diff --git a/dev/.doctrees/api.doctree b/dev/.doctrees/api.doctree index b1a186c0a..ed9599b62 100644 Binary files a/dev/.doctrees/api.doctree and b/dev/.doctrees/api.doctree differ diff --git a/dev/.doctrees/environment.pickle b/dev/.doctrees/environment.pickle index 51f5e5ba5..5e022f381 100644 Binary files a/dev/.doctrees/environment.pickle and b/dev/.doctrees/environment.pickle differ diff --git a/dev/.doctrees/generated/pyhgf.model/pyhgf.model.add_ef_state.doctree b/dev/.doctrees/generated/pyhgf.model/pyhgf.model.add_ef_state.doctree index 0c1e1736a..7cf8a5e0f 100644 Binary files a/dev/.doctrees/generated/pyhgf.model/pyhgf.model.add_ef_state.doctree and b/dev/.doctrees/generated/pyhgf.model/pyhgf.model.add_ef_state.doctree differ diff --git a/dev/.doctrees/generated/pyhgf.model/pyhgf.model.get_couplings.doctree b/dev/.doctrees/generated/pyhgf.model/pyhgf.model.get_couplings.doctree index f1f7dcabc..4b1f916a7 100644 Binary files a/dev/.doctrees/generated/pyhgf.model/pyhgf.model.get_couplings.doctree and b/dev/.doctrees/generated/pyhgf.model/pyhgf.model.get_couplings.doctree differ diff --git a/dev/.doctrees/generated/pyhgf.model/pyhgf.model.insert_nodes.doctree b/dev/.doctrees/generated/pyhgf.model/pyhgf.model.insert_nodes.doctree index 635628bb7..40d33f5aa 100644 Binary files a/dev/.doctrees/generated/pyhgf.model/pyhgf.model.insert_nodes.doctree and b/dev/.doctrees/generated/pyhgf.model/pyhgf.model.insert_nodes.doctree differ diff --git a/dev/.doctrees/generated/pyhgf.model/pyhgf.model.update_parameters.doctree b/dev/.doctrees/generated/pyhgf.model/pyhgf.model.update_parameters.doctree index 021c46878..a861976f5 100644 Binary files a/dev/.doctrees/generated/pyhgf.model/pyhgf.model.update_parameters.doctree and b/dev/.doctrees/generated/pyhgf.model/pyhgf.model.update_parameters.doctree differ diff --git a/dev/.doctrees/generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.continuous_node_posterior_update.doctree b/dev/.doctrees/generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.continuous_node_posterior_update.doctree index c1b6b3ec2..330c8c068 100644 Binary files a/dev/.doctrees/generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.continuous_node_posterior_update.doctree and b/dev/.doctrees/generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.continuous_node_posterior_update.doctree differ diff --git a/dev/.doctrees/generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.continuous_node_posterior_update_ehgf.doctree b/dev/.doctrees/generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.continuous_node_posterior_update_ehgf.doctree index ca443906d..bc7d836e0 100644 Binary files a/dev/.doctrees/generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.continuous_node_posterior_update_ehgf.doctree and b/dev/.doctrees/generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.continuous_node_posterior_update_ehgf.doctree differ diff --git a/dev/.doctrees/generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.posterior_update_mean_continuous_node.doctree b/dev/.doctrees/generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.posterior_update_mean_continuous_node.doctree index d6eee3396..8cf14b658 100644 Binary files a/dev/.doctrees/generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.posterior_update_mean_continuous_node.doctree and b/dev/.doctrees/generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.posterior_update_mean_continuous_node.doctree differ diff --git a/dev/.doctrees/generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.posterior_update_precision_continuous_node.doctree b/dev/.doctrees/generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.posterior_update_precision_continuous_node.doctree index c6899608b..3521bc98b 100644 Binary files a/dev/.doctrees/generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.posterior_update_precision_continuous_node.doctree and b/dev/.doctrees/generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.posterior_update_precision_continuous_node.doctree differ diff --git a/dev/.doctrees/notebooks/0.1-Theory.doctree b/dev/.doctrees/notebooks/0.1-Theory.doctree index 10e8beddf..89f115091 100644 Binary files a/dev/.doctrees/notebooks/0.1-Theory.doctree and b/dev/.doctrees/notebooks/0.1-Theory.doctree differ diff --git a/dev/.doctrees/notebooks/0.2-Creating_networks.doctree b/dev/.doctrees/notebooks/0.2-Creating_networks.doctree index 6522d7b96..6b56b8b3c 100644 Binary files a/dev/.doctrees/notebooks/0.2-Creating_networks.doctree and b/dev/.doctrees/notebooks/0.2-Creating_networks.doctree differ diff --git a/dev/.doctrees/notebooks/0.3-Generalised_filtering.doctree b/dev/.doctrees/notebooks/0.3-Generalised_filtering.doctree index 5a4366794..59b39a50b 100644 Binary files a/dev/.doctrees/notebooks/0.3-Generalised_filtering.doctree and b/dev/.doctrees/notebooks/0.3-Generalised_filtering.doctree differ diff --git