model"]], "Model comparison": [[66, "model-comparison"], [73, "model-comparison"]], "Model fitting": [[57, "model-fitting"]], "Model inversion: the generalized Hierarchical Gaussian Filter": [[72, "model-inversion-the-generalized-hierarchical-gaussian-filter"]], "Modifying the attributes": [[60, "modifying-the-attributes"]], "Modifying the edges": [[60, "modifying-the-edges"]], "Multivariate coupling": [[60, "multivariate-coupling"]], "Non-linear predictions": [[68, "non-linear-predictions"]], "Non-linear value coupling between continuous state nodes": [[68, null]], "Parameter recovery": [[71, "parameter-recovery"]], "Parameters optimization": [[73, "parameters-optimization"]], "Plot correlation": [[64, "plot-correlation"]], "Plot the computational graph": [[66, "plot-the-computational-graph"]], "Plot the signal with instantaneous heart rate derivations": [[69, "plot-the-signal-with-instantaneous-heart-rate-derivations"]], "Plot trajectories": [[62, "plot-trajectories"], [62, "id5"], [64, "plot-trajectories"], [64, "id4"]], "Plots": [[0, "plots"]], "Posterior predictive sampling": [[73, "posterior-predictive-sampling"]], "Posterior updates": [[0, "posterior-updates"]], "Practice: Filtering the worlds weather": [[72, "practice-filtering-the-worlds-weather"]], "Prediction error steps": [[0, "prediction-error-steps"]], "Prediction steps": [[0, "prediction-steps"]], "Preprocessing": [[69, "preprocessing"]], "Probabilistic coupling between nodes": [[72, "probabilistic-coupling-between-nodes"]], "PyHGF: A Neural Network Library for Predictive Coding": [[57, null]], "ReLU (rectified linear unit) activation function": [[68, "relu-rectified-linear-unit-activation-function"]], "Real-time decision and belief updating": [[71, "real-time-decision-and-belief-updating"]], "Recovering HGF parameters from the observed behaviors": [[65, "recovering-hgf-parameters-from-the-observed-behaviors"]], "Recovering computational parameters from observed behaviours": [[67, null]], "References": [[57, "references"], [74, null]], "Rescorla-Wagner": [[73, "rescorla-wagner"]], "Response": [[0, "response"]], "Sampling": [[62, "sampling"], [62, "id9"], [64, "sampling"], [64, "id7"], [66, "sampling"]], "Simulate a dataset": [[66, "simulate-a-dataset"], [71, "simulate-a-dataset"]], "Simulate behaviours from a one-armed bandit task": [[67, "simulate-behaviours-from-a-one-armed-bandit-task"]], "Simulate responses from a participant": [[71, "simulate-responses-from-a-participant"]], "Simulating a dataset": [[63, "simulating-a-dataset"]], "Solution to Exercise 1": [[72, "solution-exercise1.1"]], "Solution to Exercise 2": [[72, "solution-exercise1.2"]], "Solution to Exercise 3": [[72, "solution-exercise1.3"]], "Solution to Exercise 4": [[72, "solution-exercise1.4"]], "Solution to Exercise 5": [[72, "solution-exercise1.5"]], "Solution to Exercise 7": [[73, "solution-exercise2.1"]], "Solution to Exercise 8": [[73, "solution-exercise2.2"]], "Solutions": [[72, "solutions"], [73, "solutions"]], "Static assignation of update sequences": [[60, "static-assignation-of-update-sequences"]], "Surprise": [[62, "surprise"], [62, "id6"], [64, "surprise"]], "System configuration": [[59, "system-configuration"], [60, "system-configuration"], [61, "system-configuration"], [62, "system-configuration"], [63, "system-configuration"], [64, "system-configuration"], [65, "system-configuration"], [66, "system-configuration"], [67, "system-configuration"], [68, "system-configuration"], [69, "system-configuration"], [70, "system-configuration"], [71, "system-configuration"], [72, "system-configuration"], [73, "system-configuration"]], "Table of Contents": [[0, null]], "Task structure": [[71, "task-structure"]], "The Generalized Hierarchical Gaussian Filter": [[57, "the-generalized-hierarchical-gaussian-filter"]], "The Hierarchical Gaussian Filter": [[58, "the-hierarchical-gaussian-filter"]], "The Hierarchical Gaussian Filter in a network of predictive nodes": [[59, "the-hierarchical-gaussian-filter-in-a-network-of-predictive-nodes"]], "The binary HGF": [[73, "the-binary-hgf"]], "The binary Hierarchical Gaussian Filter": [[62, null]], "The case of multivariate ascendency": [[60, "the-case-of-multivariate-ascendency"]], "The case of multivariate descendency": [[60, "the-case-of-multivariate-descendency"]], "The categorical Hierarchical Gaussian Filter": [[63, null]], "The categorical state node": [[63, "the-categorical-state-node"]], "The categorical state-transition node": [[63, "the-categorical-state-transition-node"]], "The continuous Hierarchical Gaussian Filter": [[64, null]], "The generative model": [[59, "the-generative-model"], [72, "the-generative-model"]], "The propagation of prediction and prediction errors": [[59, "the-propagation-of-prediction-and-prediction-errors"]], "The three-level binary Hierarchical Gaussian Filter": [[62, "the-three-level-binary-hierarchical-gaussian-filter"]], "The three-level continuous Hierarchical Gaussian Filter": [[64, "the-three-level-continuous-hierarchical-gaussian-filter"]], "The two-level binary Hierarchical Gaussian Filter": [[62, "the-two-level-binary-hierarchical-gaussian-filter"]], "The two-level continuous Hierarchical Gaussian Filter": [[64, "the-two-level-continuous-hierarchical-gaussian-filter"]], "Theory": [[58, "theory"]], "Theory and implementation details": [[60, "theory-and-implementation-details"]], "Three-level HGF": [[73, "three-level-hgf"]], "Three-level model": [[62, "three-level-model"], [64, "three-level-model"]], "Time-varying update sequences": [[60, "time-varying-update-sequences"]], "Tutorials": [[58, "tutorials"]], "Two-level HGF": [[73, "two-level-hgf"]], "Two-level model": [[62, "two-level-model"], [64, "two-level-model"]], "Univariate normal distribution": [[61, "univariate-normal-distribution"]], "Unkown mean, known precision": [[70, "unkown-mean-known-precision"]], "Unkown mean, unknown precision": [[70, "unkown-mean-unknown-precision"]], "Update functions": [[60, "update-functions"]], "Updates functions": [[0, "updates-functions"]], "Use cases": [[58, "use-cases"]], "Using a dynamically adapted \\nu through a collection of Hierarchical Gaussian Filters": [[61, "using-a-dynamically-adapted-nu-through-a-collection-of-hierarchical-gaussian-filters"]], "Using a fixed \\nu": [[61, "using-a-fixed-nu"]], "Using custom response models": [[65, null]], "Using the learned parameters": [[62, "using-the-learned-parameters"], [62, "id10"], [64, "using-the-learned-parameters"], [64, "id8"]], "Utils": [[0, "utils"]], "Value coupling": [[59, "value-coupling"], [60, "value-coupling"], [72, "value-coupling"]], "Visualization of the posterior distributions": [[66, "visualization-of-the-posterior-distributions"]], "Visualizing parameters recovery": [[67, "visualizing-parameters-recovery"]], "Visualizing probabilistic networks": [[60, "visualizing-probabilistic-networks"]], "Visualizing the model": [[62, "visualizing-the-model"], [62, "id8"], [64, "visualizing-the-model"], [64, "id6"]], "Volatility coupling": [[59, "volatility-coupling"], [60, "volatility-coupling"], [72, "volatility-coupling"]], "Where to go next?": [[73, "where-to-go-next"]], "Working with missing or unobserved input sequences": [[60, "working-with-missing-or-unobserved-input-sequences"]], "Zurich CPC I: Introduction to the Generalised Hierarchical Gaussian Filter": [[72, null]], "Zurich CPC II: Application to reinforcement learning": [[73, null]], "pyhgf.distribution.HGFDistribution": [[2, null]], "pyhgf.distribution.HGFLogpGradOp": [[3, null]], "pyhgf.distribution.HGFPointwise": [[4, null]], "pyhgf.distribution.hgf_logp": [[5, null]], "pyhgf.distribution.logp": [[6, null]], "pyhgf.math.MultivariateNormal": [[7, null]], "pyhgf.math.Normal": [[8, null]], "pyhgf.math.binary_surprise": [[9, null]], "pyhgf.math.binary_surprise_finite_precision": [[10, null]], "pyhgf.math.dirichlet_kullback_leibler": [[11, null]], "pyhgf.math.gaussian_density": [[12, null]], "pyhgf.math.gaussian_predictive_distribution": [[13, null]], "pyhgf.math.gaussian_surprise": [[14, null]], "pyhgf.math.sigmoid": [[15, null]], "pyhgf.model.HGF": [[16, null]], "pyhgf.model.Network": [[17, null]], "pyhgf.plots.plot_correlations": [[18, null]], "pyhgf.plots.plot_network": [[19, null]], "pyhgf.plots.plot_nodes": [[20, null]], "pyhgf.plots.plot_trajectories": [[21, null]], "pyhgf.response.binary_softmax": [[22, null]], "pyhgf.response.binary_softmax_inverse_temperature": [[23, null]], "pyhgf.response.first_level_binary_surprise": [[24, null]], "pyhgf.response.first_level_gaussian_surprise": [[25, null]], "pyhgf.response.total_gaussian_surprise": [[26, null]], "pyhgf.updates.posterior.categorical.categorical_state_update": [[27, null]], "pyhgf.updates.posterior.continuous.continuous_node_posterior_update": [[28, null]], "pyhgf.updates.posterior.continuous.continuous_node_posterior_update_ehgf": [[29, null]], "pyhgf.updates.posterior.continuous.posterior_update_mean_continuous_node": [[30, null]], "pyhgf.updates.posterior.continuous.posterior_update_precision_continuous_node": [[31, null]], "pyhgf.updates.posterior.exponential.posterior_update_exponential_family": [[32, null]], "pyhgf.updates.prediction.binary.binary_state_node_prediction": [[33, null]], "pyhgf.updates.prediction.continuous.continuous_node_prediction": [[34, null]], "pyhgf.updates.prediction.continuous.predict_mean": [[35, null]], "pyhgf.updates.prediction.continuous.predict_precision": [[36, null]], "pyhgf.updates.prediction.dirichlet.dirichlet_node_prediction": [[37, null]], "pyhgf.updates.prediction_error.binary.binary_finite_state_node_prediction_error": [[38, null]], "pyhgf.updates.prediction_error.binary.binary_state_node_prediction_error": [[39, null]], "pyhgf.updates.prediction_error.categorical.categorical_state_prediction_error": [[40, null]], "pyhgf.updates.prediction_error.continuous.continuous_node_prediction_error": [[41, null]], "pyhgf.updates.prediction_error.continuous.continuous_node_value_prediction_error": [[42, null]], "pyhgf.updates.prediction_error.continuous.continuous_node_volatility_prediction_error": [[43, null]], "pyhgf.updates.prediction_error.dirichlet.clusters_likelihood": [[44, null]], "pyhgf.updates.prediction_error.dirichlet.create_cluster": [[45, null]], "pyhgf.updates.prediction_error.dirichlet.dirichlet_node_prediction_error": [[46, null]], "pyhgf.updates.prediction_error.dirichlet.get_candidate": [[47, null]], "pyhgf.updates.prediction_error.dirichlet.likely_cluster_proposal": [[48, null]], "pyhgf.updates.prediction_error.dirichlet.update_cluster": [[49, null]], "pyhgf.utils.add_edges": [[50, null]], "pyhgf.utils.beliefs_propagation": [[51, null]], "pyhgf.utils.fill_categorical_state_node": [[52, null]], "pyhgf.utils.get_input_idxs": [[53, null]], "pyhgf.utils.get_update_sequence": [[54, null]], "pyhgf.utils.list_branches": [[55, null]], "pyhgf.utils.to_pandas": [[56, null]]}, "docnames": ["api", "cite", "generated/pyhgf.distribution/pyhgf.distribution.HGFDistribution", "generated/pyhgf.distribution/pyhgf.distribution.HGFLogpGradOp", "generated/pyhgf.distribution/pyhgf.distribution.HGFPointwise", "generated/pyhgf.distribution/pyhgf.distribution.hgf_logp", "generated/pyhgf.distribution/pyhgf.distribution.logp", "generated/pyhgf.math/pyhgf.math.MultivariateNormal", "generated/pyhgf.math/pyhgf.math.Normal", "generated/pyhgf.math/pyhgf.math.binary_surprise", "generated/pyhgf.math/pyhgf.math.binary_surprise_finite_precision", "generated/pyhgf.math/pyhgf.math.dirichlet_kullback_leibler", "generated/pyhgf.math/pyhgf.math.gaussian_density", "generated/pyhgf.math/pyhgf.math.gaussian_predictive_distribution", "generated/pyhgf.math/pyhgf.math.gaussian_surprise", "generated/pyhgf.math/pyhgf.math.sigmoid", "generated/pyhgf.model/pyhgf.model.HGF", "generated/pyhgf.model/pyhgf.model.Network", "generated/pyhgf.plots/pyhgf.plots.plot_correlations", "generated/pyhgf.plots/pyhgf.plots.plot_network", "generated/pyhgf.plots/pyhgf.plots.plot_nodes", "generated/pyhgf.plots/pyhgf.plots.plot_trajectories", "generated/pyhgf.response/pyhgf.response.binary_softmax", "generated/pyhgf.response/pyhgf.response.binary_softmax_inverse_temperature", "generated/pyhgf.response/pyhgf.response.first_level_binary_surprise", "generated/pyhgf.response/pyhgf.response.first_level_gaussian_surprise", "generated/pyhgf.response/pyhgf.response.total_gaussian_surprise", "generated/pyhgf.updates.posterior.categorical/pyhgf.updates.posterior.categorical.categorical_state_update", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.continuous_node_posterior_update", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.continuous_node_posterior_update_ehgf", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.posterior_update_mean_continuous_node", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.posterior_update_precision_continuous_node", "generated/pyhgf.updates.posterior.exponential/pyhgf.updates.posterior.exponential.posterior_update_exponential_family", "generated/pyhgf.updates.prediction.binary/pyhgf.updates.prediction.binary.binary_state_node_prediction", "generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.continuous_node_prediction", "generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.predict_mean", "generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.predict_precision", "generated/pyhgf.updates.prediction.dirichlet/pyhgf.updates.prediction.dirichlet.dirichlet_node_prediction", "generated/pyhgf.updates.prediction_error.binary/pyhgf.updates.prediction_error.binary.binary_finite_state_node_prediction_error", "generated/pyhgf.updates.prediction_error.binary/pyhgf.updates.prediction_error.binary.binary_state_node_prediction_error", "generated/pyhgf.updates.prediction_error.categorical/pyhgf.updates.prediction_error.categorical.categorical_state_prediction_error", "generated/pyhgf.updates.prediction_error.continuous/pyhgf.updates.prediction_error.continuous.continuous_node_prediction_error", "generated/pyhgf.updates.prediction_error.continuous/pyhgf.updates.prediction_error.continuous.continuous_node_value_prediction_error", "generated/pyhgf.updates.prediction_error.continuous/pyhgf.updates.prediction_error.continuous.continuous_node_volatility_prediction_error", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.clusters_likelihood", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.create_cluster", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.dirichlet_node_prediction_error", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.get_candidate", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.likely_cluster_proposal", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.update_cluster", "generated/pyhgf.utils/pyhgf.utils.add_edges", "generated/pyhgf.utils/pyhgf.utils.beliefs_propagation", "generated/pyhgf.utils/pyhgf.utils.fill_categorical_state_node", "generated/pyhgf.utils/pyhgf.utils.get_input_idxs", "generated/pyhgf.utils/pyhgf.utils.get_update_sequence", "generated/pyhgf.utils/pyhgf.utils.list_branches", "generated/pyhgf.utils/pyhgf.utils.to_pandas", "index", "learn", "notebooks/0.1-Theory", "notebooks/0.2-Creating_networks", "notebooks/0.3-Generalised_filtering", "notebooks/1.1-Binary_HGF", "notebooks/1.2-Categorical_HGF", "notebooks/1.3-Continuous_HGF", "notebooks/2-Using_custom_response_functions", "notebooks/3-Multilevel_HGF", "notebooks/4-Parameter_recovery", "notebooks/5-Non_linear_value_coupling", "notebooks/Example_1_Heart_rate_variability", "notebooks/Example_2_Input_node_volatility_coupling", "notebooks/Example_3_Multi_armed_bandit", "notebooks/Exercise_1_Introduction_to_the_generalised_hierarchical_gaussian_filter", "notebooks/Exercise_2_Bayesian_reinforcement_learning", "references"], "envversion": {"sphinx": 64, "sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.viewcode": 1, "sphinxcontrib.bibtex": 9}, "filenames": ["api.rst", "cite.md", "generated/pyhgf.distribution/pyhgf.distribution.HGFDistribution.rst", "generated/pyhgf.distribution/pyhgf.distribution.HGFLogpGradOp.rst", "generated/pyhgf.distribution/pyhgf.distribution.HGFPointwise.rst", "generated/pyhgf.distribution/pyhgf.distribution.hgf_logp.rst", "generated/pyhgf.distribution/pyhgf.distribution.logp.rst", "generated/pyhgf.math/pyhgf.math.MultivariateNormal.rst", "generated/pyhgf.math/pyhgf.math.Normal.rst", "generated/pyhgf.math/pyhgf.math.binary_surprise.rst", "generated/pyhgf.math/pyhgf.math.binary_surprise_finite_precision.rst", "generated/pyhgf.math/pyhgf.math.dirichlet_kullback_leibler.rst", "generated/pyhgf.math/pyhgf.math.gaussian_density.rst", "generated/pyhgf.math/pyhgf.math.gaussian_predictive_distribution.rst", "generated/pyhgf.math/pyhgf.math.gaussian_surprise.rst", "generated/pyhgf.math/pyhgf.math.sigmoid.rst", "generated/pyhgf.model/pyhgf.model.HGF.rst", "generated/pyhgf.model/pyhgf.model.Network.rst", "generated/pyhgf.plots/pyhgf.plots.plot_correlations.rst", "generated/pyhgf.plots/pyhgf.plots.plot_network.rst", "generated/pyhgf.plots/pyhgf.plots.plot_nodes.rst", "generated/pyhgf.plots/pyhgf.plots.plot_trajectories.rst", "generated/pyhgf.response/pyhgf.response.binary_softmax.rst", "generated/pyhgf.response/pyhgf.response.binary_softmax_inverse_temperature.rst", "generated/pyhgf.response/pyhgf.response.first_level_binary_surprise.rst", "generated/pyhgf.response/pyhgf.response.first_level_gaussian_surprise.rst", "generated/pyhgf.response/pyhgf.response.total_gaussian_surprise.rst", "generated/pyhgf.updates.posterior.categorical/pyhgf.updates.posterior.categorical.categorical_state_update.rst", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.continuous_node_posterior_update.rst", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.continuous_node_posterior_update_ehgf.rst", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.posterior_update_mean_continuous_node.rst", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.posterior_update_precision_continuous_node.rst", "generated/pyhgf.updates.posterior.exponential/pyhgf.updates.posterior.exponential.posterior_update_exponential_family.rst", "generated/pyhgf.updates.prediction.binary/pyhgf.updates.prediction.binary.binary_state_node_prediction.rst", "generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.continuous_node_prediction.rst", "generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.predict_mean.rst", "generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.predict_precision.rst", "generated/pyhgf.updates.prediction.dirichlet/pyhgf.updates.prediction.dirichlet.dirichlet_node_prediction.rst", "generated/pyhgf.updates.prediction_error.binary/pyhgf.updates.prediction_error.binary.binary_finite_state_node_prediction_error.rst", "generated/pyhgf.updates.prediction_error.binary/pyhgf.updates.prediction_error.binary.binary_state_node_prediction_error.rst", "generated/pyhgf.updates.prediction_error.categorical/pyhgf.updates.prediction_error.categorical.categorical_state_prediction_error.rst", "generated/pyhgf.updates.prediction_error.continuous/pyhgf.updates.prediction_error.continuous.continuous_node_prediction_error.rst", "generated/pyhgf.updates.prediction_error.continuous/pyhgf.updates.prediction_error.continuous.continuous_node_value_prediction_error.rst", "generated/pyhgf.updates.prediction_error.continuous/pyhgf.updates.prediction_error.continuous.continuous_node_volatility_prediction_error.rst", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.clusters_likelihood.rst", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.create_cluster.rst", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.dirichlet_node_prediction_error.rst", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.get_candidate.rst", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.likely_cluster_proposal.rst", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.update_cluster.rst", "generated/pyhgf.utils/pyhgf.utils.add_edges.rst", "generated/pyhgf.utils/pyhgf.utils.beliefs_propagation.rst", "generated/pyhgf.utils/pyhgf.utils.fill_categorical_state_node.rst", "generated/pyhgf.utils/pyhgf.utils.get_input_idxs.rst", "generated/pyhgf.utils/pyhgf.utils.get_update_sequence.rst", "generated/pyhgf.utils/pyhgf.utils.list_branches.rst", "generated/pyhgf.utils/pyhgf.utils.to_pandas.rst", "index.md", "learn.md", "notebooks/0.1-Theory.ipynb", "notebooks/0.2-Creating_networks.ipynb", "notebooks/0.3-Generalised_filtering.ipynb", "notebooks/1.1-Binary_HGF.ipynb", "notebooks/1.2-Categorical_HGF.ipynb", "notebooks/1.3-Continuous_HGF.ipynb", "notebooks/2-Using_custom_response_functions.ipynb", "notebooks/3-Multilevel_HGF.ipynb", "notebooks/4-Parameter_recovery.ipynb", "notebooks/5-Non_linear_value_coupling.ipynb", "notebooks/Example_1_Heart_rate_variability.ipynb", "notebooks/Example_2_Input_node_volatility_coupling.ipynb", "notebooks/Example_3_Multi_armed_bandit.ipynb", "notebooks/Exercise_1_Introduction_to_the_generalised_hierarchical_gaussian_filter.ipynb", "notebooks/Exercise_2_Bayesian_reinforcement_learning.ipynb", "references.md"], "indexentries": {"__init__() (pyhgf.distribution.hgfdistribution method)": [[2, "pyhgf.distribution.HGFDistribution.__init__", false]], "__init__() (pyhgf.distribution.hgflogpgradop method)": [[3, "pyhgf.distribution.HGFLogpGradOp.__init__", false]], "__init__() (pyhgf.distribution.hgfpointwise method)": [[4, "pyhgf.distribution.HGFPointwise.__init__", false]], "__init__() (pyhgf.math.multivariatenormal method)": [[7, "pyhgf.math.MultivariateNormal.__init__", false]], "__init__() (pyhgf.math.normal method)": [[8, "pyhgf.math.Normal.__init__", false]], "__init__() (pyhgf.model.hgf method)": [[16, "pyhgf.model.HGF.__init__", false]], "__init__() (pyhgf.model.network method)": [[17, "pyhgf.model.Network.__init__", false]], "add_edges() (in module pyhgf.utils)": [[50, "pyhgf.utils.add_edges", false]], "beliefs_propagation() (in module pyhgf.utils)": [[51, "pyhgf.utils.beliefs_propagation", false]], "binary_finite_state_node_prediction_error() (in module pyhgf.updates.prediction_error.binary)": [[38, "pyhgf.updates.prediction_error.binary.binary_finite_state_node_prediction_error", false]], "binary_softmax() (in module pyhgf.response)": [[22, "pyhgf.response.binary_softmax", false]], "binary_softmax_inverse_temperature() (in module pyhgf.response)": [[23, "pyhgf.response.binary_softmax_inverse_temperature", false]], "binary_state_node_prediction() (in module pyhgf.updates.prediction.binary)": [[33, "pyhgf.updates.prediction.binary.binary_state_node_prediction", false]], "binary_state_node_prediction_error() (in module pyhgf.updates.prediction_error.binary)": [[39, "pyhgf.updates.prediction_error.binary.binary_state_node_prediction_error", false]], "binary_surprise() (in module pyhgf.math)": [[9, "pyhgf.math.binary_surprise", false]], "binary_surprise_finite_precision() (in module pyhgf.math)": [[10, "pyhgf.math.binary_surprise_finite_precision", false]], "categorical_state_prediction_error() (in module pyhgf.updates.prediction_error.categorical)": [[40, "pyhgf.updates.prediction_error.categorical.categorical_state_prediction_error", false]], "categorical_state_update() (in module pyhgf.updates.posterior.categorical)": [[27, "pyhgf.updates.posterior.categorical.categorical_state_update", false]], "clusters_likelihood() (in module pyhgf.updates.prediction_error.dirichlet)": [[44, "pyhgf.updates.prediction_error.dirichlet.clusters_likelihood", false]], "continuous_node_posterior_update() (in module pyhgf.updates.posterior.continuous)": [[28, "pyhgf.updates.posterior.continuous.continuous_node_posterior_update", false]], "continuous_node_posterior_update_ehgf() (in module pyhgf.updates.posterior.continuous)": [[29, "pyhgf.updates.posterior.continuous.continuous_node_posterior_update_ehgf", false]], "continuous_node_prediction() (in module pyhgf.updates.prediction.continuous)": [[34, "pyhgf.updates.prediction.continuous.continuous_node_prediction", false]], "continuous_node_prediction_error() (in module pyhgf.updates.prediction_error.continuous)": [[41, "pyhgf.updates.prediction_error.continuous.continuous_node_prediction_error", false]], "continuous_node_value_prediction_error() (in module pyhgf.updates.prediction_error.continuous)": [[42, "pyhgf.updates.prediction_error.continuous.continuous_node_value_prediction_error", false]], "continuous_node_volatility_prediction_error() (in module pyhgf.updates.prediction_error.continuous)": [[43, "pyhgf.updates.prediction_error.continuous.continuous_node_volatility_prediction_error", false]], "create_cluster() (in module pyhgf.updates.prediction_error.dirichlet)": [[45, "pyhgf.updates.prediction_error.dirichlet.create_cluster", false]], "decision rule": [[65, "term-Decision-rule", true]], "dirichlet_kullback_leibler() (in module pyhgf.math)": [[11, "pyhgf.math.dirichlet_kullback_leibler", false]], "dirichlet_node_prediction() (in module pyhgf.updates.prediction.dirichlet)": [[37, "pyhgf.updates.prediction.dirichlet.dirichlet_node_prediction", false]], "dirichlet_node_prediction_error() (in module pyhgf.updates.prediction_error.dirichlet)": [[46, "pyhgf.updates.prediction_error.dirichlet.dirichlet_node_prediction_error", false]], "fill_categorical_state_node() (in module pyhgf.utils)": [[52, "pyhgf.utils.fill_categorical_state_node", false]], "first_level_binary_surprise() (in module pyhgf.response)": [[24, "pyhgf.response.first_level_binary_surprise", false]], "first_level_gaussian_surprise() (in module pyhgf.response)": [[25, "pyhgf.response.first_level_gaussian_surprise", false]], "gaussian random walk": [[59, "term-Gaussian-Random-Walk", true]], "gaussian_density() (in module pyhgf.math)": [[12, "pyhgf.math.gaussian_density", false]], "gaussian_predictive_distribution() (in module pyhgf.math)": [[13, "pyhgf.math.gaussian_predictive_distribution", false]], "gaussian_surprise() (in module pyhgf.math)": [[14, "pyhgf.math.gaussian_surprise", false]], "get_candidate() (in module pyhgf.updates.prediction_error.dirichlet)": [[47, "pyhgf.updates.prediction_error.dirichlet.get_candidate", false]], "get_input_idxs() (in module pyhgf.utils)": [[53, "pyhgf.utils.get_input_idxs", false]], "get_update_sequence() (in module pyhgf.utils)": [[54, "pyhgf.utils.get_update_sequence", false]], "hgf (class in pyhgf.model)": [[16, "pyhgf.model.HGF", false]], "hgf_logp() (in module pyhgf.distribution)": [[5, "pyhgf.distribution.hgf_logp", false]], "hgfdistribution (class in pyhgf.distribution)": [[2, "pyhgf.distribution.HGFDistribution", false]], "hgflogpgradop (class in pyhgf.distribution)": [[3, "pyhgf.distribution.HGFLogpGradOp", false]], "hgfpointwise (class in pyhgf.distribution)": [[4, "pyhgf.distribution.HGFPointwise", false]], "likely_cluster_proposal() (in module pyhgf.updates.prediction_error.dirichlet)": [[48, "pyhgf.updates.prediction_error.dirichlet.likely_cluster_proposal", false]], "list_branches() (in module pyhgf.utils)": [[55, "pyhgf.utils.list_branches", false]], "logp() (in module pyhgf.distribution)": [[6, "pyhgf.distribution.logp", false]], "multivariatenormal (class in pyhgf.math)": [[7, "pyhgf.math.MultivariateNormal", false]], "network (class in pyhgf.model)": [[17, "pyhgf.model.Network", false]], "node": [[59, "term-Node", true]], "normal (class in pyhgf.math)": [[8, "pyhgf.math.Normal", false]], "perceptual model": [[65, "term-Perceptual-model", true]], "plot_correlations() (in module pyhgf.plots)": [[18, "pyhgf.plots.plot_correlations", false]], "plot_network() (in module pyhgf.plots)": [[19, "pyhgf.plots.plot_network", false]], "plot_nodes() (in module pyhgf.plots)": [[20, "pyhgf.plots.plot_nodes", false]], "plot_trajectories() (in module pyhgf.plots)": [[21, "pyhgf.plots.plot_trajectories", false]], "posterior_update_exponential_family() (in module pyhgf.updates.posterior.exponential)": [[32, "pyhgf.updates.posterior.exponential.posterior_update_exponential_family", false]], "posterior_update_mean_continuous_node() (in module pyhgf.updates.posterior.continuous)": [[30, "pyhgf.updates.posterior.continuous.posterior_update_mean_continuous_node", false]], "posterior_update_precision_continuous_node() (in module pyhgf.updates.posterior.continuous)": [[31, "pyhgf.updates.posterior.continuous.posterior_update_precision_continuous_node", false]], "predict_mean() (in module pyhgf.updates.prediction.continuous)": [[35, "pyhgf.updates.prediction.continuous.predict_mean", false]], "predict_precision() (in module pyhgf.updates.prediction.continuous)": [[36, "pyhgf.updates.prediction.continuous.predict_precision", false]], "prediction": [[59, "term-Prediction", true]], "prediction error": [[59, "term-Prediction-error", true]], "response function": [[65, "term-Response-function", true]], "response model": [[65, "term-Response-model", true]], "sigmoid() (in