a/dev/.doctrees/notebooks/1.1-Binary_HGF.doctree b/dev/.doctrees/notebooks/1.1-Binary_HGF.doctree index a9a7f2b83..c22e40b2e 100644 Binary files a/dev/.doctrees/notebooks/1.1-Binary_HGF.doctree and b/dev/.doctrees/notebooks/1.1-Binary_HGF.doctree differ diff --git a/dev/.doctrees/notebooks/1.2-Categorical_HGF.doctree b/dev/.doctrees/notebooks/1.2-Categorical_HGF.doctree index 603ccdee6..101b53b37 100644 Binary files a/dev/.doctrees/notebooks/1.2-Categorical_HGF.doctree and b/dev/.doctrees/notebooks/1.2-Categorical_HGF.doctree differ diff --git a/dev/.doctrees/notebooks/1.3-Continuous_HGF.doctree b/dev/.doctrees/notebooks/1.3-Continuous_HGF.doctree index 0e3f94cab..391d04a62 100644 Binary files a/dev/.doctrees/notebooks/1.3-Continuous_HGF.doctree and b/dev/.doctrees/notebooks/1.3-Continuous_HGF.doctree differ diff --git a/dev/.doctrees/notebooks/2-Using_custom_response_functions.doctree b/dev/.doctrees/notebooks/2-Using_custom_response_functions.doctree index c0b8ff08f..b4a1d8a4c 100644 Binary files a/dev/.doctrees/notebooks/2-Using_custom_response_functions.doctree and b/dev/.doctrees/notebooks/2-Using_custom_response_functions.doctree differ diff --git a/dev/.doctrees/notebooks/3-Multilevel_HGF.doctree b/dev/.doctrees/notebooks/3-Multilevel_HGF.doctree index aa7366840..8ec46a9fd 100644 Binary files a/dev/.doctrees/notebooks/3-Multilevel_HGF.doctree and b/dev/.doctrees/notebooks/3-Multilevel_HGF.doctree differ diff --git a/dev/.doctrees/notebooks/4-Parameter_recovery.doctree b/dev/.doctrees/notebooks/4-Parameter_recovery.doctree index f6e5f1659..5de774116 100644 Binary files a/dev/.doctrees/notebooks/4-Parameter_recovery.doctree and b/dev/.doctrees/notebooks/4-Parameter_recovery.doctree differ diff --git a/dev/.doctrees/notebooks/5-Non_linear_value_coupling.doctree b/dev/.doctrees/notebooks/5-Non_linear_value_coupling.doctree index 0a31fafa1..e4b7a2a2b 100644 Binary files a/dev/.doctrees/notebooks/5-Non_linear_value_coupling.doctree and b/dev/.doctrees/notebooks/5-Non_linear_value_coupling.doctree differ diff --git a/dev/.doctrees/notebooks/Example_1_Heart_rate_variability.doctree b/dev/.doctrees/notebooks/Example_1_Heart_rate_variability.doctree index 44d44d793..53f908712 100644 Binary files a/dev/.doctrees/notebooks/Example_1_Heart_rate_variability.doctree and b/dev/.doctrees/notebooks/Example_1_Heart_rate_variability.doctree differ diff --git a/dev/.doctrees/notebooks/Example_2_Input_node_volatility_coupling.doctree b/dev/.doctrees/notebooks/Example_2_Input_node_volatility_coupling.doctree index e4eabd2c6..8654e8e43 100644 Binary files a/dev/.doctrees/notebooks/Example_2_Input_node_volatility_coupling.doctree and b/dev/.doctrees/notebooks/Example_2_Input_node_volatility_coupling.doctree differ diff --git a/dev/.doctrees/notebooks/Example_3_Multi_armed_bandit.doctree b/dev/.doctrees/notebooks/Example_3_Multi_armed_bandit.doctree index eb79e0f0c..3341a1578 100644 Binary files a/dev/.doctrees/notebooks/Example_3_Multi_armed_bandit.doctree and b/dev/.doctrees/notebooks/Example_3_Multi_armed_bandit.doctree differ diff --git a/dev/.doctrees/notebooks/Exercise_1_Introduction_to_the_generalised_hierarchical_gaussian_filter.doctree b/dev/.doctrees/notebooks/Exercise_1_Introduction_to_the_generalised_hierarchical_gaussian_filter.doctree index a68ece9fd..c32b541f6 100644 Binary files a/dev/.doctrees/notebooks/Exercise_1_Introduction_to_the_generalised_hierarchical_gaussian_filter.doctree and b/dev/.doctrees/notebooks/Exercise_1_Introduction_to_the_generalised_hierarchical_gaussian_filter.doctree differ diff --git a/dev/.doctrees/notebooks/Exercise_2_Bayesian_reinforcement_learning.doctree b/dev/.doctrees/notebooks/Exercise_2_Bayesian_reinforcement_learning.doctree index 5e8f0af5a..e68b988d1 100644 Binary files a/dev/.doctrees/notebooks/Exercise_2_Bayesian_reinforcement_learning.doctree and b/dev/.doctrees/notebooks/Exercise_2_Bayesian_reinforcement_learning.doctree differ diff --git a/dev/_images/0752801a8e9a7ef4bd5c29c58da267363798c77cb6e0eec459b2b8da42201449.png b/dev/_images/0752801a8e9a7ef4bd5c29c58da267363798c77cb6e0eec459b2b8da42201449.png new file mode 100644 index 000000000..3545b7e7f Binary files /dev/null and b/dev/_images/0752801a8e9a7ef4bd5c29c58da267363798c77cb6e0eec459b2b8da42201449.png differ diff --git a/dev/_images/097ebe455dd0b45c3ab7165525799a29e6552eaef45db3eb5425d0a38d707d86.png b/dev/_images/097ebe455dd0b45c3ab7165525799a29e6552eaef45db3eb5425d0a38d707d86.png deleted file mode 100644 index 8a64fb5d8..000000000 Binary files a/dev/_images/097ebe455dd0b45c3ab7165525799a29e6552eaef45db3eb5425d0a38d707d86.png and /dev/null differ diff --git a/dev/_images/111191a29f90410eb9af84eef270cc554cc44c61c4ea7f23aef6ce6c2285719d.png b/dev/_images/111191a29f90410eb9af84eef270cc554cc44c61c4ea7f23aef6ce6c2285719d.png deleted file mode 100644 index 7e1fd4648..000000000 Binary files a/dev/_images/111191a29f90410eb9af84eef270cc554cc44c61c4ea7f23aef6ce6c2285719d.png