module pyhgf.math)": [[15, "pyhgf.math.sigmoid", false]], "to_pandas() (in module pyhgf.utils)": [[56, "pyhgf.utils.to_pandas", false]], "total_gaussian_surprise() (in module pyhgf.response)": [[26, "pyhgf.response.total_gaussian_surprise", false]], "update": [[59, "term-Update", true]], "update_cluster() (in module pyhgf.updates.prediction_error.dirichlet)": [[49, "pyhgf.updates.prediction_error.dirichlet.update_cluster", false]], "vape": [[59, "term-VAPE", true]], "vope": [[59, "term-VOPE", true]]}, "objects": {"pyhgf.distribution": [[2, 0, 1, "", "HGFDistribution"], [3, 0, 1, "", "HGFLogpGradOp"], [4, 0, 1, "", "HGFPointwise"], [5, 2, 1, "", "hgf_logp"], [6, 2, 1, "", "logp"]], "pyhgf.distribution.HGFDistribution": [[2, 1, 1, "", "__init__"]], "pyhgf.distribution.HGFLogpGradOp": [[3, 1, 1, "", "__init__"]], "pyhgf.distribution.HGFPointwise": [[4, 1, 1, "", "__init__"]], "pyhgf.math": [[7, 0, 1, "", "MultivariateNormal"], [8, 0, 1, "", "Normal"], [9, 2, 1, "", "binary_surprise"], [10, 2, 1, "", "binary_surprise_finite_precision"], [11, 2, 1, "", "dirichlet_kullback_leibler"], [12, 2, 1, "", "gaussian_density"], [13, 2, 1, "", "gaussian_predictive_distribution"], [14, 2, 1, "", "gaussian_surprise"], [15, 2, 1, "", "sigmoid"]], "pyhgf.math.MultivariateNormal": [[7, 1, 1, "", "__init__"]], "pyhgf.math.Normal": [[8, 1, 1, "", "__init__"]], "pyhgf.model": [[16, 0, 1, "", "HGF"], [17, 0, 1, "", "Network"]], "pyhgf.model.HGF": [[16, 1, 1, "", "__init__"]], "pyhgf.model.Network": [[17, 1, 1, "", "__init__"]], "pyhgf.plots": [[18, 2, 1, "", "plot_correlations"], [19, 2, 1, "", "plot_network"], [20, 2, 1, "", "plot_nodes"], [21, 2, 1, "", "plot_trajectories"]], "pyhgf.response": [[22, 2, 1, "", "binary_softmax"], [23, 2, 1, "", "binary_softmax_inverse_temperature"], [24, 2, 1, "", "first_level_binary_surprise"], [25, 2, 1, "", "first_level_gaussian_surprise"], [26, 2, 1, "", "total_gaussian_surprise"]], "pyhgf.updates.posterior.categorical": [[27, 2, 1, "", "categorical_state_update"]], "pyhgf.updates.posterior.continuous": [[28, 2, 1, "", "continuous_node_posterior_update"], [29, 2, 1, "", "continuous_node_posterior_update_ehgf"], [30, 2, 1, "", "posterior_update_mean_continuous_node"], [31, 2, 1, "", "posterior_update_precision_continuous_node"]], "pyhgf.updates.posterior.exponential": [[32, 2, 1, "", "posterior_update_exponential_family"]], "pyhgf.updates.prediction.binary": [[33, 2, 1, "", "binary_state_node_prediction"]], "pyhgf.updates.prediction.continuous": [[34, 2, 1, "", "continuous_node_prediction"], [35, 2, 1, "", "predict_mean"], [36, 2, 1, "", "predict_precision"]], "pyhgf.updates.prediction.dirichlet": [[37, 2, 1, "", "dirichlet_node_prediction"]], "pyhgf.updates.prediction_error.binary": [[38, 2, 1, "", "binary_finite_state_node_prediction_error"], [39, 2, 1, "", "binary_state_node_prediction_error"]], "pyhgf.updates.prediction_error.categorical": [[40, 2, 1, "", "categorical_state_prediction_error"]], "pyhgf.updates.prediction_error.continuous": [[41, 2, 1, "", "continuous_node_prediction_error"], [42, 2, 1, "", "continuous_node_value_prediction_error"], [43, 2, 1, "", "continuous_node_volatility_prediction_error"]], "pyhgf.updates.prediction_error.dirichlet": [[44, 2, 1, "", "clusters_likelihood"], [45, 2, 1, "", "create_cluster"], [46, 2, 1, "", "dirichlet_node_prediction_error"], [47, 2, 1, "", "get_candidate"], [48, 2, 1, "", "likely_cluster_proposal"], [49, 2, 1, "", "update_cluster"]], "pyhgf.utils": [[50, 2, 1, "", "add_edges"], [51, 2, 1, "", "beliefs_propagation"], [52, 2, 1, "", "fill_categorical_state_node"], [53, 2, 1, "", "get_input_idxs"], [54, 2, 1, "", "get_update_sequence"], [55, 2, 1, "", "list_branches"], [56, 2, 1, "", "to_pandas"]]}, "objnames": {"0": ["py", "class", "Python class"], "1": ["py", "method", "Python method"], "2": ["py", "function", "Python function"]}, "objtypes": {"0": "py:class", "1": "py:method", "2": "py:function"}, "terms": {"": [1, 2, 17, 20, 21, 24, 25, 26, 35, 50, 51, 54, 57, 59, 60, 61, 62, 64, 65, 67, 68, 69, 71, 72, 73], "0": [0, 2, 3, 4, 5, 6, 9, 10, 14, 15, 16, 20, 21, 22, 23, 35, 48, 50, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "00": [69, 72, 73], "000000": 73, "000000e": 73, "00039": [1, 57, 74], "00745": 62, "00825": [1, 57, 74], "01": [61, 66, 67, 68, 72], "010339": 73, "0105": 64, "011": 73, "012": 65, "015": 73, "015187": 73, "016": 74, "016216": 65, "017": 65, "018": 72, "0183": 64, "02": [61, 72], "026694": 73, "027": 2, "03": [68, 72], "030": [13, 32], "038": 2, "04": [20, 21, 64, 72], "05": [60, 68, 71, 73], "050010": 73, "06": 66, "060": 74, "061": 72, "064361": 65, "065": 2, "067450": 65, "068": 74, "068983": 65, "077038": 65, "08": 74, "08008": [66, 67], "09045": 62, "1": [1, 2, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 20, 21, 22, 23, 28, 29, 30, 31, 32, 33, 34, 35, 36, 38, 41, 42, 43, 46, 50, 51, 54, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 70, 71, 73, 74], "10": [1, 13, 28, 29, 30, 31, 32, 34, 35, 36, 38, 41, 42, 43, 57, 59, 60, 61, 63, 64, 66, 68, 69, 70, 71, 73, 74], "100": [61, 66, 67, 69], "1000": [2, 59, 60, 61, 66, 68, 69, 70, 72], "10000": [16, 59], "1007": [13, 32, 74], "1016": 74, "1017": 74, "1032": 66, "103608": 73, "109": 73, "10937": [28, 29, 30, 31, 34, 35, 36, 38, 41, 42, 43, 57, 74], "11": [2, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74], "1106": 64, "1118": 64, "112": 73, "113": 73, "114": 74, "117590": 74, "12": [2, 20, 21, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "1224": 74, "123": [59, 60, 61, 66, 67, 70, 71, 72, 73], "1239": 74, "124": 72, "1246": 64, "125": [59, 72], "1251": 74, "1261": 65, "1265": 74, "128": [61, 72], "13": [20, 21, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "138": 57, "14": [2, 65], "1413": 74, "1432": 74, "147": 72, "15": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "150": 63, "1500": 60, "16": [2, 61], "1662": 1, "16625161": 1, "17": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "175368": 73, "18": [20, 21, 65], "185465": 65, "1903": [66, 67], "1910": 64, "1938": 66, "196": 72, "1999": 67, "19it": 69, "1_000": [62, 64, 65, 66, 67, 69, 71, 73], "1d": [2, 4], "1e1": [20, 21, 62, 64, 69], "1e2": 72, "1e4": [16, 20, 21, 60, 62, 64, 65, 69, 70, 72], "1i": [11, 63], "1rst": 62, "2": [2, 3, 4, 5, 6, 11, 13, 14, 16, 17, 20, 21, 28, 29, 30, 31, 43, 46, 51, 54, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 73, 74], "20": [1, 62, 63, 64, 65, 66, 67, 68, 69, 71, 73, 74], "200": [59, 60, 61, 72], "2000": [60, 66], "20000": [47, 48], "2001": 11, "2010": 64, "2011": [1, 57, 59, 60, 64, 74], "2013": 57, "2014": [1, 57, 59, 60, 66, 72, 74], "2016": [66, 72, 74], "2017": [71, 74], "2019": [67, 72, 74], "202": 62, "2020": [13, 32, 61, 74], "2021": [57, 62, 65, 73, 74], "2023": [0, 28, 29, 30, 31, 34, 35, 36, 38, 41, 42, 43, 57, 59, 60, 72, 74], "2024": [57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "203": 62, "205": 65, "206": 62, "21": 63, "210907e": 73, "21596": 62, "21629826": 1, "2167": 66, "222": 73, "223249": 73, "224": 72, "226": 74, "22it": 69, "23": 73, "2305": [28, 29, 30, 31, 34, 35, 36, 38, 41, 42, 43, 57, 74], "230946": 65, "232583": 65, "233799": 65, "234603": 65, "235004": 65, "238695": 73, "24": 72, "244": 72, "245": 72, "247": 72, "249": 72, "25": [61, 63, 66, 70, 71, 73], "250": [59, 60, 63, 68, 70, 72], "2511": 66, "2516081684": 64, "256": 61, "26": [59, 60, 61, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73], "260191": 65, "2633": 62, "2679": 64, "27": [65, 66, 74], "270900": 65, "27879": 74, "28": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "283697": 65, "296556": 65, "2_000": [62, 64, 65, 66, 67, 69, 71, 73], "2_i": 66, "2a2a2a": 63, "2i": [11, 63], "2nd": 62, "3": [2, 3, 4, 5, 13, 16, 17, 20, 21, 32, 51, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 73, 74], "30": [59, 60, 61, 72, 74], "301674": 65, "308": 72, "30963": 64, "31": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "32": [61, 66], "3200": 66, "337250": 73, "3389": [1, 57, 74], "345082": 73, "345825": 73, "35": 61, "350": 68, "35667497": 9, "35it": 69, "361": 73, "387": 72, "389923": 65, "4": [57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74], "40": 71, "400": [60, 61, 68], "401": 73, "4093": 64, "416410": 65, "42": [48, 68], "43": 68, "44": 73, "45": 60, "450344": 73, "458906": 65, "466356": 65, "471469": 65, "472": 72, "474077": 65, "48550": [28, 29, 30, 31, 34, 35, 36, 38, 41, 42, 43, 57], "49": 67, "49547": 74, "4c72b0": [59, 60, 65, 72, 73], "5": [0, 1, 2, 20, 21, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74], "50": [69, 70], "500": [66, 70], "500000": 65, "506923": 65, "510971": 65, "512": 61, "5161": 1, "518301": 65, "52": [13, 32, 74], "520583": 65, "526640": 73, "52985": 62, "530355": 65, "530717": 65, "53662109": 66, "536678": 65, "5377": 72, "54": 65, "540697": 65, "55": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "550": 68, "551": 62, "55585": 62, "55a868": [59, 67, 73], "562": 73, "564844": 73, "566859": 65, "58": [13, 32, 74], "582766": [61, 70], "591538": 73, "599": 73, "5d1e51": 73, "6": [21, 59, 60, 61, 66, 67, 70, 71, 72, 73, 74], "60": [67, 69], "600": [60, 61, 68], "602961": 65, "6174": 64, "62": 66, "622459": 65, "624085": 65, "627284": 65, "631975": 65, "635": 72, "638038": 65, "64": [61, 66], "645": 73, "64919": [13, 32], "650": 68, "66": 73, "67": 66, "680811": 57, "698": 64, "7": [9, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 74], "70": 66, "701": 72, "701917": 73, "731660": 65, "739": 66, "745316": 65, "750": 60, "7554": 74, "76": 66, "766": 2, "772407": 73, "776": 2, "7_7": [13, 32], "7f7f7f": 63, "8": [1, 11, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 74], "80": 71, "800": [60, 61], "806": 2, "828": 64, "83": 66, "834867": 65, "842": 65, "850": 68, "861929": 73, "865": 72, "872": 73, "87854": 65, "886": 64, "889": 65, "8992462158203": 57, "9": [11, 20, 21, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74], "90": 60, "900": 60, "903": 64, "910": 64, "9189386": 14, "927647": 73, "9297": 64, "929917": 73, "931": 72, "938": 2, "944": 2, "950": 68, "952": 65, "964": 64, "965": 64, "9696": 74, "978": [13, 32], "981": 65, "999": 61, "A": [0, 1, 2, 3, 4, 5, 16, 17, 20, 21, 23, 28, 29, 30, 31, 34, 35, 36, 38, 41, 42, 43, 48, 51, 54, 55, 58, 59, 60, 62, 64, 65, 66, 67, 68, 72, 73, 74], "And": 65, "As": [60, 66, 71], "At": [58, 59, 72], "Being": 65, "But": [60, 64, 65, 66, 72], "By": [2, 3, 4, 29, 35, 57, 64, 65], "For": [1, 6, 17, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 45, 46, 49, 53, 59, 60, 61, 65, 67, 68, 72, 73], "If": [1, 2, 3, 4, 16, 20, 21, 30, 35, 50, 55, 59, 63, 65, 66, 68, 71, 73], "In": [1, 13, 32, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74], "It": [1, 16, 27, 40, 50, 57, 59, 60, 61, 64, 65, 67, 68, 70, 71, 73], "NOT": 73, "OR": 72, "On": 65, "One": [60, 62, 64, 73], "Or": 72, "Such": [59, 61, 73], "That": 73, "The": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 61, 65, 66, 67, 68, 69, 70, 71, 74], "Then": [68, 72], "There": [65, 66, 67, 71, 72, 73], "These": [1, 57, 59, 62], "To": [59, 62, 64, 65, 66, 68, 72, 73], "With": [59, 68], "_": [21, 23, 30, 31, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 71, 72, 73], "_1": [65, 66], "__init__": [2, 3, 4, 7, 8, 16, 17], "_a": [33, 35, 36], "_b": [30, 31, 33], "_i": 59, "_j": [30, 31, 42, 43], "a_custom_hgf": 60, "aarhu": [68, 72], "aarhus_weather_df": 72, "ab": [66, 67], "aberr": 64, "abil": 67, "abl": [57, 62, 65, 66, 68], "about": [1, 58, 59, 60, 61, 62, 63, 64, 65, 71, 72, 73], "abov": [55, 59, 60, 61, 64, 65, 68, 71, 72, 73], "absenc": [67, 71], "abstract": [1, 61, 74], "ac": 11, "acceler": 64, "accept": [62, 64, 68], "access": [2, 3, 4, 60, 65], "accommod": 1, "accord": [0, 65, 68], "accordingli": [5, 59, 62, 64, 71, 72], "account": [1, 59, 60, 71], "accumul": 51, "accur": [67, 73], "acetylcholin": 1, "achiev": 61, "across": [21, 26, 59, 61, 62, 64, 71], "act": [62, 64, 65, 66], "action": [57, 65, 66, 73], "actionmodel": 65, "activ": [13, 32, 57, 65, 73, 74], "actual": [57, 60, 63, 71, 73], "acycl": 60, "ad": [62, 63, 64, 68, 70, 71, 72], "adapt": [1, 58, 59, 64, 65, 73], "adapt_diag": [62, 64, 65, 66, 67, 69, 71, 73], "add": [50, 57, 59, 68, 71, 72, 73], "add_group": [66, 73], "add_nod": [2, 3, 4, 57, 60, 61, 63, 64, 68, 70, 71, 72, 73], "addit": [2, 3, 4, 5, 6, 60, 61, 64, 65], "addition": [67, 73], "additionn": [22, 23, 24, 25, 26], "adjac": 60, "adjacencylist": [17, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 45, 46, 49, 50, 51, 53, 60], "adjust": 73, "adopt": [62, 64], "advanc": 58, "advantag": [59, 60, 73], "aesara": [62, 64], "affect": [5, 6, 16, 64, 71, 74], "after": [0, 17, 20, 27, 28, 29, 38, 51, 61, 62, 66, 67, 71, 72, 73], "afterward": [2, 3, 4, 16], "again": [63, 64], "against": 64, "agent": [1, 57, 58, 60, 61, 62, 64, 65, 66, 67, 69, 71, 72, 73], "agnost": 1, "aim": 64, "air": 72, "aki": 74, "al": [0, 57, 59, 60, 62, 65, 66, 72, 73], "algorithm": [1, 57, 59, 62, 69, 72], "align": [59, 61, 65], "alin": 74, "all": [0, 1, 2, 5, 16, 21, 24, 50, 53, 54, 55, 62, 64, 65, 66, 67, 68, 69, 71, 72, 73], "alloc": 46, "allow": [1, 60, 62, 64, 65, 68, 71, 72], "alon": 72, "along": [5, 73], "alpha": [60, 61, 63, 65, 67, 68, 70, 71, 72, 73], "alpha_": [11, 63, 68], "alpha_1": 11, "alpha_2": 11, "alreadi": [55, 60, 65, 66], "also": [16, 20, 34, 36, 41, 55, 57, 59, 60, 62, 64, 65, 66, 68, 70, 71, 72, 73], "altern": [51, 54, 60, 64, 65, 71, 73], "alternative\u00e6li": 66, "alwai": [46, 63, 66, 67, 71, 72, 73], "among": 65, "amount": 64, "an": [1, 2, 3, 4, 5, 6, 7, 8, 14, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 32, 41, 47, 49, 51, 53, 54, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "analys": [1, 73], "analyt": 1, "andrew": 74, "ani": [0, 1, 28, 29, 38, 53, 55, 57, 58, 59, 61, 62, 63, 64, 65, 66, 68], "anim": 61, "ann": 74, "anna": 74, "anoth": [59, 63, 64, 68, 70, 72, 73], "another_custom_hgf": 60, "answer": 67, "anymor": [35, 59, 61], "anyth": [59, 63], "api": [57, 62, 63, 64, 65, 66, 67, 69, 71, 73], "apont": 57, "appar": 59, "appear": [60, 68], "append": [20, 59, 61, 66, 67, 71, 72, 73], "appli": [17, 51, 54, 58, 60, 61, 63, 65, 66, 67, 71, 72, 73], "applic": [1, 6, 58, 60, 61, 64, 65, 67], "apply_along_axi": 61, "approach": [59, 61, 62, 63, 66, 67], "appropri": 70, "approxim": [1, 