and /dev/null differ diff --git a/dev/_images/16b49d451ace63dba18493e5fa86a67b11802c5a518bbfb7e020844781802ddb.png b/dev/_images/16b49d451ace63dba18493e5fa86a67b11802c5a518bbfb7e020844781802ddb.png deleted file mode 100644 index 7fb40b022..000000000 Binary files a/dev/_images/16b49d451ace63dba18493e5fa86a67b11802c5a518bbfb7e020844781802ddb.png and /dev/null differ diff --git a/dev/_images/16c3e1e0084d5816ddf7a7c818c0b332790b6b9e9f4289026a77687380dc61ce.png b/dev/_images/16c3e1e0084d5816ddf7a7c818c0b332790b6b9e9f4289026a77687380dc61ce.png deleted file mode 100644 index c192538ab..000000000 Binary files a/dev/_images/16c3e1e0084d5816ddf7a7c818c0b332790b6b9e9f4289026a77687380dc61ce.png and /dev/null differ diff --git a/dev/_images/17758d69fb20fae8d7bcb563387c91e93bc82722c1fc4b65669a70a3d7db1760.png b/dev/_images/17758d69fb20fae8d7bcb563387c91e93bc82722c1fc4b65669a70a3d7db1760.png deleted file mode 100644 index 30f35dfc5..000000000 Binary files a/dev/_images/17758d69fb20fae8d7bcb563387c91e93bc82722c1fc4b65669a70a3d7db1760.png and /dev/null differ diff --git a/dev/_images/183e7af4601e68242b0b20c3396e59085718c19b196a8d004b137ddae6815a54.png b/dev/_images/183e7af4601e68242b0b20c3396e59085718c19b196a8d004b137ddae6815a54.png deleted file mode 100644 index 6fc9379d6..000000000 Binary files a/dev/_images/183e7af4601e68242b0b20c3396e59085718c19b196a8d004b137ddae6815a54.png and /dev/null differ diff --git a/dev/_images/190634a6a011b8c91ebba12d3e360b623bcc7e10d8507c2a669cfb4ad53a9718.png b/dev/_images/190634a6a011b8c91ebba12d3e360b623bcc7e10d8507c2a669cfb4ad53a9718.png deleted file mode 100644 index 695d8aca9..000000000 Binary files a/dev/_images/190634a6a011b8c91ebba12d3e360b623bcc7e10d8507c2a669cfb4ad53a9718.png and /dev/null differ diff --git a/dev/_images/1c17ffb3fb39cf3303f465a7c9077c0ee19f0200dc983c5b841028ad980bb247.png b/dev/_images/1c17ffb3fb39cf3303f465a7c9077c0ee19f0200dc983c5b841028ad980bb247.png new file mode 100644 index 000000000..5c6ec6a65 Binary files /dev/null and b/dev/_images/1c17ffb3fb39cf3303f465a7c9077c0ee19f0200dc983c5b841028ad980bb247.png differ diff --git a/dev/_images/1c1e257687fb28d1f91191530db3698e1bc9b6f0cc79b1c9d0e576843ac4491e.png b/dev/_images/1c1e257687fb28d1f91191530db3698e1bc9b6f0cc79b1c9d0e576843ac4491e.png new file mode 100644 index 000000000..4c70c9af5 Binary files /dev/null and b/dev/_images/1c1e257687fb28d1f91191530db3698e1bc9b6f0cc79b1c9d0e576843ac4491e.png differ diff --git a/dev/_images/202276e567ebd75caa984b0f72286b1436da7f1ce63ef31c400a57e18d687a2a.png b/dev/_images/202276e567ebd75caa984b0f72286b1436da7f1ce63ef31c400a57e18d687a2a.png deleted file mode 100644 index 4537d24d8..000000000 Binary files a/dev/_images/202276e567ebd75caa984b0f72286b1436da7f1ce63ef31c400a57e18d687a2a.png and /dev/null differ diff --git a/dev/_images/263eb18313e5ad7e2428ae84cd4045b74efa0790e927bef864f289a8d66e3d72.png b/dev/_images/263eb18313e5ad7e2428ae84cd4045b74efa0790e927bef864f289a8d66e3d72.png deleted file mode 100644 index 71e4c35c4..000000000 Binary files a/dev/_images/263eb18313e5ad7e2428ae84cd4045b74efa0790e927bef864f289a8d66e3d72.png and /dev/null differ diff --git a/dev/_images/2ce52e848bce49064303cb3ddb288b471b354ed8a15ef882bcfe1bb74be434f7.png b/dev/_images/2ce52e848bce49064303cb3ddb288b471b354ed8a15ef882bcfe1bb74be434f7.png deleted file mode 100644 index 7d5237231..000000000 Binary files a/dev/_images/2ce52e848bce49064303cb3ddb288b471b354ed8a15ef882bcfe1bb74be434f7.png and /dev/null differ diff --git a/dev/_images/2d35178e2a199009438042a04b8763688df0de80d47d0fb92c18dd9a2abe16cb.svg b/dev/_images/2d35178e2a199009438042a04b8763688df0de80d47d0fb92c18dd9a2abe16cb.svg new file mode 100644 index 000000000..f57e17f40 --- /dev/null +++ b/dev/_images/2d35178e2a199009438042a04b8763688df0de80d47d0fb92c18dd9a2abe16cb.svg @@ -0,0 +1,135 @@ + + + + + + +%3 + + +cluster10 + +10 + + +cluster10 x 320 + +10 x 320 + + + +mu_temperature + +mu_temperature +~ +Normal + + + +inverse_temperature + +inverse_temperature +~ +LogNormal + + + +mu_temperature->inverse_temperature + + + + + +sigma_volatility + +sigma_volatility +~ +HalfNormal + + + +volatility + +volatility +~ +Normal + + + +sigma_volatility->volatility + + + + + +mu_volatility + +mu_volatility +~ +Normal + + + +mu_volatility->volatility + + + + + +sigma_temperature + +sigma_temperature +~ +HalfNormal + + + +sigma_temperature->inverse_temperature + + + + + +pointwise_loglikelihood + +pointwise_loglikelihood +~ +Deterministic + + + +inverse_temperature->pointwise_loglikelihood + + + + + +log_likelihood + +log_likelihood +~ +CustomDist_log_likelihood + + + +inverse_temperature->log_likelihood + + + + + +volatility->pointwise_loglikelihood + + + + + +volatility->log_likelihood + + + + + \ No newline at end of file diff --git a/dev/_images/3e56dc326f67d9293e712ed417c966ee96fe948b16f516ab23215ade7e2959ca.png b/dev/_images/3e56dc326f67d9293e712ed417c966ee96fe948b16f516ab23215ade7e2959ca.png