29, 57, 59, 60, 72], "april": [64, 74], "ar": [0, 1, 2, 4, 5, 16, 17, 20, 27, 50, 51, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "ar1": [59, 71], "arang": [60, 61, 63, 65, 68, 71, 73], "arbitrari": [2, 60, 65, 68, 72], "arbitrarili": 57, "area": [20, 72], "arg": [7, 8, 27, 28, 29, 32, 33, 34, 37, 38, 39, 40, 41, 46], "argument": [2, 3, 4, 60, 62, 64, 65, 68], "arm": [58, 65, 66, 73], "around": [20, 21, 58, 59, 60, 64, 65, 73], "arrai": [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 22, 23, 27, 35, 36, 39, 42, 44, 47, 48, 51, 60, 61, 62, 63, 64, 65, 66, 67, 68, 71, 72, 73], "arrang": 72, "arriv": 59, "articl": [1, 74], "artifici": 68, "arviz": [2, 62, 64, 65, 66, 67, 69, 71, 73], "arxiv": [28, 29, 30, 31, 34, 35, 36, 38, 41, 42, 43, 57, 66, 67, 74], "as_tensor_vari": [63, 71, 73], "asarrai": [63, 71], "ask": [1, 64], "aspect": 63, "assert": [60, 62, 64], "assess": [46, 62, 64, 73], "assign": [51, 62, 63, 64, 65, 66, 67, 69, 71, 73], "associ": [2, 3, 4, 5, 6, 54, 57, 63, 65, 66, 67, 68, 71, 73, 74], "assum": [1, 28, 29, 32, 50, 59, 60, 62, 64, 65, 66, 67, 68, 70, 71, 72, 73], "assumpt": [70, 73], "astyp": [68, 71], "atmospher": 72, "attribut": [2, 3, 4, 16, 17, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 49, 50, 51, 57, 61, 63, 66, 67, 70, 71], "au": 68, "august": [64, 74], "author": [1, 68], "auto": [62, 63, 64, 65, 66, 67, 69, 71, 73], "autoconnect": [35, 59, 68], "autoconnection_strength": [68, 70], "autocorrel": 68, "autom": 72, "automat": [60, 62, 64, 66], "autoregress": 35, "avail": [0, 57, 72], "averag": [62, 72, 73], "avoid": 67, "awai": 61, "ax": [18, 20, 21, 59, 60, 61, 63, 67, 68, 70, 71, 73], "axi": [5, 59, 61, 66], "axvlin": 71, "az": [2, 62, 63, 64, 65, 66, 67, 69, 71, 73], "b": [30, 31, 33, 35, 57, 61, 68, 71], "back": [35, 59, 66], "backgroud": 20, "backslash": 1, "backward": 60, "bad": 66, "badg": 58, "bandit": [58, 65, 66, 73], "bank": 64, "base": [1, 48, 59, 62, 63, 64, 65, 66, 67, 69, 71, 73], "batch": [5, 71], "bay": 1, "bayesian": [1, 57, 58, 59, 62, 63, 64, 65, 73, 74], "becaus": [59, 60, 62, 63, 64, 68, 71, 72], "becom": 59, "been": [54, 59, 60, 61, 63, 64, 65, 66, 72, 73], "befor": [0, 20, 31, 54, 59, 60, 61, 64, 65, 66, 67, 71, 72], "beforehand": [30, 64, 73], "begin": [9, 13, 58, 59, 61, 65, 68, 73], "behav": [1, 62, 64, 68, 72], "behavior": [1, 73, 74], "behaviour": [5, 6, 57, 58, 59, 62, 64, 65, 66, 68, 69, 71], "behind": [58, 59, 72], "being": [59, 60, 62, 66, 68, 69, 73], "belief": [0, 6, 17, 20, 48, 51, 57, 58, 60, 61, 64, 65, 66, 67, 68, 72], "beliefs_propag": [17, 61, 71], "belong": [55, 61], "below": [0, 59, 62, 63, 65, 68, 71, 72, 73], "bernoulli": [9, 73], "best": [1, 47, 64, 68, 69, 73], "beta": [71, 73], "better": [29, 64, 65, 66, 67, 72, 73], "between": [0, 1, 5, 6, 11, 16, 30, 31, 33, 50, 51, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 71, 73], "beyond": 59, "bia": [66, 73, 74], "biased_random": 73, "biased_random_idata": 73, "biased_random_model": 73, "bibtex": 1, "big": 59, "binari": [2, 3, 4, 5, 6, 9, 10, 16, 21, 22, 23, 24, 27, 40, 52, 57, 58, 59, 61, 63, 64, 66, 67, 71], "binary_hgf": 73, "binary_input_upd": [27, 40], "binary_paramet": [52, 63], "binary_precis": [16, 21, 62], "binary_softmax": [65, 73], "binary_softmax_inverse_temperatur": [57, 66, 67], "binary_states_idx": 52, "binary_surpris": [65, 71], "bind": [57, 60], "binomi": [60, 65, 66, 67, 71], "biolog": 57, "bit": [64, 66], "bivariate_hgf": 61, "bla": [62, 63, 64, 65, 66, 67, 69, 71, 73], "blackjax": 65, "blank": 63, "block": [59, 62, 64, 71], "blog": 63, "blue": [65, 68], "bollmann": 57, "bool": [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 44, 47, 48, 51], "bool_": [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 22, 23, 44, 47, 48, 51], "boolean": [27, 51, 63, 64, 73], "boom": 74, "both": [1, 35, 57, 58, 59, 60, 63, 65, 66, 68, 70, 71, 72, 73], "bottom": [21, 57, 59, 72], "brain": 1, "branch": [46, 55, 57, 65, 71], "branch_list": 55, "break": 72, "briefli": 73, "broad": 63, "broadcast": [5, 66], "broader": 61, "brodersen": [1, 57, 74], "broken": 64, "brown": [71, 74], "bucklei": 74, "build": [58, 59, 62, 64, 68, 72], "built": [60, 62, 64, 72, 73], "burst": 60, "c": [1, 13, 28, 29, 30, 31, 32, 34, 35, 36, 38, 41, 42, 43, 57, 62, 63, 64, 65, 66, 67, 69, 71, 73, 74], "c44e52": [59, 61, 65, 67, 73], "ca": 68, "calcul": [66, 68], "call": [0, 27, 59, 61, 62, 64, 65, 66, 71, 72, 73], "callabl": [0, 2, 3, 4, 5, 6, 32, 50, 51, 54, 65], "cambridg": 74, "can": [0, 1, 2, 3, 4, 5, 6, 16, 30, 50, 51, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "candid": [44, 46, 47, 48, 71], "cannot": [16, 60, 61, 71], "capabl": [59, 68], "capitalis": 59, "captur": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "capture_output": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "cardiac": [58, 64], "carlo": [1, 62, 64, 73], "carri": 73, "carryov": 51, "case": [9, 13, 59, 61, 63, 64, 65, 66, 68, 69, 71, 73], "categor": [16, 52, 58, 61, 66, 71], "categori": [10, 61, 63, 71], "categorical_hgf": 63, "categorical_idata": 63, "categorical_surpris": 63, "caus": 29, "cbo9781139087759": 74, "cdot": 68, "cedric": 74, "cell": [59, 64, 72], "censor": 67, "censored_volatil": 67, "centr": [63, 64], "central": [59, 60, 64, 68, 73], "certain": [1, 59, 60], "chain": [1, 2, 62, 63, 64, 65, 66, 67, 69, 71, 72, 73], "cham": 74, "chanc": 71, "chance_conting": 71, "chang": [59, 60, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73], "channel": 69, "chaotic": 71, "check": [64, 66], "chf": [20, 21], "child": [0, 30, 31, 46, 53, 59, 60, 61, 68, 72], "children": [0, 16, 17, 20, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 45, 46, 49, 50, 53, 54, 55, 57, 59, 60, 68], "children_idx": 50, "children_input": 20, "choic": 60, "cholinerg": 74, "choos": [61, 64, 71], "chose": [23, 46, 61, 65, 71], "chosen": 71, "christoph": [1, 74], "chunck": 68, "ci": [20, 21], "circl": 65, "circumst": 29, "citi": 72, "clarifi": 66, "clariti": [64, 73], "class": [0, 2, 3, 4, 7, 8, 16, 17, 19, 20, 21, 32, 60, 61, 62, 63, 64, 65, 66, 71, 73], "classic": [64, 73], "cldtot": 72, "clear": [65, 72], "clearli": [60, 65], "clock": 68, "close": [65, 67], "closer": 68, "cloud": 72, "cloudi": 72, "cluster": [44, 45, 46, 47, 48, 49], "cm": 70, "cmap": [63, 67], "co": 61, "code": [17, 58, 59, 60, 61, 65, 66, 68, 72, 73], "coeffici": [59, 67], "cognit": [57, 69, 74], "colab": [58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "collect": [0, 63], "colleg": 11, "collin": [67, 74], "color": [20, 59, 60, 61, 63, 65, 67, 68, 70, 71, 72, 73], "column": 51, "column_stack": [61, 71], "com": [57, 72], "combin": [1, 35, 59, 60], "come": [1, 59, 61, 65, 66, 68, 72], "command": 73, "common": [60, 63], "commonli": [65, 68, 72], "commun": [13, 59], "compar": [1, 57, 64, 66, 73], "compare_df": 73, "comparison": [4, 58, 67], "compat": [2, 60, 62, 63, 64, 65, 66], "complet": [59, 72, 73], "complex": [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 22, 23, 44, 47, 48, 51, 58, 59, 60, 65, 72], "complexifi": 59, "compli": 65, "complic": 1, "compon": [59, 60, 64, 66, 71], "compromis": 60, "comput": [0, 1, 2, 3, 4, 5, 6, 10, 11, 13, 24, 25, 30, 31, 32, 35, 36, 39, 42, 43, 54, 57, 58, 59, 60, 61, 62, 63, 64, 65, 69, 71, 72, 73, 74], "computation": 1, "concaten": 71, "conceiv": 57, "concentr": 11, "concept": [59, 66, 72], "concern": 59, "concis": 72, "cond": 68, "condit": 73, "connect": [1, 6, 16, 59, 60, 65, 68, 72], "consequ": [59, 60], "consid": [54, 59, 60, 62, 64, 65, 68, 71, 72, 73], "consider": 1, "consist": [17, 51, 59, 60, 61, 63, 65, 67, 68, 71, 73], "constand": 68, "constant": [14, 59, 61, 68], "constitud": 59, "constitut": [68, 72], "constrained_layout": [59, 60, 61, 62, 64, 65, 66, 68, 69, 71, 73], "contain": [0, 1, 2, 3, 4, 16, 18, 22, 23, 35, 36, 46, 51, 57, 59, 60, 66, 69, 72], "context": [2, 4, 51, 61, 62, 64, 65, 71, 72, 73], "contextu": 1, "contin": 3, "conting": [60, 63, 65, 71, 73], "contingencylist": 60, "continu": [1, 2, 3, 4, 5, 6, 16, 20, 21, 25, 38, 57, 58, 59, 61, 62, 63, 65, 66, 69, 70, 71, 72, 73], "continuous_input_upd": [27, 40], "continuous_node_prediction_error": [42, 43], "continuous_node_value_prediction_error": [30, 31, 41, 43], "continuous_node_volatility_prediction_error": [30, 41, 42], "continuous_precis": 16, "contrari": 60, "control": [1, 59, 60, 66, 72, 73], "conveni": [59, 65], "converg": [62, 64, 65, 66, 67, 69, 71, 73], "convert": [20, 21, 59, 62, 63, 69, 71, 73], "core": [2, 17, 57, 60, 62, 64, 65, 66, 67, 69, 71, 73], "correct": [61, 74], "correctli": [19, 67], "correl": [0, 18, 67], "correspond": [16, 20, 21, 61, 62, 65, 66, 67, 68, 71, 72], "cost": 71, "could": [24, 25, 26, 60, 63, 64, 65, 68, 71, 73], "count": [13, 61, 66], "counterpart": [60, 62], "coupl": [0, 1, 5, 6, 16, 20, 27, 30, 31, 34, 35, 36, 40, 41, 50, 54, 57, 58, 62, 70, 71, 73], "coupling_fn": [50, 60, 68], "coupling_strength": 50, "cours": [58, 72], "covari": 61, "cover": [59, 72, 73], "cpc": 58, "cpython": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "creat": [0, 2, 3, 4, 16, 20, 21, 45, 46, 57, 58, 61, 66, 67, 68, 69, 71, 72, 73], "create_belief_propagation_fn": 71, "creation": [60, 65, 72, 73], "crisi": 64, "critic": [1, 60, 65], "cross": [4, 66, 73, 74], "crucial": 66, "csv": 72, "cumsum": [59, 68, 72], "currenc": 64, "current": [0, 1, 33, 50, 57, 59, 60, 61, 65, 72, 74], "current_belief": 73, "curv": 20, "custom": [16, 58, 62, 63, 66, 71, 72, 73], "custom_op": [63, 71], "customdist": [66, 73], "customis": 58, "customop": [63, 71], "d": [1, 11, 57, 61, 74], "dai": 72, "dark": 72, "dash": 59, "data": [0, 1, 2, 3, 4, 5, 6, 20, 21, 24, 25, 26, 51, 56, 57, 59, 61, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74], "data2": 61, "databas": 72, "datafram": 56, "dataset": [65, 69, 72, 73], "daunizeau": [1, 57, 74], "de": 74, "deadlock": 73, "deal": [1, 71], "debug": 72, "decid": [59, 64, 65, 73], "decis": [1, 6, 22, 23, 57, 62, 63, 66, 67, 73], "declar": [60, 66, 68], "decreas": 71, "dedic": 64, "deeper": 57, "def": [60, 61, 63, 65, 66, 68, 71, 73], "default": [2, 3, 4, 5, 6, 16, 20, 21, 24, 25, 31, 51, 53, 54, 57, 59, 60, 61, 62, 64, 65, 66, 67, 68, 69, 71, 73], "defin": [12, 16, 17, 20, 57, 59, 60, 61, 62, 63, 64, 65, 66, 68, 72, 73], "definit": [54, 65], "degre": [61, 62, 64, 68], "deliv": 72, "delta": [61, 68], "delta_j": [30, 31, 42, 43], "demonstr": [1, 57, 61, 62, 65, 67, 69, 70], "denmark": 68, "denot": 59, "densiti": [0, 2, 11, 12, 13, 62, 64, 66, 70, 72], "depend": [5, 30, 33, 59, 62, 64, 65, 66, 68, 72], "depict": [21, 59, 73], "deriv": [1, 57, 59, 61, 68], "describ": [0, 57, 58, 59, 60, 61, 62, 65, 72], "descript": [1, 59, 72], "design": [58, 60, 63, 65, 66, 71, 72, 73], "despin": [59, 60, 61, 63, 66, 67, 68, 70, 71, 72, 73], "detail": [59, 66, 67, 71, 72], "detect": 69, "determin": 1, "determinist": [1, 66, 73], "develop": [57, 60, 73], "deviat": [20, 21, 44, 47, 48, 66, 69], "df": [61, 62, 64], "diagnos": 73, "diagnost": [62, 64, 65, 66, 67, 69, 71, 73], "dict": [16, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 49, 50, 51, 52], "dictionari": [16, 51, 57, 60, 62, 64, 72], "did": [64, 66], "differ": [1, 2, 3, 4, 5, 16, 28, 29, 38, 50, 59, 60, 61, 62, 64, 65, 66, 68, 71, 72], "differenti": [61, 62, 64, 68], "difficult": [1, 61, 72], "diffus": [57, 60], "dimens": [3, 5, 6, 59, 60, 66], "dimension": [61, 71], "dir": 11, "direct": [59, 60], "directli": [27, 60, 62, 64, 65, 66, 68, 71], "dirichlet": [11, 27, 61, 63], "dirichlet_nod": 37, "disambigu": 60, "disappear": 68, "discrep": [62, 64], "discret": [1, 63, 73], "discuss": [1, 59, 71, 73], "displai": [61, 66, 68, 73], "dissoci": [0, 60], "dist": 67, "dist_mean": 70, "dist_std": 70, "distanc": 61, "distant": 61, "distinguish": [66, 72], "distribut": [7, 8, 9, 10, 11, 13, 14, 27, 32, 48, 57, 58, 59, 60, 62, 63, 64, 65, 67, 69, 72, 73], "dive": [59, 60], "diverg": [0, 11, 63, 66, 67, 71, 73], "dk": 68, "do": [57, 60, 62, 63, 64, 65, 66, 68, 72, 73], "documatt": 60, "document": [57, 63, 72, 73], "doe": [61, 63, 65, 72, 73], "doesn": 68, "doi": [1, 13, 28, 29, 30, 31, 32, 34, 35, 36, 38, 41, 42, 43, 57, 74], "dollar": 64, "domain": [64, 73], "don": [59, 72], "done": 60, "dopamin": 1, "dopaminerg": 74, "dot": 64, "down": [0, 57, 59, 61, 72], "download": [57, 69, 72], "drag": 64, "drai": 62, "draw": [1, 20, 21, 62, 64, 65, 66, 67, 69, 71, 73], "drift": [5, 6, 16, 35, 60, 68, 72], "dse": 73, "dtype": [9, 14, 48, 61, 62, 63, 64, 65, 71, 72, 73], "due": 60, "duplic": [66, 67], "dure": [0, 17, 36, 48, 57, 60, 64, 66, 67, 68, 74], "dx": 74, "dynam": [17, 57, 58, 65, 68, 69, 72, 73], "e": [1, 2, 5, 6, 16, 20, 23, 28, 29, 30, 31, 33, 34, 35, 36, 38, 41, 42, 43, 50, 51, 55, 57, 58, 59, 60, 62, 64, 65, 66, 67, 69, 71, 72, 73, 74], "e49547": 74, "each": [2, 3, 4, 17, 20, 21, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 44, 45, 46, 48, 49, 51, 53, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73], "easili": [60, 63, 65, 72, 73], "ecg": 69, "ecg_peak": 69, "ecosystem": 57, "edg": [17, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 45, 46, 49, 50, 51, 53, 54, 55, 57, 61, 71], "edgecolor": [60, 61, 65, 67, 71, 73], "editor": 74, "ef": 61, "effect": [30, 31, 36, 64, 66, 67, 74], "effective_precis": 36, "effici": [1, 59], "ehgf": [29, 30, 54], "either": [46, 60, 65, 66, 68, 72], "ekaterina": [1, 74], "elaps": [31, 59, 71], "electrocardiographi": 69, "electron": 1, "element": 68, "elicit": 14, "elif": 74, "ellicit": 9, "elpd": 66, "elpd_diff": 73, "elpd_loo": [66, 73], "els": [67, 71], "emb": [62, 64], "embed": [0, 58, 62, 64, 66], "empir": 1, "empti": 17, "en": [7, 8], "enabl": 1, "encapsul": [63, 71], "encod": [1, 57, 59, 63, 65, 67, 72, 73], "end": [9, 13, 59, 61, 65, 68], "endogen": 36, "energi": [1, 74], "enlarg": 61, "enno": 74, "enough": 57, "ensur": [54, 62, 64, 66, 67, 71, 72], "enter": 59, "entir": 60, "entri": 16, "enumer": [59, 61, 73], "environ": [1, 59, 60, 65, 66, 72, 73], "environment": [1, 60, 67], "eq": 11, "equal": [1, 3, 29, 51, 68], "equat": [1, 11, 59, 62, 63, 64, 65, 68, 71, 72], "equival": [61, 65], "erdem": 74, "eric": 74, "error": [1, 30, 31, 39, 40, 41, 42, 43, 46, 51, 54, 57, 60, 61, 64, 68, 69, 72, 73, 74], "especi": [59, 66, 71, 73], "ess": [66, 67], "ess_bulk": [2, 65, 73], "ess_tail": [2, 65, 73], "estim": [0, 1, 2, 20, 21, 58, 59, 61, 65, 66, 67, 71, 72, 73], "et": [0, 57, 59, 