new file mode 100644 index 000000000..d8f20beec Binary files /dev/null and b/dev/_images/3e56dc326f67d9293e712ed417c966ee96fe948b16f516ab23215ade7e2959ca.png differ diff --git a/dev/_images/45bb4a95e77f968aefdbda19cbbba0cdb45bfdf5313d354191f795dffde4d801.png b/dev/_images/45bb4a95e77f968aefdbda19cbbba0cdb45bfdf5313d354191f795dffde4d801.png deleted file mode 100644 index bb5db4998..000000000 Binary files a/dev/_images/45bb4a95e77f968aefdbda19cbbba0cdb45bfdf5313d354191f795dffde4d801.png and /dev/null differ diff --git a/dev/_images/48c6c5185c5910dc6a47b97bca0afee782662b12422b4bd0d83dec818b6b0082.png b/dev/_images/48c6c5185c5910dc6a47b97bca0afee782662b12422b4bd0d83dec818b6b0082.png new file mode 100644 index 000000000..bb0d57332 Binary files /dev/null and b/dev/_images/48c6c5185c5910dc6a47b97bca0afee782662b12422b4bd0d83dec818b6b0082.png differ diff --git a/dev/_images/4cfad5ed99a52af4fee6d3ee7fbb95ed214d1fed2638b7a2a004104dd83274f7.png b/dev/_images/4cfad5ed99a52af4fee6d3ee7fbb95ed214d1fed2638b7a2a004104dd83274f7.png new file mode 100644 index 000000000..7ea1841b6 Binary files /dev/null and b/dev/_images/4cfad5ed99a52af4fee6d3ee7fbb95ed214d1fed2638b7a2a004104dd83274f7.png differ diff --git a/dev/_images/55bf79dca24aceed77dbc7ceb265ab5c3e8cb45a6ec27edf634a047bea3df056.png b/dev/_images/55bf79dca24aceed77dbc7ceb265ab5c3e8cb45a6ec27edf634a047bea3df056.png deleted file mode 100644 index e38d83918..000000000 Binary files a/dev/_images/55bf79dca24aceed77dbc7ceb265ab5c3e8cb45a6ec27edf634a047bea3df056.png and /dev/null differ diff --git a/dev/_images/5b39ca9470c0c0e861e79fc91fc5dbb954814e87fea9f4f388744b39bb8ef85b.png b/dev/_images/5b39ca9470c0c0e861e79fc91fc5dbb954814e87fea9f4f388744b39bb8ef85b.png deleted file mode 100644 index 8b2666460..000000000 Binary files a/dev/_images/5b39ca9470c0c0e861e79fc91fc5dbb954814e87fea9f4f388744b39bb8ef85b.png and /dev/null differ diff --git a/dev/_images/68ad377c91921c543854eb0b661c3d231e9095c40eb9b329b81ccacc9770570b.png b/dev/_images/68ad377c91921c543854eb0b661c3d231e9095c40eb9b329b81ccacc9770570b.png new file mode 100644 index 000000000..1c01f45ae Binary files /dev/null and b/dev/_images/68ad377c91921c543854eb0b661c3d231e9095c40eb9b329b81ccacc9770570b.png differ diff --git a/dev/_images/6a7501654d2f27c36105613ef951806e02d841a095c2109e9f4fa709f8e23c98.png b/dev/_images/6a7501654d2f27c36105613ef951806e02d841a095c2109e9f4fa709f8e23c98.png new file mode 100644 index 000000000..5c5a4c834 Binary files /dev/null and b/dev/_images/6a7501654d2f27c36105613ef951806e02d841a095c2109e9f4fa709f8e23c98.png differ diff --git a/dev/_images/6b88ea3e50cabd5cbc8d97b615338f4e9252de62bd428ac526ddd609b8408b63.png b/dev/_images/6b88ea3e50cabd5cbc8d97b615338f4e9252de62bd428ac526ddd609b8408b63.png deleted file mode 100644 index 2d468e127..000000000 Binary files a/dev/_images/6b88ea3e50cabd5cbc8d97b615338f4e9252de62bd428ac526ddd609b8408b63.png and /dev/null differ diff --git a/dev/_images/72936410b062a934619602c4bdecfd6a6eb756cf5b787024c8a1823c69b170b7.png b/dev/_images/72936410b062a934619602c4bdecfd6a6eb756cf5b787024c8a1823c69b170b7.png deleted file mode 100644 index c19710fa3..000000000 Binary files a/dev/_images/72936410b062a934619602c4bdecfd6a6eb756cf5b787024c8a1823c69b170b7.png and /dev/null differ diff --git a/dev/_images/7d29572ae423fb4c8d4ea736f01dab651bf0ee09a3d53b5838bcf639ba2eaf01.svg b/dev/_images/7d29572ae423fb4c8d4ea736f01dab651bf0ee09a3d53b5838bcf639ba2eaf01.svg new file mode 100644 index 000000000..2e49b7129 --- /dev/null +++ b/dev/_images/7d29572ae423fb4c8d4ea736f01dab651bf0ee09a3d53b5838bcf639ba2eaf01.svg @@ -0,0 +1,35 @@ + + + + + + +%3 + + + +tonic_volatility_2 + +tonic_volatility_2 +~ +Uniform + + + +hgf_loglike + +hgf_loglike +~ +Potential + + + +tonic_volatility_2->hgf_loglike + + + + + \ No newline at end of file diff --git a/dev/_images/7f13c4bf803eed6fc5cda11bb80b1f738d3028dcd3ddbd4bc851152ea3fcac74.png b/dev/_images/7f13c4bf803eed6fc5cda11bb80b1f738d3028dcd3ddbd4bc851152ea3fcac74.png deleted file mode 100644 index 47d4a07a1..000000000 Binary files a/dev/_images/7f13c4bf803eed6fc5cda11bb80b1f738d3028dcd3ddbd4bc851152ea3fcac74.png and /dev/null differ diff --git a/dev/_images/8515dda47fce4e0256647b115a1826941319528ef37680d5bf25a6f88e75db90.png b/dev/_images/8515dda47fce4e0256647b115a1826941319528ef37680d5bf25a6f88e75db90.png new file mode 100644 index 000000000..d7bc70128 Binary files /dev/null and b/dev/_images/8515dda47fce4e0256647b115a1826941319528ef37680d5bf25a6f88e75db90.png differ diff --git a/dev/_images/85f9ad5ff22e5ca195f5c282b36332983be38a56a1203f35d8563506cc2b1ef6.png b/dev/_images/85f9ad5ff22e5ca195f5c282b36332983be38a56a1203f35d8563506cc2b1ef6.png deleted file mode 100644 index e9b6f2599..000000000 Binary files a/dev/_images/85f9ad5ff22e5ca195f5c282b36332983be38a56a1203f35d8563506cc2b1ef6.png and /dev/null differ diff --git