60, 62, 65, 66, 72, 73], "eta": 61, "eta0": [10, 16, 21, 62], "eta1": [10, 16, 21, 62], "etc": 60, "euro": 64, "european": 74, "eval": 66, "evalu": [13, 59, 63, 65, 71, 74], "even": [1, 59, 68], "event": [1, 64, 70], "everi": [58, 59, 60, 63, 66, 71, 72, 73], "everyth": 65, "evid": [6, 61, 73], "evidenc": 61, "evolut": [59, 62, 64, 65, 72, 73], "evolv": [58, 59, 71], "exact": [59, 65, 72], "exactli": [59, 63, 65, 66], "exampl": [1, 2, 9, 14, 20, 21, 57, 58, 59, 60, 62, 63, 64, 65, 66, 68, 72, 73], "excel": 65, "except": [30, 31, 62, 64, 65, 73], "exchang": 64, "exclud": [55, 71], "exclus": 55, "execut": [0, 60], "exert": [59, 60], "exhibit": [62, 64], "exist": [44, 46, 47, 48, 49, 60], "exogen": 36, "exot": 63, "exp": [36, 59, 61, 66, 71, 72], "expect": [0, 5, 6, 9, 10, 14, 16, 20, 21, 23, 27, 29, 30, 31, 33, 34, 35, 36, 47, 59, 60, 61, 62, 64, 65, 66, 68, 69, 70, 71, 72, 73], "expected_mean": [9, 10, 14, 35, 44, 47, 48, 59, 60, 65, 66, 67, 70, 71, 73], "expected_precis": [10, 14, 36, 60, 70], "expected_sigma": [44, 47, 48], "experi": [65, 73], "experiment": [1, 58, 65, 66, 67, 71, 73], "explain": [66, 72, 73], "explan": 73, "explicit": 65, "explicitli": [1, 60, 66, 69], "explor": 73, "exponenti": [7, 8, 13, 58, 59, 61, 72], "exponential_famili": [7, 8], "export": [56, 65], "express": [1, 60, 61, 63, 64, 68, 71, 72], "extend": [60, 61, 62, 64, 66], "extens": [1, 58, 73], "extract": [62, 64, 69, 70, 73], "extrem": [1, 64, 71], "f": [35, 57, 59, 60, 68, 72], "f_1": 60, "f_i": 60, "f_n": 60, "f_x": 61, "facilit": [57, 60], "fact": [68, 71], "fail": 29, "fairli": 67, "fall": 64, "fals": [20, 21, 68, 73], "famili": [7, 8, 13, 32, 58, 59, 61, 72], "familiar": 65, "far": [60, 64, 65, 72, 73], "fashion": 1, "fast": [68, 71, 73], "feasibl": 57, "featur": [60, 66, 69, 72], "februari": 74, "fed": 66, "feed": [20, 21, 71], "fewer": 70, "field": [1, 60, 65, 73], "fig": [61, 63, 67, 68, 70], "figsiz": [20, 21, 59, 60, 61, 63, 65, 67, 68, 70, 71, 72, 73], "figur": [20, 21, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 71, 72, 73], "fil": 11, "file": 1, "fill": 67, "fill_between": [63, 70, 71], "filter": [0, 1, 5, 6, 13, 16, 28, 29, 30, 31, 32, 34, 35, 36, 38, 41, 42, 43, 60, 65, 66, 67, 70, 71, 73, 74], "final": [1, 72, 73], "find": [47, 57, 58, 60, 64, 65, 72], "finit": [10, 38], "fir": 69, "firebrick": 71, "first": [0, 1, 3, 5, 6, 10, 16, 25, 28, 29, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 71, 72, 73], "first_level_binary_surpris": [62, 73], "first_level_gaussian_surpris": [64, 69, 72], "firt": 23, "fit": [2, 3, 4, 5, 6, 24, 25, 26, 65, 66, 67, 68, 71, 72], "fix": [2, 32, 59, 65, 66, 68, 72, 73], "flatten": 66, "flexibl": [1, 57, 63, 72, 73], "flexibli": 61, "flight": 64, "float": [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 22, 23, 24, 25, 26, 30, 31, 44, 47, 48, 50, 51, 66, 71], "float32": [9, 14, 62, 64, 65, 72, 73], "float64": [63, 71], "floor": 64, "fluctuat": 59, "flux": 72, "fn": 73, "fnhum": [1, 57, 74], "focu": 57, "focus": [60, 71], "folder": 57, "follow": [1, 11, 54, 57, 59, 60, 61, 62, 63, 64, 68, 71, 72, 73], "forc": 71, "fork": [62, 73], "form": [1, 59, 60, 61, 66, 68, 72], "formal": 59, "format": 1, "formul": 1, "forward": [57, 59, 62, 64, 66, 67, 71, 72, 73], "found": [1, 59, 60, 62, 64, 72], "foundat": [1, 57, 72, 74], "four": [1, 60, 71, 73], "fpsyt": 57, "frac": [11, 13, 14, 20, 23, 30, 31, 32, 33, 35, 36, 43, 59, 61, 63, 66, 71], "fraction": 72, "frame": [56, 59, 61, 69, 72], "framework": [1, 57, 58, 59, 60, 61], "franc": 64, "free": [1, 57, 62, 65, 67], "freedom": 61, "friston": [1, 57, 74], "from": [0, 1, 2, 5, 6, 9, 11, 13, 14, 20, 21, 22, 23, 30, 31, 40, 51, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 68, 69, 70, 72, 73], "frontier": [1, 57, 74], "frontiersin": [1, 74], "fry": 48, "fr\u00e4ssle": 57, "full": [1, 6, 57, 61], "fulli": [59, 72], "func": 61, "funcanim": 61, "function": [1, 2, 3, 4, 5, 6, 15, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 50, 51, 54, 55, 57, 58, 59, 61, 62, 63, 64, 66, 67, 69, 71, 72, 73], "fundament": 59, "further": [59, 60, 66, 70, 71], "fusion": 65, "futur": [0, 59, 74], "g": [1, 5, 6, 30, 31, 57, 59, 65, 67, 68, 73], "g_": [61, 68], "gabri": 74, "gamma": [11, 13, 61, 63], "gamma_a": 36, "gamma_j": [30, 31], "gaussian": [0, 1, 2, 5, 6, 12, 13, 14, 16, 20, 25, 26, 28, 29, 30, 31, 32, 34, 35, 36, 38, 41, 42, 43, 60, 65, 66, 67, 68, 69, 71, 73, 74], "gaussian_predictive_distribut": 61, "gcc": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "ge": 74, "gelman": 74, "gener": [1, 28, 29, 30, 31, 34, 35, 36, 38, 41, 42, 43, 52, 54, 58, 60, 61, 62, 63, 65, 66, 67, 68, 71, 73, 74], "generalis": [57, 58, 63, 65], "generalised_filt": 61, "get": [33, 60, 61, 64, 65, 66, 67, 70, 71, 72, 73], "get_legend_handles_label": [59, 73], "get_network": [61, 71], "get_update_sequ": 60, "ghgf": [57, 72, 73], "gif": 61, "git": 57, "github": [11, 57], "githubusercont": 72, "give": [62, 64, 65, 68, 71, 73], "given": [0, 6, 9, 11, 14, 20, 23, 24, 25, 26, 27, 30, 31, 32, 35, 36, 38, 42, 43, 47, 48, 55, 57, 59, 60, 61, 62, 63, 64, 65, 67, 68, 71, 72, 73], "global": [1, 64], "go": [59, 62, 64, 65, 66, 71, 72], "goe": 63, "good": [65, 66, 67, 71], "googl": [58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "grad": [63, 71], "gradient": [3, 63, 71], "grai": 71, "grandpar": 60, "graph": [51, 58, 60, 63, 71], "graphic": 57, "graphviz": [19, 62, 64], "greater": 60, "greatli": 61, "greec": 64, "green": [67, 68], "grei": [20, 59, 61, 64, 67, 70], "grid": [59, 61, 67, 68, 70, 72, 73], "ground": 72, "group": [58, 59, 67, 73], "grow": 63, "grw": [59, 72], "grw_1": 72, "grw_2": 72, "guid": 59, "gz": [63, 71], "h": [1, 28, 29, 30, 31, 34, 35, 36, 38, 41, 42, 43, 57, 59, 61, 73, 74], "ha": [1, 17, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 45, 46, 49, 50, 53, 59, 60, 61, 62, 63, 64, 65, 66, 71, 72, 73], "had": [65, 66, 73], "halfnorm": 66, "hamiltonian": [62, 64, 73], "hand": [31, 58, 65], "handi": 68, "handl": [58, 59, 61, 63, 65, 66, 73], "happen": [59, 65, 68, 72], "harrison": [57, 74], "hat": [9, 14, 20, 23, 30, 31, 33, 35, 36, 42, 43, 59, 65, 66, 68], "have": [1, 27, 40, 54, 59, 60, 62, 63, 64, 65, 66, 68, 71, 72, 73], "hdi_3": [2, 65, 73], "hdi_97": [2, 65, 73], "he": 65, "head": [65, 72], "heart": [0, 59, 60], "heartbeat": 69, "heatmap": 18, "heavi": 60, "hedvig": 74, "height": [20, 21, 72], "heinzl": 57, "help": [64, 66, 72], "her": 65, "here": [1, 2, 22, 23, 24, 25, 26, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 71, 72, 73], "hgf": [0, 1, 2, 3, 4, 5, 6, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 52, 57, 58, 59, 60, 61, 63, 66, 67, 68, 69, 70, 71, 72], "hgf_loglik": [62, 64, 65, 67, 69, 73], "hgf_logp_op": [2, 62, 64, 65, 66, 67, 69, 73], "hgf_logp_op_pointwis": [66, 73], "hgf_mcmc": [62, 64], "hgfdistribut": [62, 63, 64, 65, 66, 67, 69, 73], "hgfpointwis": [66, 73], "hhgf_loglik": 2, "hidden": [1, 59, 71, 72, 73], "hide": 71, "hierarch": [0, 1, 5, 6, 13, 16, 28, 29, 30, 31, 32, 34, 35, 36, 38, 41, 42, 43, 60, 65, 67, 69, 70, 71, 73, 74], "hierarchi": [0, 1, 2, 3, 4, 16, 57, 59, 60, 62, 64, 72], "hierarchicalgaussianfilt": 65, "high": [70, 71], "high_nois": 68, "high_prob": 71, "higher": [59, 62, 64, 66, 67, 68, 72, 73], "highest": 1, "highli": [1, 64, 73], "hist": 71, "hold": [59, 65], "home": 1, "hood": 61, "hostedtoolcach": 73, "hour": [58, 72], "hourli": [72, 74], "how": [58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "howev": [1, 59, 60, 61, 63, 64, 65, 66, 68, 69, 73], "html": 11, "http": [1, 7, 8, 11, 28, 29, 30, 31, 32, 34, 35, 36, 38, 41, 42, 43, 57, 66, 67, 72, 74], "human": [1, 57, 74], "hyper": 66, "hyperparamet": [13, 32, 61], "hyperprior": [66, 67], "i": [0, 1, 2, 3, 4, 5, 6, 9, 11, 13, 14, 16, 17, 20, 21, 23, 24, 25, 27, 28, 29, 30, 31, 32, 34, 35, 36, 40, 41, 42, 43, 46, 50, 51, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74], "iain": 74, "idata": [2, 69, 71, 73], "idata_kwarg": 73, "idea": [59, 60, 64, 65, 67], "ident": 68, "identifi": 67, "idx": [63, 67], "iglesia": [1, 57, 62, 65, 73, 74], "ignor": [5, 6], "ii": [1, 58], "iii": 1, "ilabcod": [57, 72], "illustr": [1, 59, 60, 63, 64, 65, 68, 69, 71, 72, 73], "imagin": 68, "impact": 71, "implement": [0, 16, 32, 35, 57, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "impli": [27, 52, 59, 61, 63, 64, 71, 72], "implicitli": 65, "import": [2, 9, 14, 20, 21, 57, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "import_dataset1": 69, "importantli": [59, 60], "imposs": 54, "improv": [54, 73], "imshow": 63, "includ": [5, 6, 16, 59, 60, 61, 62, 64, 65, 66, 68, 69, 73], "incom": [59, 72], "incompat": 73, "incorpor": [16, 34, 41, 61, 65, 66], "incorrect": 68, "increas": [61, 62, 64, 66, 67, 68, 71, 72, 73], "increment": [51, 59], "inde": 66, "independ": [58, 61, 67], "index": [17, 20, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 45, 46, 49, 50, 51, 52, 53, 55, 57, 60], "indic": [50, 59, 64, 65, 66, 67, 68, 69, 71, 73], "individu": [1, 57, 67, 74], "inf": [5, 16, 21, 24, 25, 26, 62, 63, 66, 71], "infer": [0, 1, 5, 6, 13, 32, 51, 57, 58, 59, 60, 64, 65, 70, 73, 74], "inferred_paramet": 67, "infin": 72, "infinit": [63, 71], "influenc": [0, 1, 35, 59, 60, 61, 62, 64, 66, 68, 71, 72, 73], "inform": [1, 13, 17, 51, 60, 61, 62, 63, 64, 66, 68, 71, 72, 73], "infti": 64, "ingredi": 65, "inherit": [5, 6, 57, 59, 72], "initi": [2, 3, 4, 16, 17, 60, 61, 62, 64, 65, 66, 67, 69, 71, 72, 73], "initial_belief": 73, "initial_mean": [16, 20, 21, 62, 64, 65, 66, 67, 69, 73], "initial_precis": [16, 20, 21, 62, 64, 65, 69, 73], "initv": 67, "inplac": 63, "input": [0, 1, 2, 3, 4, 5, 6, 16, 17, 20, 21, 22, 23, 24, 25, 26, 27, 30, 31, 37, 38, 40, 41, 45, 46, 47, 49, 51, 53, 55, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "input_convers": 69, "input_data": [2, 3, 4, 5, 6, 20, 21, 57, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "input_idx": [51, 61, 71], "input_nodes_idx": 37, "input_precis": [5, 6], "input_typ": 69, "insert": 59, "insid": [65, 68, 71, 73], "inspir": [57, 59, 60], "instal": [19, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "instanc": [0, 6, 18, 19, 20, 21, 22, 23, 24, 25, 26, 52, 54, 57, 60, 62, 64, 65, 66, 72], "instanti": [63, 71], "instead": [2, 3, 4, 30, 31, 64, 71, 72, 73], "instruct": 60, "instrument": 68, "int": [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 61, 63, 68, 71], "int32": 73, "integ": [2, 3, 4, 60], "integr": [1, 61, 73], "inter": 1, "interact": [58, 59, 73], "intercept": 59, "interest": [59, 66, 67, 71, 72], "interestingli": 61, "interfac": [57, 65], "interleav": [0, 61, 71], "intern": [32, 58, 63, 65, 66, 68, 72, 74], "interocept": 58, "interpol": 63, "interpret": 1, "intersect": 58, "interv": [33, 61, 68, 69], "interven": 64, "intervent": 64, "introduc": [1, 58, 59, 63, 72, 73], "introduct": [57, 58], "introductori": 72, "intuit": [1, 58, 65], "invers": [1, 5, 6, 23, 57, 58, 59, 65, 66, 67, 71], "inverse_temperatur": [66, 67], "invert": [1, 72, 73], "involv": 1, "io": [11, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "ion": 11, "ipykernel_3226": 64, "ipython": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "irrespect": 48, "isbn": 1, "isclos": [62, 64], "isnan": [63, 71], "issn": 1, "item": [2, 3, 4], "iter": [59, 62, 64, 65, 66, 67, 69, 70, 71, 73], "its": [1, 33, 35, 46, 50, 57, 58, 59, 60, 62, 64, 65, 66, 68, 69, 72, 73], "itself": [59, 60, 62, 68, 72], "iv": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "j": [1, 30, 31, 36, 43, 57, 74], "jacobian": [63, 71], "jan": 74, "jax": [0, 5, 17, 21, 22, 23, 48, 51, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "jaxlib": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "jean": [1, 74], "jit": [57, 63, 71], "jitted_custom_op_jax": [63, 71], "jitted_vjp_custom_op_jax": [63, 71], "jitter": [62, 64, 65, 66, 67, 69, 71, 73], "jl": 65, "jnp": [16, 21, 24, 25, 26, 61, 62, 63, 64, 65, 67, 68, 71], "job": [62, 64, 65, 66, 67, 69, 71, 73], "joint": [60, 61], "jonah": 74, "journal": [1, 74], "julia": [57, 60, 65], "jump": 59, "just": [65, 66, 67, 68, 72, 73], "k": [1, 11, 22, 23, 28, 29, 30, 31, 33, 34, 35, 36, 38, 41, 42, 43, 57, 59, 60, 61, 63, 65, 66, 67, 68, 71, 72, 73], "kai": [1, 74], "kalman": [59, 65], "kappa": 59, "kappa_1": 59, "kappa_j": [30, 31, 36], "karl": [1, 74], "kasper": [57, 74], "kdeplot": 67, "keep": [68, 72], "kei": [1, 48, 59, 60, 73], "keyword": [1, 60, 65], "kg": 72, "kind": [30, 50, 57, 59, 60, 61, 63, 64, 66, 68, 71, 72, 73], "kl": [11, 63], "kl_diverg": 63, "klaa": [1, 74], "knew": [62, 64], "know": [59, 65, 68, 73], "knowledg": 72, "known": 68, "kora": 68, "kullback": [11, 63], "kwarg": [7, 8], "l": [13, 28, 29, 30, 31, 32, 34, 35, 36, 38, 41, 42, 43, 57, 59, 73, 74], "l_a": 71, "l_b": 71, "label": [59, 60, 61, 63, 65, 66, 70, 71, 72, 73], "laew": 1, "lambda": [59, 66, 68], "lambda_1": 59, "lambda_2": [59, 68], "lambda_2x_2": 68, "lambda_3": [59, 68], "lambda_a": [35, 59, 68], "land": 72, "lanillo": 74, "lar": 74, "larg": [60, 61, 72], "larger": [60, 61, 66, 67, 72], "last": [51, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "latent": 59, "later": [36, 57, 59, 66, 73], "latter": 71, "lax": [17, 51, 68, 71], "layer": [5, 59, 64, 72, 73], "layout": 64, "lead": [59, 64, 73], "learn": [1, 57, 59, 63, 67, 68, 70, 72, 74], "learning_r": 73, "learnt": 68, "least": [0, 62, 64, 65, 66, 67, 69, 71, 73], "leav": [0, 51, 59, 66, 72, 73, 74], "lee": [66, 74], "left": [11, 13, 30, 31, 35, 36, 43, 59, 61, 63, 65, 72], "leftarrow": [32, 61], "legend": [59, 60, 61, 65, 66, 68, 70, 71, 72, 73], "legrand": [28, 29, 30, 31, 34, 35, 36, 38, 41, 42, 43, 57, 68, 74], "leibler": [11, 63], "len": [63, 65, 71, 73], "length": [2, 3, 4, 17, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 45, 46, 49, 51, 53, 65, 66], "leq": 68, "less": [16, 60, 65], "let": [59, 60, 61, 63, 65, 68, 72, 73], "level": [0, 1, 2, 5, 6, 16, 20, 21, 23, 25, 57, 58, 59, 60, 61, 65, 67, 68, 69, 70, 71, 72], "leverag": 66, "li": 59, "lib": 73, "librari": [0, 60, 62, 64, 73], "like": [48, 62, 63, 64, 65, 66, 68, 72, 73], "likelihood": [44, 46, 64, 65, 66, 73], "lilian": 74, "limit": [1, 29, 59, 61, 65, 68, 71, 73], "line": [59, 60, 64, 65, 68], "linear": [30, 31, 50, 58], "linear_hgf": 68, "linearli": 61, "linestyl": [59, 60, 61, 65, 67, 68, 70, 73], "linewidth": [59, 61, 63, 72, 73], "link": [1, 50, 57, 60, 