a/dev/_images/8759b966bebb4748b5e9baeac267b90a4aec32f0ff6bbc9b18107d3dc02ac755.png b/dev/_images/8759b966bebb4748b5e9baeac267b90a4aec32f0ff6bbc9b18107d3dc02ac755.png new file mode 100644 index 000000000..c53b43705 Binary files /dev/null and b/dev/_images/8759b966bebb4748b5e9baeac267b90a4aec32f0ff6bbc9b18107d3dc02ac755.png differ diff --git a/dev/_images/8835b0284c744d5c31e6fd5e4150e3885d2ef1a7aceb9e8ec14eb4587993b0e9.png b/dev/_images/8835b0284c744d5c31e6fd5e4150e3885d2ef1a7aceb9e8ec14eb4587993b0e9.png deleted file mode 100644 index 163381e0c..000000000 Binary files a/dev/_images/8835b0284c744d5c31e6fd5e4150e3885d2ef1a7aceb9e8ec14eb4587993b0e9.png and /dev/null differ diff --git a/dev/_images/8b2faa222d1f1f0e7358dc1e0c8200c858553d2a3cfd9205e61edfbdd8dcc2d0.png b/dev/_images/8b2faa222d1f1f0e7358dc1e0c8200c858553d2a3cfd9205e61edfbdd8dcc2d0.png new file mode 100644 index 000000000..64f1ea08f Binary files /dev/null and b/dev/_images/8b2faa222d1f1f0e7358dc1e0c8200c858553d2a3cfd9205e61edfbdd8dcc2d0.png differ diff --git a/dev/_images/8da2eae63f79146baec13996b7f83f3f12f7c09283b70bd98903dd078f7ac15d.png b/dev/_images/8da2eae63f79146baec13996b7f83f3f12f7c09283b70bd98903dd078f7ac15d.png new file mode 100644 index 000000000..21b1de46e Binary files /dev/null and b/dev/_images/8da2eae63f79146baec13996b7f83f3f12f7c09283b70bd98903dd078f7ac15d.png differ diff --git a/dev/_images/8e249fa159dfc5cc394f7ce13632386fe963d248fc3e2f45ab16111479836604.png b/dev/_images/8e249fa159dfc5cc394f7ce13632386fe963d248fc3e2f45ab16111479836604.png new file mode 100644 index 000000000..9c90f7e66 Binary files /dev/null and b/dev/_images/8e249fa159dfc5cc394f7ce13632386fe963d248fc3e2f45ab16111479836604.png differ diff --git a/dev/_images/8e63abafbcb1d32b0175e1116c948c496ed5ab3f1d1f89e35c4925e7017b34ae.png b/dev/_images/8e63abafbcb1d32b0175e1116c948c496ed5ab3f1d1f89e35c4925e7017b34ae.png deleted file mode 100644 index fba31e3ac..000000000 Binary files a/dev/_images/8e63abafbcb1d32b0175e1116c948c496ed5ab3f1d1f89e35c4925e7017b34ae.png and /dev/null differ diff --git a/dev/_images/9586d5eb90b30472de58f2125d0ae30c66aeb63ea3144c919323cf114dea4747.png b/dev/_images/9586d5eb90b30472de58f2125d0ae30c66aeb63ea3144c919323cf114dea4747.png deleted file mode 100644 index ef9fcd74c..000000000 Binary files a/dev/_images/9586d5eb90b30472de58f2125d0ae30c66aeb63ea3144c919323cf114dea4747.png and /dev/null differ diff --git a/dev/_images/9dfd9f76072673bb054d57ecde85332deb41e0a8bdefb8ee88cbaff08e67e0bb.png b/dev/_images/9dfd9f76072673bb054d57ecde85332deb41e0a8bdefb8ee88cbaff08e67e0bb.png new file mode 100644 index 000000000..e497d68d9 Binary files /dev/null and b/dev/_images/9dfd9f76072673bb054d57ecde85332deb41e0a8bdefb8ee88cbaff08e67e0bb.png differ diff --git a/dev/_images/9f7ff7d8ed0deb881b0d2cf612a03a4a13d74154fcc7c09f63fb84ee0205dc88.png b/dev/_images/9f7ff7d8ed0deb881b0d2cf612a03a4a13d74154fcc7c09f63fb84ee0205dc88.png deleted file mode 100644 index b85485870..000000000 Binary files a/dev/_images/9f7ff7d8ed0deb881b0d2cf612a03a4a13d74154fcc7c09f63fb84ee0205dc88.png and /dev/null differ diff --git a/dev/_images/a2a74207d7d71463fe1850c549917d1c9ab3799d634699b6ff1a05a624e65f7f.png b/dev/_images/a2a74207d7d71463fe1850c549917d1c9ab3799d634699b6ff1a05a624e65f7f.png new file mode 100644 index 000000000..49c921378 Binary files /dev/null and b/dev/_images/a2a74207d7d71463fe1850c549917d1c9ab3799d634699b6ff1a05a624e65f7f.png differ diff --git a/dev/_images/b029699c56e2c70d81f4e6bcce04dd3c41cb356c83cd6612e08b9d98567e3635.png b/dev/_images/b029699c56e2c70d81f4e6bcce04dd3c41cb356c83cd6612e08b9d98567e3635.png new file mode 100644 index 000000000..2d4b9507d Binary files /dev/null and b/dev/_images/b029699c56e2c70d81f4e6bcce04dd3c41cb356c83cd6612e08b9d98567e3635.png differ diff --git a/dev/_images/b525de31183c5e033c7f34dfaf8e06f8e87429edf898f36ea82088a15fb6bf71.png b/dev/_images/b525de31183c5e033c7f34dfaf8e06f8e87429edf898f36ea82088a15fb6bf71.png deleted file mode 100644 index 22a566139..000000000 Binary files a/dev/_images/b525de31183c5e033c7f34dfaf8e06f8e87429edf898f36ea82088a15fb6bf71.png and /dev/null differ diff --git a/dev/_images/b6699df4a6fba0fa8c965eef667200f22955c64ae7cfbff92feeafa2532e1e25.png b/dev/_images/b6699df4a6fba0fa8c965eef667200f22955c64ae7cfbff92feeafa2532e1e25.png new file mode 100644 index 000000000..6e3509376 Binary files /dev/null and b/dev/_images/b6699df4a6fba0fa8c965eef667200f22955c64ae7cfbff92feeafa2532e1e25.png differ diff --git a/dev/_images/b6804d4212eb6493bccb3652ca5ec9d4c845eb0245f932b2cb524ab0ebcc65d4.svg b/dev/_images/b6804d4212eb6493bccb3652ca5ec9d4c845eb0245f932b2cb524ab0ebcc65d4.svg deleted file mode 100644 index 6685c1722..000000000 --- a/dev/_images/b6804d4212eb6493bccb3652ca5ec9d4c845eb0245f932b2cb524ab0ebcc65d4.svg +++ /dev/null @@ -1,135 +0,0 @@ - - - - - - -%3 - - -cluster10 - -10 - - -cluster10 x 320 - -10 x 320 - - - -mu_volatility - -mu_volatility -~ -Normal - - - -volatility - -volatility -~ -Normal - - - -mu_volatility->volatility - - - - - -mu_temperature - -mu_temperature -~ -Normal - - - -inverse_temperature - -inverse_temperature -~ -LogNormal - - - -mu_temperature->inverse_temperature - - - - - -sigma_volatility - -sigma_volatility -~ -HalfNormal - - - -sigma_volatility->volatility - - - - - -sigma_temperature - -sigma_temperature -~ -HalfNormal - - - -sigma_temperature->inverse_temperature - - - - - -pointwise_loglikelihood - -pointwise_loglikelihood -~ -Deterministic - - - -inverse_temperature->pointwise_loglikelihood - - - - - -log_likelihood - -log_likelihood -~ -CustomDist_log_likelihood - - - -inverse_temperature->log_likelihood - - - - - -volatility->pointwise_loglikelihood - - - - - -volatility->log_likelihood - - - - - \ No newline at end of file diff --git a/dev/_images/bc2bac16b357c70effc7854d8b81f3b6e66bc3dc6a79a7005db4cb5d4dd6b40b.png b/dev/_images/bc2bac16b357c70effc7854d8b81f3b6e66bc3dc6a79a7005db4cb5d4dd6b40b.png new file mode 100644 index 000000000..116cc07e6 Binary files /dev/null and b/dev/_images/bc2bac16b357c70effc7854d8b81f3b6e66bc3dc6a79a7005db4cb5d4dd6b40b.png differ diff --git a/dev/_images/c06aa9c543950b9451a72f407f8609e33c323cd8e7394ebeefe20feb5f0e0319.png b/dev/_images/c06aa9c543950b9451a72f407f8609e33c323cd8e7394ebeefe20feb5f0e0319.png deleted file mode 100644 index c747ac7aa..000000000 Binary files a/dev/_images/c06aa9c543950b9451a72f407f8609e33c323cd8e7394ebeefe20feb5f0e0319.png and /dev/null differ diff --git a/dev/_images/c5da6e0699223e3746c7634c5361a0693a6c0a944909fc241e7a63b4fa2986f4.png b/dev/_images/c5da6e0699223e3746c7634c5361a0693a6c0a944909fc241e7a63b4fa2986f4.png new file mode 100644 index 000000000..f7ad35aa7 Binary files /dev/null and b/dev/_images/c5da6e0699223e3746c7634c5361a0693a6c0a944909fc241e7a63b4fa2986f4.png differ diff --git a/dev/_images/dc65afb7b8b12ff6716f7fe219d262cd01e045ee2308558daf324834377e22ee.png b/dev/_images/dc65afb7b8b12ff6716f7fe219d262cd01e045ee2308558daf324834377e22ee.png new file mode 100644 index 000000000..ffa252be0 Binary files /dev/null and b/dev/_images/dc65afb7b8b12ff6716f7fe219d262cd01e045ee2308558daf324834377e22ee.png differ diff --git a/dev/_images/69539e2739458d7218e514133841304a4e4b0eb711fc8054497123f2e226d095.svg b/dev/_images/e3093df40c606a365fce51328bb90c832e9b204e89fed0d0688e3e2fdb1677dd.svg similarity index 100% rename from dev/_images/69539e2739458d7218e514133841304a4e4b0eb711fc8054497123f2e226d095.svg rename to dev/_images/e3093df40c606a365fce51328bb90c832e9b204e89fed0d0688e3e2fdb1677dd.svg index 02b4163cb..6acc91819 100644 --- a/dev/_images/69539e2739458d7218e514133841304a4e4b0eb711fc8054497123f2e226d095.svg +++ b/dev/_images/e3093df40c606a365fce51328bb90c832e9b204e89fed0d0688e3e2fdb1677dd.svg @@ -9,22 +9,22 @@ %3 - - -hgf_loglike - -hgf_loglike -~ -Potential - - + tonic_volatility_3 tonic_volatility_3 ~ Normal + + +hgf_loglike + +hgf_loglike +~ +Potential + tonic_volatility_3->hgf_loglike @@ -32,7 +32,7 @@ - + tonic_volatility_2 tonic_volatility_2 diff --git a/dev/_images/e721ebb0f8c3e69d28440d213f44e109a28ceb5fa339875f5f7341eab4c3ae33.png b/dev/_images/e721ebb0f8c3e69d28440d213f44e109a28ceb5fa339875f5f7341eab4c3ae33.png new file mode 100644 index 000000000..dc5d1a0f4 Binary files /dev/null and b/dev/_images/e721ebb0f8c3e69d28440d213f44e109a28ceb5fa339875f5f7341eab4c3ae33.png differ diff --git a/dev/_images/ee76860433445264945a43f3428033a2711a67473b5c54e67ddbfee9732e0fa4.png b/dev/_images/ee76860433445264945a43f3428033a2711a67473b5c54e67ddbfee9732e0fa4.png new file mode 100644 index 000000000..bdea4cf9d Binary files /dev/null and b/dev/_images/ee76860433445264945a43f3428033a2711a67473b5c54e67ddbfee9732e0fa4.png differ diff --git a/dev/_images/f0ead2baa30707cb485e11b2fd37e4f3c07f0e7ef7ec06073212358cbe729580.png b/dev/_images/f0ead2baa30707cb485e11b2fd37e4f3c07f0e7ef7ec06073212358cbe729580.png new file mode 100644 index 000000000..cf47d58d4 Binary files /dev/null and b/dev/_images/f0ead2baa30707cb485e11b2fd37e4f3c07f0e7ef7ec06073212358cbe729580.png differ diff --git a/dev/_images/fdf2d115cbe7a8f9d5cb2c2635ef0314b70400e0214cbc3978553bba5ab9741a.png b/dev/_images/fdf2d115cbe7a8f9d5cb2c2635ef0314b70400e0214cbc3978553bba5ab9741a.png new file mode 100644 index 000000000..4b15defc0 Binary files /dev/null and b/dev/_images/fdf2d115cbe7a8f9d5cb2c2635ef0314b70400e0214cbc3978553bba5ab9741a.png differ diff --git a/dev/_images/fea6b13958b82c35d2e5b77afc5680081b63f83dc3e87558b86cd588023c3137.png b/dev/_images/fea6b13958b82c35d2e5b77afc5680081b63f83dc3e87558b86cd588023c3137.png deleted file mode 100644 index fe6bb9dc8..000000000 Binary files a/dev/_images/fea6b13958b82c35d2e5b77afc5680081b63f83dc3e87558b86cd588023c3137.png and /dev/null differ diff --git a/dev/_modules/index.html b/dev/_modules/index.html index cca310c78..de9cbf423 100644 --- a/dev/_modules/index.html +++ b/dev/_modules/index.html @@ -450,8 +450,7 @@

All modules for which code is available

  • pyhgf.plots
  • pyhgf.response
  • pyhgf.updates.posterior.categorical
  • -
  • pyhgf.updates.posterior.continuous.continuous_node_posterior_update
  • -
  • pyhgf.updates.posterior.continuous.continuous_node_posterior_update_ehgf
  • +
  • pyhgf.updates.posterior.continuous
  • pyhgf.updates.prediction.binary
  • pyhgf.updates.prediction.continuous
  • pyhgf.updates.prediction.dirichlet
  • diff --git a/dev/_modules/pyhgf/model/add_nodes.html b/dev/_modules/pyhgf/model/add_nodes.html index 59f4d5980..b2679c611 100644 --- a/dev/_modules/pyhgf/model/add_nodes.html +++ b/dev/_modules/pyhgf/model/add_nodes.html @@ -450,7 +450,7 @@

    Source code for pyhgf.model.add_nodes

     from __future__ import annotations
     
     from copy import deepcopy
    -from typing import TYPE_CHECKING, Callable, Dict, List, Optional, Tuple, Union
    +from typing import TYPE_CHECKING, Callable, Dict, List, Optional, Tuple
     
     import jax.numpy as jnp
     
    @@ -476,6 +476,7 @@ 

    Source code for pyhgf.model.add_nodes

         coupling_fn: Tuple[Optional[Callable], ...],
     ):
         """Add continuous state node(s) to a network."""
    +
         node_type = 2
     
         default_parameters = {
    @@ -531,6 +532,7 @@ 

    Source code for pyhgf.model.add_nodes

         additional_parameters: Dict,
     ):
         """Add binary state node(s) to a network."""
    +
         # define the type of node that is created
         node_type = 1
     
    @@ -572,9 +574,10 @@ 

    Source code for pyhgf.model.add_nodes

         n_nodes: int,
         node_parameters: Dict,
         additional_parameters: Dict,
    -    value_children: Tuple = (None, None),
    +    value_children: Optional[Tuple[Optional[Tuple]]],
     ):
         """Add exponential family state node(s) to a network."""
    +
         node_type = 3
     
         default_parameters = {
    @@ -629,6 +632,7 @@ 

    Source code for pyhgf.model.add_nodes

         network: Network, n_nodes: int, node_parameters: Dict, additional_parameters: Dict
     ) -> Network:
         """Add categorical state node(s) to a network."""
    +
         node_type = 5
     
         if "n_categories" in node_parameters:
    @@ -690,6 +694,7 @@ 

    Source code for pyhgf.model.add_nodes

         network: Network, n_nodes: int, node_parameters: Dict, additional_parameters: Dict
     ):
         """Add a Dirichlet Process node to a network."""
    +
         node_type = 4
     
         if "batch_size" in additional_parameters.keys():
    @@ -732,12 +737,13 @@ 

    Source code for pyhgf.model.add_nodes

     
    [docs] def get_couplings( - value_parents: Optional[Union[Tuple, List, int]], - volatility_parents: Optional[Union[Tuple, List, int]], - value_children: Optional[Union[Tuple, List, int]], - volatility_children: Optional[Union[Tuple, List, int]], + value_parents: Optional[Tuple], + volatility_parents: Optional[Tuple], + value_children: Optional[Tuple], + volatility_children: Optional[Tuple], ) -> Tuple[Tuple, ...]: """Transform coupling parameter into tuple of indexes and strenghts.""" + couplings = [] for indexes in [ value_parents, @@ -759,7 +765,7 @@

    Source code for pyhgf.model.add_nodes

                 coupling_idxs, coupling_strengths = None, None
             couplings.append((coupling_idxs, coupling_strengths))
     
    -    return tuple(couplings)
    + return couplings
    @@ -768,7 +774,8 @@

    Source code for pyhgf.model.add_nodes

     def update_parameters(
         node_parameters: Dict, default_parameters: Dict, additional_parameters: Dict
     ) -> Dict:
    -    """Update the default node parameters using keywords args and dictonary."""
    +    """Update the default node parameters using keywords args and dictonary"""
    +
         if bool(additional_parameters):
             # ensure that all passed values are valid keys
             invalid_keys = [
    @@ -808,9 +815,10 @@ 

    Source code for pyhgf.model.add_nodes

         volatility_parents: Tuple = (None, None),
         value_children: Tuple = (None, None),
         volatility_children: Tuple = (None, None),
    -    coupling_fn: Tuple[Optional[Callable], ...] = (None,),
    +    coupling_fn: Optional[Tuple[Optional[Callable], ...]] = (None,),
     ) -> Network:
         """Insert a set of parametrised node in a network."""
    +
         # ensure that the set of coupling functions match with the number of child nodes
         if value_children[0] is not None:
             if value_children[0] is None:
    diff --git a/dev/_modules/pyhgf/model/network.html b/dev/_modules/pyhgf/model/network.html
    index 0b1e73f88..82e1b7491 100644
    --- a/dev/_modules/pyhgf/model/network.html
    +++ b/dev/_modules/pyhgf/model/network.html
    @@ -535,7 +535,7 @@ 

    Source code for pyhgf.model.network

             self.input_idxs = value
     
         def create_belief_propagation_fn(
    -        self, overwrite: bool = True, update_type: str = "unbounded"
    +        self, overwrite: bool = True, update_type: str = "eHGF"
         ) -> "Network":
             """Create the belief propagation function.
     