66], "linspac": [66, 67, 70], "list": [2, 3, 4, 5, 17, 20, 21, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 45, 46, 49, 50, 51, 52, 53, 55, 57, 60, 63, 65, 66, 71, 72], "lit": 1, "ln": [11, 63], "load": [57, 72, 73], "load_data": [2, 20, 21, 57, 62, 64, 65, 66, 67, 72, 73], "load_ext": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "loc": [59, 61, 63, 70, 71, 72], "log": [2, 4, 5, 6, 9, 14, 20, 57, 62, 64, 65, 66, 71, 72, 73], "log_likelihoo": 73, "log_likelihood": [66, 73], "log_prob": 5, "logist": 15, "logit": [62, 73], "lognorm": 66, "logp": [5, 66, 73], "logp_fn": 71, "logp_pointwis": [66, 73], "lomakina": [1, 57, 74], "london": 11, "long": [68, 74], "loo": 66, "loo_hgf": 66, "look": [62, 63, 64, 68, 73], "loop": [59, 71, 72, 73], "loos": 71, "loss": 71, "loss_arm1": 71, "loss_arm2": 71, "lot": 62, "low": [70, 71], "low_nois": 68, "low_prob": 71, "lower": [59, 60, 61, 62, 63, 67], "lower_bound": 15, "lowest": 57, "luckili": 66, "m": [57, 59, 60], "m2": 72, "m3": 72, "m_1": 59, "m_a": 35, "made": [16, 60, 65, 66, 71, 72, 73], "magic": 72, "mai": [1, 63, 74], "main": [0, 19, 20, 21, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "major": 1, "make": [1, 57, 59, 60, 62, 63, 65, 66, 70, 71, 72, 73], "make_nod": [63, 71], "manag": 68, "mani": [1, 2, 59, 60, 63, 65, 66], "manipul": [0, 17, 57, 58, 62, 65, 66, 71, 72], "manka": 74, "manual": [60, 61, 66, 68, 73], "many_binary_children_hgf": 60, "many_value_children_hgf": 60, "many_value_parents_hgf": 60, "many_volatility_children_hgf": 60, "many_volatility_parents_hgf": 60, "map": 66, "marker": 68, "market": 64, "markov": 1, "mask": [51, 61, 71], "master": 57, "match": [5, 60, 68, 73], "math": [2, 32, 35, 61, 67, 71], "mathcal": [2, 13, 59, 60, 61, 65, 66, 72], "mathemat": [14, 59, 72], "mathi": [1, 13, 28, 29, 30, 31, 32, 34, 35, 36, 38, 41, 42, 43, 57, 59, 60, 61, 72, 74], "matlab": [57, 59, 64], "matplotlib": [18, 20, 21, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "matrix": [66, 71], "matter": [65, 73], "maxim": 64, "mayb": 66, "mcmc": [2, 58, 73], "mcse_mean": [2, 65, 73], "mcse_sd": [2, 65, 73], "mead": 1, "mean": [1, 2, 5, 6, 9, 12, 14, 16, 20, 21, 28, 29, 30, 31, 33, 34, 35, 44, 47, 48, 54, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73], "mean_1": [2, 5, 6, 64], "mean_2": [5, 6], "mean_3": [5, 6], "mean_hgf": 70, "mean_mu_g0": 48, "mean_precision_hgf": 70, "measur": [63, 65, 67, 68, 69, 72], "mechan": 1, "media": 57, "mention": 59, "mere": 65, "messag": 60, "meta": [60, 64], "meter": 72, "method": [1, 2, 3, 4, 7, 8, 16, 17, 24, 25, 32, 60, 62, 64, 65, 66, 69, 72], "metric": 65, "michael": 74, "might": [2, 3, 4, 16, 65, 73], "min": 63, "mind": 73, "minim": [1, 60, 62, 64, 72, 73], "minimis": 69, "miss": [68, 71], "missing_inputs_u": 71, "mix": 72, "mm": 72, "modal": 69, "model": [1, 2, 3, 4, 5, 6, 18, 20, 21, 22, 23, 24, 25, 26, 29, 52, 54, 58, 60, 61, 67, 68, 70, 71, 74], "model_to_graphviz": [62, 64, 66, 69, 73], "model_typ": [2, 3, 4, 16, 20, 21, 24, 60, 62, 64, 65, 66, 67, 69, 73], "modifi": 65, "modul": [0, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "modular": [57, 59, 60, 73], "mont": [1, 62, 64, 73], "montemagno": 68, "month": 72, "more": [58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 72, 73], "moreov": 66, "most": [16, 59, 60, 61, 62, 63, 64, 65, 71, 72], "mostli": 71, "move": [59, 66, 73], "mu": [9, 14, 23, 30, 31, 33, 35, 42, 59, 62, 64, 65, 66, 72], "mu_1": [59, 64, 68, 72], "mu_2": [59, 68], "mu_3": 68, "mu_a": [35, 36, 68], "mu_b": [30, 31, 68], "mu_i": 59, "mu_j": [30, 31, 42], "mu_temperatur": 66, "mu_volatil": 66, "much": [60, 61, 64, 72, 73], "multi": [58, 66, 67], "multiarm": 58, "multilevel": [58, 66, 73], "multinomi": 63, "multipl": [1, 5, 20, 50, 60, 63, 65, 66, 68, 69, 71], "multipleloc": 61, "multipli": 60, "multiprocess": 73, "multithread": 73, "multivari": [7, 61], "multivariatenorm": 61, "must": [50, 68], "m\u00f8ller": [28, 29, 30, 31, 34, 35, 36, 38, 41, 42, 43, 57, 74], "m\u00fcller": 57, "n": [2, 4, 28, 29, 30, 31, 34, 35, 36, 38, 41, 42, 43, 51, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "n1662": 1, "n_": [30, 31, 36], "n_1": 60, "n_categori": 63, "n_j": 60, "n_level": [2, 3, 4, 5, 6, 16, 20, 21, 60, 62, 64, 65, 66, 67, 69, 73], "n_node": [60, 61, 68, 71], "n_sampl": [47, 48], "name": 59, "nan": [2, 3, 4, 5, 73], "nativ": [62, 64, 66, 68], "natur": [1, 59, 61], "ncol": [59, 67], "ndarrai": [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 22, 23, 44, 47, 48, 51], "necessarili": 1, "need": [27, 28, 29, 38, 40, 60, 61, 63, 65, 66, 67, 68, 71, 72, 73], "neg": [5, 6, 20, 29, 62, 64, 65, 68, 71, 72], "nelder": 1, "nest": [63, 65, 71, 72], "network": [0, 5, 6, 18, 19, 20, 21, 25, 26, 35, 36, 37, 45, 46, 49, 50, 51, 52, 53, 54, 55, 56, 58, 61, 62, 64, 65, 67, 68, 69, 70, 71, 72, 73], "neural": [0, 17, 37, 45, 46, 49, 50, 54, 58, 59, 60, 68, 73], "neuroimag": 74, "neuromodel": 57, "neuromodul": 1, "neuromodulatori": 1, "neurosci": [1, 57, 62, 64, 66, 74], "new": [0, 20, 21, 30, 31, 33, 35, 36, 44, 45, 46, 47, 48, 51, 57, 59, 60, 61, 62, 63, 64, 66, 67, 68, 71, 72, 73], "new_attribut": 60, "new_belief": 73, "new_input_precision_1": 60, "new_input_precision_2": 60, "new_mean": 61, "new_mu": 48, "new_observ": 73, "new_sigma": 48, "newaxi": [2, 62, 64, 65, 66, 69, 73], "next": [1, 59, 62, 64, 65, 72], "nicola": [68, 74], "nodal": 69, "nodalis": [57, 72], "node": [2, 3, 4, 5, 6, 16, 17, 19, 20, 21, 24, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 61, 62, 64, 65, 66, 69, 70, 71, 73], "node_idx": [20, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 49, 52, 55, 60, 63, 71], "node_paramet": [60, 61], "node_precis": 30, "node_trajectori": [17, 63, 65, 66, 67, 70, 71, 73], "node_typ": 60, "nois": [1, 60, 68], "noisi": [60, 61, 68], "noisier": [68, 73], "non": [30, 31, 45, 49, 58], "non_sequ": 73, "none": [2, 3, 4, 6, 16, 17, 20, 21, 24, 25, 26, 27, 50, 59, 60, 62, 63, 65, 66, 68], "nonlinear_hgf": 68, "noon": 72, "norm": [61, 70], "normal": [1, 2, 7, 10, 11, 32, 58, 59, 60, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "note": [16, 19, 27, 30, 31, 34, 40, 41, 50, 59, 62, 64, 65, 66, 68, 71, 72, 73], "notebook": [58, 59, 60, 62, 64, 65, 66, 68, 70, 71, 73], "notic": 68, "notion": [59, 60], "nov": 74, "novel": 1, "novemb": 74, "now": [59, 60, 62, 64, 65, 66, 68, 71, 72, 73], "np": [2, 5, 13, 59, 60, 61, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73], "nrow": [59, 61, 63, 71], "nu": [13, 32], "nu_": 61, "num": 67, "num_sampl": 73, "number": [1, 2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 17, 20, 21, 22, 23, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 44, 45, 46, 47, 48, 49, 51, 53, 60, 61, 62, 63, 64, 65, 66, 67, 68, 71, 73], "numer": [1, 63, 71], "numpi": [2, 4, 5, 21, 22, 23, 48, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "nut": [62, 64, 65, 66, 67, 69, 71, 73], "nutshel": 65, "o": [57, 72, 73], "o_": 65, "object": [67, 73], "observ": [0, 9, 10, 13, 14, 20, 27, 30, 31, 40, 44, 46, 47, 48, 51, 57, 58, 59, 60, 61, 62, 63, 64, 66, 68, 69, 71, 72, 73], "obtain": 65, "occur": [29, 63, 66], "oct": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "octob": 74, "offer": [1, 59], "offici": [57, 63], "often": [29, 59, 60, 65, 66, 67], "omega": [62, 63, 64, 66, 69, 71, 72], "omega_": [62, 64, 66], "omega_1": [59, 64, 72], "omega_2": [2, 59, 62, 63, 64, 65, 69, 73], "omega_3": [62, 64], "omega_a": 36, "omega_j": [30, 31], "onc": [59, 60, 73], "one": [1, 2, 3, 4, 20, 30, 31, 32, 35, 59, 60, 61, 65, 66, 71, 72, 73, 74], "ones": [61, 63, 67, 68, 71], "onli": [0, 6, 16, 21, 24, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72], "onlin": 1, "oop": 72, "op": [3, 63, 71], "open": [57, 69], "oper": [57, 61, 63, 65, 71, 72], "operand": [45, 49], "opt": 73, "optim": [1, 54, 57, 59, 60, 62, 64, 71], "optimis": [62, 64, 65], "option": [23, 35, 64, 65], "orang": 64, "order": [50, 57, 59, 60, 61, 62, 64, 65, 68, 73], "org": [1, 7, 8, 28, 29, 30, 31, 32, 34, 35, 36, 38, 41, 42, 43, 57, 66, 67, 74], "organ": 0, "origin": [54, 57, 68], "orphan": 59, "oscil": 68, "oscillatori": 68, "other": [30, 31, 55, 57, 59, 60, 62, 64, 65, 68, 71, 72, 73], "otherwis": 71, "our": [1, 59, 61, 62, 64, 65, 66, 68, 69, 71, 73], "ourselv": [62, 64], "out": [59, 66, 73, 74], "outcom": [9, 14, 57, 58, 60, 62, 65, 66, 71, 73], "outcome_1": 73, "outcome_2": 73, "output": [63, 65, 71, 74], "output_gradi": [63, 71], "output_typ": 69, "outputs_info": 73, "outsid": 68, "over": [2, 5, 6, 13, 57, 58, 59, 60, 61, 62, 64, 65, 66, 68, 69, 71, 72, 73], "overal": [1, 64, 65], "overcom": 68, "overfit": [64, 71], "overlai": 48, "overtim": 70, "overview": 59, "own": [35, 59, 72], "p": [11, 23, 28, 29, 30, 31, 34, 35, 36, 38, 41, 42, 43, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "p1": 63, "p2": 63, "p3": 63, "p_a": [35, 68, 71], "p_loo": [66, 73], "pablo": 74, "packag": [1, 57, 60, 65], "page": 1, "pair": 59, "pan": 69, "panda": [56, 65, 69, 72], "panel": [21, 60, 64, 65], "paper": [1, 59], "paralel": 61, "parallel": [3, 5, 6, 66], "paramet": [0, 1, 2, 3, 4, 5, 6, 9, 10, 11, 13, 14, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 66, 68, 69, 72], "parameter": [16, 59], "parameter_structur": 51, "parametr": [11, 13, 17, 23, 44, 46, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 73], "parametris": [71, 72, 73], "paraticip": [22, 23], "parent": [0, 5, 6, 16, 17, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 45, 46, 49, 50, 53, 54, 55, 57, 59, 60, 61, 62, 64, 68, 69, 70, 71, 72], "parent_idx": 50, "pareto": 66, "part": [5, 6, 16, 57, 59, 60, 63, 64, 65, 66, 68, 72, 73], "partial": [63, 67, 71], "particip": [65, 66, 67, 69, 73], "particular": [59, 72], "pass": [2, 3, 4, 5, 6, 17, 27, 40, 59, 60, 61, 62, 64, 65, 68, 71, 72], "past": [61, 65], "patholog": 1, "pattern": 74, "pct": 66, "pd": 72, "pdf": [1, 61, 70], "peak": 69, "penni": 11, "per": [66, 67], "percept": [1, 57, 74], "perceptu": [1, 2, 3, 4, 16, 65, 66, 67], "pereira": 57, "perform": [1, 5, 6, 29, 35, 51, 54, 58, 59, 60, 62, 63, 64, 65, 68, 69, 71, 72, 73], "perspect": [62, 64], "peter": 74, "petzschner": 57, "pfenning": [72, 74], "phasic": [5, 6, 16, 35, 36, 59, 72], "phenomena": 60, "phenomenon": 68, "phi": 59, "physio_df": 69, "physiolog": [58, 64], "pi": [13, 14, 20, 30, 31, 33, 36, 43, 59, 61, 62, 64, 68], "pi_1": 59, "pi_a": 36, "pi_b": [30, 31], "pi_i": 59, "pi_j": [30, 31, 43], "pid": 73, "piec": 73, "pip": [57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "pjitfunct": 5, "place": [59, 60, 66, 71], "plai": [1, 64], "plausibl": 57, "pleas": 66, "plot": [59, 60, 61, 63, 65, 67, 68, 70, 71, 72, 73], "plot_compar": 73, "plot_correl": 64, "plot_network": [60, 61, 62, 63, 64, 68, 70, 71, 72, 73], "plot_nod": [60, 63, 68, 71], "plot_posterior": [66, 71], "plot_raw": 69, "plot_trac": [62, 63, 64, 65, 69, 73], "plot_trajectori": [57, 60, 62, 64, 68, 69, 72, 73], "plt": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "plu": 71, "pm": [2, 62, 63, 64, 65, 66, 67, 69, 71, 73], "pmid": 1, "point": [13, 24, 25, 26, 33, 51, 59, 60, 61, 62, 63, 64, 65, 66, 71, 72], "pointer": [27, 28, 29, 30, 31, 32, 33, 34, 37, 38, 39, 40, 41, 42, 43, 45, 46, 49], "pointwis": [4, 66, 73], "pointwise_loglikelihood": [66, 73], "pool": 67, "poor": 72, "popen_fork": 73, "popul": 66, "popular": 73, "posit": [60, 65, 66, 72], "possess": 68, "possibl": [10, 35, 53, 57, 58, 60, 61, 63, 65, 66, 68, 69, 72, 73], "post": 63, "posterior": [1, 2, 20, 21, 38, 51, 54, 57, 58, 59, 61, 72], "posterior_mean": 30, "posterior_precis": 31, "posterior_update_mean_continuous_nod": [28, 29, 31], "posterior_update_precision_continuous_nod": [28, 29, 30], "posteriori": 66, "potenti": [2, 62, 63, 64, 65, 67, 69, 71, 73], "power": [73, 74], "pp": [13, 32], "ppg": 69, "pr": [62, 65], "practic": [58, 60, 61, 65, 74], "pre": [16, 17, 44, 46, 48, 62, 63, 64, 73], "precipit": 72, "precis": [1, 5, 6, 10, 12, 14, 16, 20, 21, 28, 29, 30, 31, 33, 34, 36, 38, 39, 47, 54, 57, 58, 59, 60, 61, 62, 63, 64, 68, 71, 72], "precision_1": [2, 5, 6], "precision_2": [2, 5, 6], "precision_3": [5, 6], "precsnoland": 72, "prectotland": 72, "predict": [1, 13, 14, 17, 30, 31, 39, 40, 41, 42, 43, 46, 51, 54, 58, 60, 61, 64, 65, 66, 69, 71, 72, 74], "predict_precis": 30, "prediction_error": [30, 31], "prediction_sequ": 54, "presenc": 67, "present": [57, 58, 59, 60, 62, 64, 65, 66, 71, 72], "press": 74, "previou": [0, 1, 31, 33, 46, 47, 59, 60, 62, 63, 64, 65, 66, 68, 72, 73], "previous": [59, 65, 72], "principl": [1, 54, 59, 60, 61, 65, 72, 73], "print": [2, 57], "prior": [2, 58, 60, 61, 62, 64, 65, 66, 69, 72, 73], "probabilist": [0, 1, 2, 17, 20, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 49, 53, 57, 58, 59, 61, 64, 65, 69, 71, 73], "probabl": [0, 1, 2, 4, 5, 6, 9, 10, 13, 20, 23, 27, 32, 44, 58, 59, 61, 62, 64, 65, 66, 67, 71, 72, 73], "problem": [58, 66, 67], "procedur": [60, 66, 73], "proceed": 66, "process": [1, 28, 29, 35, 37, 45, 46, 49, 57, 58, 60, 61, 68, 71, 72, 73], "produc": [66, 71, 73], "product": [63, 71], "programmat": 65, "progress": [60, 63, 68], "propag": [0, 17, 51, 60, 61, 65, 72, 73], "propens": [59, 66], "properti": [1, 60], "proport": 61, "propos": 54, "provid": [1, 2, 3, 4, 5, 16, 20, 23, 50, 57, 59, 60, 62, 63, 64, 65, 66, 68, 71, 72, 73], "proxim": 60, "pseudo": [13, 61, 66], "psi": [11, 27, 40, 63], "psychiatri": [57, 58, 65, 66, 72], "psycholog": 65, "pt": [63, 66, 71, 73], "public": [1, 11, 63], "publish": [32, 74], "pulcu": [71, 74], "punish": [58, 74], "purpos": [59, 65, 70], "put": 64, "pv": 74, "pval": 63, "py": [64, 73], "pyhgf": [1, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "pymc": [0, 2, 5, 6, 62, 63, 64, 65, 66, 67, 69, 71, 73], "pyplot": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "pytensor": [62, 63, 64, 65, 66, 67, 69, 71, 73], "python": [57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "python3": 73, "pytre": 60, "pytress": 60, "q": [11, 63], "qualiti": 66, "quantiti": [66, 70, 71, 72, 73], "question": 61, "quickli": [64, 73], "quit": 64, "r": [59, 61, 68, 69, 71], "r_a": 61, "r_hat": [2, 65, 73], "rain": 72, "raman": 57, "rand": 61, "randn": 61, "random": [1, 5, 6, 16, 35, 48, 60, 61, 63, 65, 66, 67, 68, 70, 71], "randomli": [59, 67, 73], "rang": [59, 60, 61, 63, 65, 66, 67, 70, 71, 72], "rank": 73, "rate": [35, 57, 59, 61, 62, 64, 65, 70, 71, 72, 73], "rather": 73, "ratio": 61, "ration": 74, "ravel": [61, 71], "raw": 72, "rcparam": [59, 60, 61, 62, 64, 65, 66, 68, 69, 71, 73], "reach": 60, "react": 64, "read": [20, 21, 72, 73], "read_csv": 72, "reader": 59, "readi": [71, 73], "real": [1, 60, 61, 62, 64, 65, 68, 69, 72, 73], "reanalysi": 74, "reason": [60, 62, 64, 65, 66], "recap": 73, "receiv": [0, 27, 35, 46, 51, 57, 59, 60, 61, 63, 65, 66, 68, 71, 73], "recent": 1, "recis": 61, "recommend": [62, 64, 65, 66, 67, 69, 71, 73], "reconstruct": 73, "record": [58, 71, 72], "recov": [0, 58, 71], "recoveri": [58, 65, 73], "recurs": [55, 57], "red": 67, "reduc": 54, "ref": 67, "ref_val": 66, "refer": [7, 8, 11, 13, 28, 29, 30, 31, 32, 34, 35, 36, 38, 41, 42, 43, 59, 60, 61, 63, 65, 66, 67, 71, 72], "reflect": [60, 72], "regist": [60, 68, 73], "regular": [29, 59, 62, 73], "reinforc": [1, 57, 58, 59, 62, 63], "relat": [1, 65, 69], "relationship": 50, "relax": 70, "releas": 57, "relev": [16, 62, 64, 68], "reli": [59, 61, 66], "reliabl": [66, 67], "remain": 71, "rememb": 73, "remot": 59, "remov": 72, "reparameter": [66, 67, 71, 73], "repeat": [59, 66, 71, 72], "replac": [63, 71], "report": [1, 67], "repres": [1, 5, 6, 16, 35, 59, 60, 61, 63, 65, 66, 68, 72], "requier": [63, 71], "requir": [4, 19, 22, 24, 25, 26, 35, 60, 61, 65, 66, 71, 72, 73], "rescorla": [59, 62, 67], "research": [1, 65], "resembl": 65, "resolut": 1, "respect": [11, 59, 60, 64, 73], "respir": 69, "respond": 73, "respons": [2, 3, 4, 5, 6, 57, 58, 62, 64, 66, 67, 69, 72, 73, 74], "response_funct": [2, 3, 4, 6, 57, 62, 64, 65, 66, 67, 69, 72, 73], "response_function_input": [2, 3, 4, 5, 6, 22, 23, 24, 25, 26, 57, 65, 66, 67, 73], "response_function_paramet": [5, 6, 22, 23, 24, 25, 26, 57, 62, 65, 66, 67], "rest": 1, "restrict": [60, 64], "result": [1, 2, 57, 60, 62, 63, 64, 65, 66, 69, 71, 72, 73], "retriev": [60, 64, 69, 73], "return": [0, 4, 5, 6, 9, 10, 11, 13, 14, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 54, 55, 56, 57, 60, 61, 62, 63, 64, 65, 66, 68, 69, 71, 72, 73], "revert": [35, 59], "review": [59, 72], "reward": [58, 65, 73, 74], "rf": [61, 66], "rhat": [66, 67], "rho": [59, 68], "rho_1": 59, "rho_2": 68, "rho_3": 68, "rho_a": [35, 68], "rhoa": 72, "right": [11, 13, 30, 31, 35, 36, 43, 59, 61, 63, 65, 71], "rise": 64, "rl": 1, "robert": 74, "robust": [62, 64, 65, 66, 67, 69, 71, 73], "rocket": 66, "role": [0, 1, 64], "root": [0, 51, 55, 59, 60, 72], "row": 20, "rr": 69, "rr_": 69, "rule": [73, 74], "run": [58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73], "runtimewarn": 73, "rust": 57, "rw": 73, "rw_idata": 73, "rw_model": 73, "rw_updat": 73, "s11222": 74, "s_0": 65, "s_1": 65, "sa": [57, 73], "sake": 65, "salient": 64, "same": [1, 2, 3, 4, 17, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 45, 46, 49, 50, 53, 59, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73], "sampl": [1, 2, 47, 48, 54, 57, 58, 59, 60, 61, 65, 67, 69, 70, 71, 72], "sampler": [62, 64, 65, 66, 67, 69, 71, 73], "samuel": 74, "sandra": [1, 74], "satellit": 74, "save": [36, 61, 66, 67, 73], "scalar": 61, "scale": [59, 61, 70, 72, 73], "scall": 59, "scan": [17, 51, 71, 73], "scan_fn": 17, "scat": 61, "scat2": 61, "scatter": [60, 61, 65, 67, 71, 73], "scatterplot": 67, "scheme": [1, 60], "schrader": 57, "sch\u00f6bi": 57, "scienc": 13, "scipi": [61, 70], "scope": 59, "scratch": 57, "sd": [2, 65, 73], "se": [66, 73], "seaborn": [59, 60, 61, 63, 66, 67, 68, 70, 71, 72, 73], "seagreen": 71, "search": 55, "second": [0, 1, 2, 5, 6, 10, 16, 58, 59, 60, 62, 64, 65, 66, 67, 68, 69, 71, 72, 73], "section": [58, 59, 62, 63, 64, 66, 72, 73], "see": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 71, 72, 73], "seed": [59, 60, 61, 65, 66, 67, 68, 70, 71, 72], "seen": [59, 72, 73], "select": [65, 71, 72], "self": [63, 71, 73], "send": [59, 60, 64], "sens": [1, 59, 63, 65], "sensori": [1, 59, 72, 73, 74], "sensory_precis": 47, "separ": [61, 66, 67, 73], "septemb": 64, "sequenc": [17, 51, 54, 57, 59, 61, 63, 65, 66, 71, 73], "sequenti": [62, 63, 64, 65, 66, 67, 69, 71, 73], "seri": [1, 2, 3, 4, 5, 6, 13, 24, 32, 56, 57, 59, 60, 61, 62, 63, 64, 66, 69, 72, 73, 74], "serotonin": 1, "serv": 57, "session": 58, "set": [16, 20, 21, 50, 52, 55, 57, 59, 60, 61, 62, 64, 65, 66, 67, 68, 70, 71, 73], "set_minor_loc": 61, "set_offset": 61, "set_palett": 66, "set_titl": [61, 63, 67], "set_xdata": 61, "set_xlabel": [61, 67, 70], "set_ydata": 61, "set_ylabel": [61, 63, 67, 70, 71], "sever": [1, 64, 73], "sfreq": 69, "shad": 20, "shape": [0, 1, 3, 60, 61, 63, 66, 67, 68, 71, 72], "share": [60, 62], "sharei": 71, "sharex": [59, 63, 71], "she": 65, "shoot": 64, "shortwav": 72, "should": [0, 2, 4, 5, 20, 21, 27, 32, 35, 36, 40, 47, 50, 60, 61, 63, 65, 66, 71, 73], "show": [20, 21, 60, 64, 73], "show_heart_r": 69, "show_posterior": [20, 21, 68], "show_surpris": [20, 21, 68], "show_total_surpris": [21, 62, 64], "shown": [59, 61, 68], "side": [60, 65, 66], "sidecar": 73, "sigma": [47, 59, 60, 66, 72], "sigma_1": [59, 72], "sigma_2": [59, 72], "sigma_mu_g0": 48, "sigma_pi_g0": 48, "sigma_temperatur": 66, "sigma_volatil": 66, "sigmoid": [59, 66, 67, 71, 73], "sigmoid_hgf": 65, "sigmoid_hgf_idata": 65, "sigmoid_inverse_temperatur": 67, "signal": [0, 57, 58, 68], "sim": [2, 59, 66, 68, 72], "similar": [30, 31, 62, 64, 69, 71, 73], "similarli": [60, 64], "simpl": [2, 59, 60, 61, 65, 67, 71, 72, 73, 74], "simpler": [59, 60, 73], "simplest": [59, 65], "simplex": 1, "simpli": [0, 60, 61, 66, 67, 72, 73], "simplifi": [68, 72], "simpul": 59, "simul": [1, 47, 48, 59, 60, 61, 65, 68, 72, 73, 74], "simultan": 66, "sin": [60, 61, 68], "sinc": [59, 68], "singl": [6, 60, 71, 73], "sinusoid": [60, 68], "sinusoid_linear_hgf": 68, "sinusoid_nonlinear_hgf": 68, "situat": [1, 59, 60, 63, 65, 66, 71], "size": [1, 5, 57, 59, 60, 62, 64, 66, 67, 70, 72], "skew": 63, "slightli": [64, 65, 73], "slope": [59, 68], "slow": [71, 73], "smaller": [66, 67], "smooth": 58, "smoother": 61, "smoothli": 57, "sn": [59, 60, 61, 63, 66, 67, 68, 70, 71, 72, 73], "snoma": 72, "snow": 72, "so": [57, 60, 62, 64, 65, 68, 72, 73], "sofmax": [22, 23], "softmax": [5, 6, 57, 65, 71], "softwar": 57, "solar": 72, "sole": 71, "solid": 73, "solut": 61, "some": [29, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 71, 72], "someth": [59, 60, 65, 68, 70, 73], "sometim": [60, 64, 65, 72, 73], "sort": 61, "sourc": [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57], "space": [54, 64, 66, 68], "sparsiti": 65, "special": 71, "specif": [1, 35, 57, 58, 59, 60, 61, 62, 63, 65, 66, 68, 71], "specifi": [2, 50, 59, 63, 68, 69, 71], "spike": 64, "spiral": 61, "split": [60, 65], "springer": [32, 74], "sqrt": [13, 20, 61, 70], "squar": 66, "stabil": 1, "stabl": 64, "stable_conting": 71, "stack": 61, "staffel": [72, 74], "standard": [0, 20, 21, 28, 30, 44, 47, 48, 54, 58, 59, 60, 62, 63, 64, 65, 66, 70, 72, 73], "start": [2, 3, 4, 51, 54, 59, 61, 63, 65, 66, 71, 72, 73], "stat": [61, 70], "state": [0, 1, 6, 24, 30, 31, 33, 35, 36, 39, 40, 42, 43, 48, 50, 52, 53, 57, 58, 59, 60, 61, 62, 64, 65, 66, 71, 72, 73], "static": [37, 45, 49], "statist": [0, 13, 18, 20, 21, 32, 56, 59, 60, 65, 66, 67, 70, 74], "statproofbook": 11, "std": [68, 70], "steep": 68, "steeper": 68, "stefan": 74, "step": [1, 5, 6, 17, 28, 29, 30, 31, 36, 51, 54, 58, 59, 60, 61, 62, 65, 66, 67, 68, 71, 72, 73], "stephan": [1, 28, 29, 30, 31, 34, 35, 36, 38, 41, 42, 43, 57, 74], "still": [63, 71], "stim_1": 73, "stim_2": 73, "stimuli": [65, 66, 73], "stimulu": [65, 66, 73], "stochast": [59, 61, 63, 68, 72], "storag": 72, "store": [36, 41, 57, 60, 65, 66], "str": [2, 3, 4, 16, 20, 32, 37, 45, 46, 49, 51, 54], "straight": 59, "straightforward": [59, 61, 71], "straigthforwar": 72, "strength": [16, 27, 30, 31, 34, 35, 36, 40, 41, 50, 59, 62, 68], "string": 60, "structur": [0, 16, 17, 20, 21, 27, 34, 40, 41, 51, 54, 55, 56, 57, 59, 60, 62, 63, 64, 65, 67, 68, 72, 73], "student": 61, "studi": [1, 58, 64, 66], "sub": [0, 60, 62], "subject": [1, 73], "subplot": [59, 61, 63, 67, 68, 70, 71, 73], "subtl": 73, "success": 67, "suffici": [0, 13, 18, 20, 21, 32, 56, 59, 60, 65, 70, 74], "sufficient_statist": 61, "sufficient_stats_fn": 32, "suggest": [61, 73], "suitabl": 71, "sum": [5, 21, 26, 35, 36, 57, 62, 63, 64, 65, 66, 69, 71, 72, 73], "sum_": [11, 30, 31, 36, 63, 65], "summari": [2, 62, 64, 65, 67, 69, 73], "summer": 72, "sun": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "support": [5, 57, 59, 60], "suppos": 68, "sure": [63, 65, 71, 73], "surfac": 72, "surpris": [0, 2, 3, 4, 5, 6, 9, 10, 14, 20, 21, 22, 23, 24, 25, 26, 56, 57, 60, 63, 69, 71, 72, 73], "surprise_fn": 63, "suspect": 64, "swgdn": 72, "swiss": 64, "switch": [61, 62, 73], "swtdn": 72, "sy": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "system": 57, "systol": 69, "t": [23, 28, 29, 30, 31, 32, 34, 35, 36, 38, 41, 42, 43, 57, 59, 60, 61, 62, 63, 65, 66, 68, 71, 72, 73], "t2m": 72, "tailor": [62, 63], "take": [0, 1, 59, 62, 65, 66, 72, 73], "tapa": 57, "target": [51, 57, 61, 72], "target_accept": [66, 67, 71, 73], "task": [57, 58, 60, 62, 65, 66, 69, 73], "techniqu": 67, "tediou": 64, "tem": 72, "temp": 66, "temperatur": [5, 6, 23, 57, 65, 66, 67, 71, 72], "temporari": 46, "ten": 74, "tensor": [62, 63, 64, 65, 66, 67, 69, 71, 73], "term": [1, 36, 59, 60, 65, 68, 74], "terminologi": [63, 66], "test": [66, 67], "text": [9, 65, 68], "th": 66, "than": [16, 29, 59, 61, 63, 64, 66, 67, 68], "thank": [66, 73], "thecomput": 58, "thei": [0, 60, 61, 62, 63, 64, 65, 66, 67, 73], "them": [59, 65, 71, 72], "theoret": [58, 72], "theori": [1, 59, 73], "therefor": [24, 59, 60, 61, 63, 64, 65, 66, 68, 71, 72, 73], "thestrup": 74, "theta": [60, 61, 68], "theta_": 60, "theta_1": [60, 68], "theta_2": 68, "thi": [0, 1, 2, 4, 5, 6, 13, 16, 17, 19, 20, 21, 24, 27, 29, 30, 31, 32, 36, 46, 51, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "thing": [63, 66, 72], "think": [59, 65], "third": [1, 5, 6, 60, 62, 64], "those": [57, 60, 61, 62, 65, 66], "three": [0, 5, 6, 16, 20, 21, 59, 60, 63, 70, 71], "three_level_hgf": [64, 69], "three_level_hgf_idata": [62, 64], "three_level_trajectori": 73, "three_levels_binary_hgf": [62, 73], "three_levels_continuous_hgf": 64, "three_levels_continuous_hgf_bi": 64, "three_levels_hgf": [21, 62], "three_levels_idata": 73, "threshold": 68, "through": [0, 57, 58, 59, 60, 65, 66, 68, 72, 73], "thu": [1, 72], "ticker": 61, "tight": 64, "tight_layout": [61, 64], "tile": [59, 71, 72], "tim": 74, "time": [1, 2, 3, 4, 5, 6, 13, 22, 23, 24, 25, 26, 30, 31, 32, 33, 35, 36, 51, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 72, 73, 74], "time_step": [2, 3, 4, 5, 6, 31, 33, 65, 71], "timeseri": [2, 20, 21, 64, 72], "timestep": 68, "titl": [1, 59, 61, 63, 66, 68, 70, 73], "tmp": 64, "to_numpi": [72, 73], "to_panda": [61, 62, 64, 65], "toa": 72, "togeth": [21, 62, 64, 65, 73], "tolist": 67, "tomkin": 69, "tonic": [2, 5, 6, 16, 35, 36, 59, 64, 66, 67, 68, 70, 71, 72, 73], "tonic_drift": [16, 20, 21, 62, 68, 69], "tonic_drift_1": [5, 6], "tonic_drift_2": [5, 6], "tonic_drift_3": [5, 6], "tonic_volatil": [16, 20, 21, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "tonic_volatility_1": [5, 6, 64, 69], "tonic_volatility_2": [2, 5, 6, 62, 63, 64, 65, 66, 67, 69, 73], "tonic_volatility_3": [5, 6, 62, 64], "too": 71, "took": [62, 64, 65, 66, 67, 69, 71, 73], "tool": 66, "toolbox": [57, 59, 64, 65], "top": [0, 20, 21, 57, 59, 62, 64, 65, 70, 72], "total": [35, 36, 59, 62, 64, 65, 66, 67, 68, 69, 71, 72, 73], "total_gaussian_surpris": [2, 69], "total_surpris": 65, "toussaint": 57, "toward": [71, 73], "trace": 68, "track": [59, 60, 61, 62, 65, 70, 72, 73], "tradition": 65, "trajectori": [0, 6, 18, 20, 21, 56, 57, 61, 65, 66, 67, 69, 70, 71, 72], "trajectories_df": 56, "transform": [59, 60, 62, 65, 66, 68, 73], "transit": [52, 58, 61], "translat": 57, "transmiss": 72, "transpar": 60, "treat": 66, "tree": 60, "tree_util": [63, 71], "tri": [60, 62, 65, 73], "trial": [1, 59, 64, 65, 71, 73], "trigger": [0, 57, 59, 72], "tristan": 68, "trivial": 65, "true": [9, 14, 20, 21, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 73], "try": [64, 65, 68, 70, 71, 72, 73], "tune": [2, 62, 64, 65, 66, 67, 69, 71, 73], "tupl": [2, 3, 4, 17, 20, 21, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 45, 46, 47, 48, 49, 50, 51, 53, 54, 55, 57, 60, 61, 65, 68, 71], "turn": [58, 59, 72], "tutori": [57, 59, 62, 65, 66, 67, 68, 71, 72, 73], "two": [0, 1, 5, 6, 11, 16, 20, 21, 28, 29, 51, 57, 59, 60, 61, 63, 65, 66, 67, 68, 69, 70, 71, 72], "two_armed_bandit_hgf": 71, "two_armed_bandit_missing_inputs_hgf": 71, "two_bandits_logp": 71, "two_level_hgf": 64, "two_level_hgf_idata": [62, 64, 66, 67, 73], "two_level_trajectori": 73, "two_levels_binary_hgf": [62, 66, 67, 73], "two_levels_continuous_hgf": [64, 72], "two_levels_hgf": [62, 73], "two_levels_idata": 73, "type": [2, 3, 4, 5, 16, 17, 22, 23, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 45, 46, 48, 49, 50, 53, 54, 60, 61, 63, 65, 66, 71, 73], "typic": 60, "u": [21, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "u1": 68, "u2": 68, "u_0": 60, "u_0_prob": 60, "u_1": [59, 60, 68], "u_1_prob": 60, "u_2": [59, 68], "u_loss_arm1": 71, "u_loss_arm2": 71, "u_win_arm1": 71, "u_win_arm2": 71, "ucl": 11, "uk": 11, "uncertain": [1, 60], "uncertainti": [1, 20, 21, 57, 58, 59, 71, 72, 73, 74], "under": [1, 6, 9, 10, 14, 22, 23, 29, 44, 46, 48, 57, 59, 61, 62, 64, 65, 66, 73, 74], "undergo": [65, 66], "underli": [10, 60, 62, 63, 64, 65, 67, 68], "underpin": [59, 61], "understand": [1, 59, 68, 73], "underw": 65, "unexpect": [61, 62, 64], "uniform": [62, 67, 73], "union": [22, 23, 48, 50], "uniqu": [59, 60, 73], "unit": [2, 3, 4, 51, 66], "univari": [8, 32], "univariate_hgf": 61, "univers": [11, 68, 74], "unlik": [59, 64], "unobserv": 71, "until": [63, 68], "up": [20, 21, 57, 59, 64, 72], "updat": [1, 13, 17, 51, 52, 54, 57, 58, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 73], "update_binary_input_par": 34, "update_continuous_input_par": 34, "update_fn": 60, "update_fn1": 60, "update_fn2": 60, "update_sequ": [17, 51, 54, 60, 61, 71], "update_typ": 54, "upon": 59, "upper": [59, 60, 67, 71], "upper_bound": 15, "url": [1, 11, 74], "us": [0, 1, 2, 3, 4, 5, 6, 16, 19, 20, 27, 28, 29, 30, 31, 35, 36, 48, 57, 59, 60, 66, 67, 68, 69, 70, 71, 72, 73, 74], "usd": [20, 21], "user": [57, 59, 65], "userwarn": 64, "usual": [0, 51, 59, 60, 67, 70], "util": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "v": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "valid": [4, 13, 24, 60, 62, 64, 66, 73, 74], "valu": [0, 2, 5, 6, 10, 16, 17, 20, 21, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 44, 45, 46, 47, 49, 50, 51, 53, 57, 58, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73], "valuat": 64, "value_children": [57, 60, 61, 64, 68, 70, 71, 72, 73], "value_coupling_children": [16, 34, 41], "value_coupling_par": [16, 34, 41], "value_par": 60, "vape": 59, "var_nam": [2, 62, 65, 66, 67, 73], "vari": [58, 59, 61, 65, 66, 68], "variabl": [1, 13, 35, 51, 57, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73], "varianc": [5, 6, 16, 57, 58, 59, 60, 64, 72], "variat": [0, 1, 60, 61], "varieti": 60, "variou": [1, 60, 72], "vartheta": 61, "vector": [2, 3, 4, 5, 16, 48, 61, 63, 65, 66, 67, 71, 73], "vectorized_logp": 5, "vehtari": [66, 74], "verbelen": 74, "veri": [1, 59, 64, 66, 69, 72], "versatil": 72, "version": [17, 28, 29, 30, 31, 34, 35, 36, 38, 41, 42, 43, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "via": [59, 60], "view": 71, "visibl": 64, "visual": [0, 19, 20, 21, 57, 61, 70, 72, 73], "vizualis": 61, "vjp": [63, 71], "vjp_custom_op": [63, 71], "vjp_custom_op_jax": [63, 71], "vjp_fn": [63, 71], "vjpcustomop": [63, 71], "vol": 57, "volatil": [0, 1, 2, 5, 6, 16, 17, 20, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 43, 45, 46, 49, 50, 53, 54, 57, 58, 61, 62, 64, 65, 66, 67, 68, 70, 71, 73], "volatile_conting": 71, "volatility_children": [60, 61, 64, 70, 72], "volatility_coupl": [16, 20, 21, 27, 40, 62, 69], "volatility_coupling_1": [5, 6], "volatility_coupling_2": [5, 6], "volatility_coupling_children": [16, 34, 41], "volatility_coupling_par": [16, 34, 41], "volatility_par": 60, "volum": 1, "vopa": 36, "vope": 59, "vstack": 63, "w": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "w_a": 71, "w_b": 71, "wa": [30, 31, 54, 57, 60, 62, 63, 64, 65, 68, 71, 73], "waad": [28, 29, 30, 31, 34, 35, 36, 38, 41, 42, 43, 57, 74], "wagenmak": [66, 74], "wagner": [59, 62, 67], "wai": [1, 59, 60, 61, 62, 63, 64, 65, 66, 68, 71, 72, 73], "waic": 74, "walk": [1, 5, 6, 16, 35, 68, 71], "want": [2, 60, 62, 64, 65, 66, 68, 69, 70, 71, 72, 73], "warmup": 2, "warn": [62, 63, 64, 65, 66, 67, 69, 71, 73], "watermark": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "wave": [60, 68], "we": [0, 1, 2, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "weak_typ": [9, 14], "weber": [0, 13, 28, 29, 30, 31, 32, 34, 35, 36, 38, 41, 42, 43, 57, 59, 60, 61, 72, 74], "weigh": [61, 72], "weight": [1, 48, 57, 59, 60, 61, 73], "weigth": 48, "well": [1, 51, 60, 67, 72, 73], "were": [59, 62, 65, 66, 67, 71, 73], "what": [60, 63, 64, 65, 68, 71, 72, 73], "when": [2, 4, 5, 6, 24, 35, 46, 59, 60, 61, 62, 63, 64, 65, 66, 68, 71, 72, 73], "whenev": 57, "where": [0, 3, 4, 5, 6, 14, 20, 21, 23, 30, 31, 35, 36, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72], "wherea": 69, "whether": 20, "which": [1, 5, 6, 13, 35, 54, 59, 60, 61, 62, 63, 64, 65, 66, 68, 71, 72, 73], "while": [57, 59, 60, 61, 65, 66, 68, 69, 71, 72, 73], "whole": [59, 61, 71], "wide": [16, 62], "width": [20, 21], "wiki": [7, 8], "wikipedia": [7, 8], "william": 11, "wilson": [67, 74], "win": 71, "win_arm1": 71, "win_arm2": 71, "wind": 74, "wine": 71, "wishart": 11, "within": 1, "without": [1, 35, 53, 58, 60, 61, 65, 66, 68], "won": 62, "word": [60, 62, 64, 73], "work": [19, 58, 63, 65, 66, 71, 73], "workflow": [66, 73], "workshop": 72, "world": [59, 61, 65, 73], "worri": [62, 64], "worth": 66, "would": [62, 64, 66, 68, 71, 72], "wpenni": 11, "wrap": [0, 62, 63, 64, 71], "write": [63, 65, 68, 72, 73], "written": [57, 61], "www": [1, 11, 74], "x": [9, 12, 13, 14, 15, 32, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72], "x1": [59, 68], "x2": [59, 68], "x3": 68, "x64": 73, "x_": [59, 62, 72], "x_0": [6, 64], "x_0_expected_mean": 65, "x_0_expected_precis": 65, "x_0_mean": 65, "x_0_precis": 65, "x_0_surpris": [62, 64, 65], "x_1": [6, 59, 61, 68, 72], "x_1_1": 59, "x_1_2": 59, "x_1_3": 59, "x_1_expected_mean": 65, "x_1_expected_precis": 65, "x_1_mean": 65, "x_1_precis": 65, "x_1_surpris": [62, 64, 65], "x_1_xis_0": 61, "x_2": [6, 59, 61, 68, 72], "x_2_1": 59, "x_2_2": 59, "x_2_3": 59, "x_2_surpris": [62, 64], "x_3": [6, 68], "x_b": 35, "x_i": 61, "xaxi": 61, "xflr6": 19, "xi": [13, 32, 60, 61, 63], "xi_": [13, 60, 61], "xi_1": 60, "xi_k": 60, "xi_x": [13, 61], "xlabel": [59, 61, 63, 65, 68, 72, 73], "xlim": 61, "y": [13, 57, 61, 65, 67, 71, 73], "y1": 63, "y2": 63, "yaxi": 61, "ye": 68, "year": [1, 72, 74], "yet": 71, "ylabel": [59, 61, 63, 68, 72, 73], "ylim": 61, "you": [1, 57, 58, 60, 63, 65, 68, 71, 72, 73], "your": [1, 72, 73], "z": [61, 66], "z_": 66, "zero": 68, "zip": [59, 61, 67, 70, 71, 73], "zoom": 68, "zorder": [60, 63, 67], "zurich": 58, "\u03c9_2": 2}, "titles": ["API", "How to cite?", "pyhgf.distribution.HGFDistribution", "pyhgf.distribution.HGFLogpGradOp", "pyhgf.distribution.HGFPointwise", "pyhgf.distribution.hgf_logp", "pyhgf.distribution.logp", "pyhgf.math.MultivariateNormal", "pyhgf.math.Normal", "pyhgf.math.binary_surprise", "pyhgf.math.binary_surprise_finite_precision", "pyhgf.math.dirichlet_kullback_leibler", "pyhgf.math.gaussian_density", "pyhgf.math.gaussian_predictive_distribution", "pyhgf.math.gaussian_surprise", "pyhgf.math.sigmoid", "pyhgf.model.HGF", "pyhgf.model.Network", "pyhgf.plots.plot_correlations", "pyhgf.plots.plot_network", "pyhgf.plots.plot_nodes", "pyhgf.plots.plot_trajectories", "pyhgf.response.binary_softmax", "pyhgf.response.binary_softmax_inverse_temperature", "pyhgf.response.first_level_binary_surprise", "pyhgf.response.first_level_gaussian_surprise", "pyhgf.response.total_gaussian_surprise", "pyhgf.updates.posterior.categorical.categorical_state_update", "pyhgf.updates.posterior.continuous.continuous_node_posterior_update", "pyhgf.updates.posterior.continuous.continuous_node_posterior_update_ehgf", "pyhgf.updates.posterior.continuous.posterior_update_mean_continuous_node", "pyhgf.updates.posterior.continuous.posterior_update_precision_continuous_node", "pyhgf.updates.posterior.exponential.posterior_update_exponential_family", "pyhgf.updates.prediction.binary.binary_state_node_prediction", "pyhgf.updates.prediction.continuous.continuous_node_prediction", "pyhgf.updates.prediction.continuous.predict_mean", "pyhgf.updates.prediction.continuous.predict_precision", "pyhgf.updates.prediction.dirichlet.dirichlet_node_prediction", "pyhgf.updates.prediction_error.binary.binary_finite_state_node_prediction_error", "pyhgf.updates.prediction_error.binary.binary_state_node_prediction_error", "pyhgf.updates.prediction_error.categorical.categorical_state_prediction_error", "pyhgf.updates.prediction_error.continuous.continuous_node_prediction_error", "pyhgf.updates.prediction_error.continuous.continuous_node_value_prediction_error", "pyhgf.updates.prediction_error.continuous.continuous_node_volatility_prediction_error", "pyhgf.updates.prediction_error.dirichlet.clusters_likelihood", "pyhgf.updates.prediction_error.dirichlet.create_cluster", "pyhgf.updates.prediction_error.dirichlet.dirichlet_node_prediction_error", "pyhgf.updates.prediction_error.dirichlet.get_candidate", "pyhgf.updates.prediction_error.dirichlet.likely_cluster_proposal", "pyhgf.updates.prediction_error.dirichlet.update_cluster", "pyhgf.utils.add_edges", "pyhgf.utils.beliefs_propagation", "pyhgf.utils.fill_categorical_state_node", "pyhgf.utils.get_input_idxs", "pyhgf.utils.get_update_sequence", "pyhgf.utils.list_branches", "pyhgf.utils.to_pandas", "PyHGF: A Neural Network Library for Predictive Coding", "Learn", "Introduction to the Generalised Hierarchical Gaussian Filter", "Creating and manipulating networks of probabilistic nodes", "From Reinforcement Learning to Generalised Bayesian Filtering", "The binary Hierarchical Gaussian Filter", "The categorical Hierarchical Gaussian Filter", "The continuous Hierarchical Gaussian Filter", "Using custom response models", "Hierarchical Bayesian modelling with probabilistic neural networks", "Recovering computational parameters from observed behaviours", "Non-linear value coupling between continuous state nodes", "Example 1: Bayesian filtering of cardiac volatility", "Example 2: Estimating the mean and precision of a time-varying Gaussian distributions", "Example 3: A multi-armed bandit task with independent rewards and punishments", "Zurich CPC I: Introduction to the Generalised Hierarchical Gaussian Filter", "Zurich CPC II: Application to reinforcement learning", "References"], "titleterms": {"1": [69, 72], "2": [70, 72], "3": [71, 72], "4": 72, "5": 72, "7": 73, "8": 73, "A": [57, 71], "The": [57, 58, 59, 60, 62, 63, 64, 72, 73], "acknowledg": 57, "activ": 68, "ad": 59, "adapt": 61, "add": [62, 64], "add_edg": 50, "api": 0, "applic": 73, "arm": [67, 71], "ascend": 60, "assign": 60, "attribut": 60, "autoregress": 59, "bandit": [67, 71], "bayesian": [61, 66, 69, 71], "behavior": 65, "behaviour": [67, 73], "belief": [59, 71, 73], "beliefs_propag": 51, "between": [68, 72], "bias": 73, "binari": [0, 33, 38, 39, 60, 62, 65, 73], "binary_finite_state_node_prediction_error": 38, "binary_softmax": 22, "binary_softmax_inverse_temperatur": 23, "binary_state_node_predict": 33, "binary_state_node_prediction_error": 39, "binary_surpris": 9, "binary_surprise_finite_precis": 10, "bivari": 61, "cardiac": 69, "case": [58, 60], "categor": [0, 27, 40, 63], "categorical_state_prediction_error": 40, "categorical_state_upd": 27, "cite": 1, "clusters_likelihood": 44, "code": 57, "collect": 61, "comparison": [66, 73], "comput": [66, 67], "configur": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "content": 0, "continu": [0, 28, 29, 30, 31, 34, 35, 36, 41, 42, 43, 60, 64, 68], "continuous_node_posterior_upd": 28, "continuous_node_posterior_update_ehgf": 29, "continuous_node_predict": 34, "continuous_node_prediction_error": 41, "continuous_node_value_prediction_error": 42, "continuous_node_volatility_prediction_error": 43, "correl": 64, "coupl": [59, 60, 68, 72], "cpc": [72, 73], "creat": [60, 62, 63, 64, 65], "create_clust": 45, "custom": [60, 65], "data": [62, 64], "dataset": [63, 66, 71], "decis": [65, 71], "deriv": 69, "descend": 60, "detail": 60, "differ": 73, "dirichlet": [0, 37, 44, 45, 46, 47, 48, 49], "dirichlet_kullback_leibl": 11, "dirichlet_node_predict": 37, "dirichlet_node_prediction_error": 46, "distribut": [0, 2, 3, 4, 5, 6, 61, 66, 70], "doe": 57, "drift": 59, "dynam": [59, 60, 61], "edg": 60, "error": [0, 59], "estim": 70, "exampl": [69, 70, 71], "exercis": [58, 72, 73], "exponenti": [0, 32], "famili": 0, "fill_categorical_state_nod": 52, "filter": [57, 58, 59, 61, 62, 63, 64, 69, 72], "first_level_binary_surpris": 24, "first_level_gaussian_surpris": 25, "fit": [57, 62, 63, 64, 73], "fix": [61, 62, 64], "forward": 63, "frequenc": 68, "from": [61, 65, 67, 71], "function": [0, 60, 65, 68], "gaussian": [57, 58, 59, 61, 62, 63, 64, 70, 72], "gaussian_dens": 12, "gaussian_predictive_distribut": 13, "gaussian_surpris": 14, "gener": [57, 59, 72], "generalis": [59, 61, 72], "get": 57, "get_candid": 47, "get_input_idx": 53, "get_update_sequ": 54, "glossari": [59, 65], "go": 73, "graph": 66, "group": 66, "heart": 69, "hgf": [16, 62, 64, 65, 73], "hgf_logp": 5, "hgfdistribut": 2, "hgflogpgradop": 3, "hgfpointwis": 4, "hierarch": [57, 58, 59, 61, 62, 63, 64, 66, 72], "how": [1, 57], "i": 72, "ii": 73, "implement": 60, "import": 62, "independ": 71, "infer": [63, 66, 67, 71], "input": 60, "instal": 57, "instantan": 69, "introduct": [59, 72], "invers": 72, "known": 70, "kown": 70, "learn": [58, 61, 62, 64, 73], "level": [62, 64, 66, 73], "librari": 57, "likely_cluster_propos": 48, "linear": 68, "list_branch": 55, "load": 69, "logp": 6, "manipul": 60, "math": [0, 7, 8, 9, 10, 11, 12, 13, 14, 15], "mcmc": [62, 63, 64], "mean": 70, "miss": 60, "model": [0, 16, 17, 57, 59, 62, 63, 64, 65, 66, 69, 72, 73], "modifi": 60, "multi": 71, "multivari": 60, "multivariatenorm": 7, "network": [17, 57, 59, 60, 63, 66], "neural": [57, 66], "new": 65, "next": 73, "node": [0, 59, 60, 63, 68, 72], "non": [61, 68], "normal": [8, 61], "nu": 61, "observ": [65, 67], "one": 67, "optim": 73, "paramet": [62, 64, 65, 67, 71, 73], "particip": 71, "physiolog": 69, "plot": [0, 18, 19, 20, 21, 62, 64, 66, 69], "plot_correl": 18, "plot_network": 19, "plot_nod": 20, "plot_trajectori": 21, "posterior": [0, 27, 28, 29, 30, 31, 32, 66, 73], "posterior_update_exponential_famili": 32, "posterior_update_mean_continuous_nod": 30, "posterior_update_precision_continuous_nod": 31, "practic": 72, "precis": 70, "predict": [0, 33, 34, 35, 36, 37, 57, 59, 68, 73], "predict_mean": 35, "predict_precis": 36, "prediction_error": [38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49], "preprocess": 69, "probabilist": [60, 63, 66, 72], "process": [0, 59], "propag": 59, "punish": 71, "pyhgf": [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57], "random": [59, 72, 73], "rate": 69, "real": 71, "record": 69, "recov": [65, 67], "recoveri": [67, 71], "rectifi": 68, "refer": [57, 74], "reinforc": [61, 73], "relu": 68, "rescorla": 73, "respons": [0, 22, 23, 24, 25, 26, 65, 71], "reward": 71, "rl": 73, "rule": [65, 71], "sampl": [62, 63, 64, 66, 73], "sequenc": 60, "sigmoid": 15, "signal": 69, "simul": [63, 66, 67, 71], "solut": [72, 73], "start": 57, "state": [63, 68], "static": 60, "stationari": 61, "statist": 61, "step": 0, "structur": 71, "suffici": 61, "surpris": [62, 64, 65], "system": [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], "tabl": 0, "task": [67, 71], "theori": [58, 60], "three": [62, 64, 73], "through": 61, "time": [60, 70, 71], "to_panda": 56, "total_gaussian_surpris": 26, "track": 68, "trajectori": [62, 64, 73], "transit": 63, "tutori": 58, "two": [62, 64, 73], "unit": 68, "univari": 61, "unknown": 70, "unkown": 70, "unobserv": 60, "updat": [0, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 59, 60, 71], "update_clust": 49, "us": [58, 61, 62, 63, 64, 65], "util": [0, 50, 51, 52, 53, 54, 55, 56], "valu": [59, 60, 68, 72], "vari": [60, 70], "visual": [60, 62, 64, 66, 67], "volatil": [59, 60, 69, 72], "wagner": 73, "walk": [59, 72], "weather": 72, "where": 73, "work": [57, 60], "world": 72, "zurich": [72, 73]}}) \ No newline at end of file