    @@ -549,16 +549,11 @@ 

    Source code for pyhgf.model.network

                 preexisting values. Otherwise, do not create a new function if the attribute
                 `scan_fn` is already defined.
             update_type :
    -            The type of update to perform for volatility coupling. Can be `"unbounded"`
    -            (defaults), `"ehgf"` or `"standard"`. The unbounded approximation was
    -            recently introduced to avoid negative precisions updates, which greatly
    -            improve sampling performance. The eHGF update step was proposed as an
    +            The type of update to perform for volatility coupling. Can be `"eHGF"`
    +            (defaults) or `"standard"`. The eHGF update step was proposed as an
                 alternative to the original definition in that it starts by updating the
                 mean and then the precision of the parent node, which generally reduces the
    -            occurence of negative precision updates, while not removing them entirely.
    -            .. note:
    -              The different update steps only apply to nodes having at least one
    -              volatility parents. In other cases, the regular HGF updates are applied.
    +            errors associated with impossible parameter space and improves sampling.
     
             """
             # create the update sequence if it does not already exist
    @@ -1025,6 +1020,9 @@ 

    Source code for pyhgf.model.network

     
             return self
    + + +# Functions to be added
    diff --git a/dev/_modules/pyhgf/updates/posterior/continuous.html b/dev/_modules/pyhgf/updates/posterior/continuous.html new file mode 100644 index 000000000..da017956c --- /dev/null +++ b/dev/_modules/pyhgf/updates/posterior/continuous.html @@ -0,0 +1,1072 @@ + + + + + + + + + + pyhgf.updates.posterior.continuous — pyhgf 0.2.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + + + + + + +
    +
    +
    +
    +
    + +
    + +
    + + + + + +
    +
    + + + + + +
    + + + + + + + + + + + +
    + +
    + + +
    +
    + +
    +
    + +
    + +
    + + + + +
    + +
    + + +
    +
    + + + + + +
    + +

    Source code for pyhgf.updates.posterior.continuous

    +# Author: Nicolas Legrand <nicolas.legrand@cas.au.dk>
    +
    +from functools import partial
    +from typing import Dict
    +
    +import jax.numpy as jnp
    +from jax import grad, jit
    +
    +from pyhgf.typing import Edges
    +
    +
    +
    +[docs] +@partial(jit, static_argnames=("edges", "node_idx")) +def posterior_update_mean_continuous_node( + attributes: Dict, + edges: Edges, + node_idx: int, + node_precision: float, +) -> float: + r"""Update the mean of a state node using the value prediction errors. + + 1. Mean update from value coupling. + + The new mean of a state node :math:`b` value coupled with other input and/or state + nodes :math:`j` at time :math:`k` is given by: + + For linear value coupling: + + .. math:: + \mu_b^{(k)} = \hat{\mu}_b^{(k)} + \sum_{j=1}^{N_{children}} + \frac{\kappa_j \hat{\pi}_j^{(k)}}{\pi_b} \delta_j^{(k)} + + Where :math:`\kappa_j` is the volatility coupling strength between the child node + and the state node and :math:`\delta_j^{(k)}` is the value prediction error that + was computed beforehand by + :py:func:`pyhgf.updates.prediction_errors.continuous.continuous_node_value_prediction_error`. + + For non-linear value coupling: + + .. math:: + \mu_b^{(k)} = \hat{\mu}_b^{(k)} + \sum_{j=1}^{N_{children}} + \frac{\kappa_j g'_{j,b}({\mu}_b^{(k-1)}) \hat{\pi}_j^{(k)}}{\pi_b} + \delta_j^{(k)} + + + 2. Mean update from volatility coupling. + + The new mean of a state node :math:`b` volatility coupled with other input and/or + state nodes :math:`j` at time :math:`k` is given by: + + .. math:: + \mu_b^{(k)} = \hat{\mu}_b^{(k)} + \frac{1}{2\pi_b} + \sum_{j=1}^{N_{children}} \kappa_j \gamma_j^{(k)} \Delta_j^{(k)} + + where :math:`\kappa_j` is the volatility coupling strength between the volatility + parent and the volatility children :math:`j` and :math:`\Delta_j^{(k)}` is the + volatility prediction error is given by: + + .. math:: + + \Delta_j^{(k)} = \frac{\hat{\pi}_j^{(k)}}{\pi_j^{(k)}} + + \hat{\pi}_j^{(k)} \left( \delta_j^{(k)} \right)^2 - 1 + + with :math:`\delta_j^{(k)}` the value prediction error + :math:`\delta_j^{(k)} = \mu_j^{k} - \hat{\mu}_j^{k}`. + + :math:`\gamma_j^{(k)}` is the effective precision of the prediction, given by: + + .. math:: + + \gamma_j^{(k)} = \Omega_j^{(k)} \hat{\pi}_j^{(k)} + + with :math:`\Omega_j^{(k)}` the predicted volatility computed in the prediction + step :py:func:`pyhgf.updates.prediction.predict_precision`. + + If the child node is a continuous state node, the volatility prediction error + :math:`\Delta_j^{(k)}` was computed by + :py:func:`pyhgf.updates.prediction_errors.continuous.continuous_node_volatility_prediction_error`. + + Parameters + ---------- + attributes : + The attributes of the probabilistic nodes. + edges : + The edges of the probabilistic nodes as a tuple of + :py:class:`pyhgf.typing.Indexes`. The tuple has the same length as the node + number. For each node, the index lists the value and volatility parents and + children. + node_idx : + Pointer to the value parent node that will be updated. + node_precision : + The precision of the node. Depending on the kind of volatility update, this + value can be the expected precision (ehgf), or the posterior from the update + (standard). + + Returns + ------- + posterior_mean : + The new posterior mean. + + Notes + ----- + This update step is similar to the one used for the state node, except that it uses + the observed value instead of the mean of the child node, and the expected mean of + the parent node instead of the expected mean of the child node. + + See Also + -------- + posterior_update_precision_continuous_node + + References + ---------- + .. [1] Weber, L. A., Waade, P. T., Legrand, N., Møller, A. H., Stephan, K. E., & + Mathys, C. (2023). The generalized Hierarchical Gaussian Filter (Version 1). + arXiv. https://doi.org/10.48550/ARXIV.2305.10937 + + """ + # sum the prediction errors from both value and volatility coupling + ( + value_precision_weigthed_prediction_error, + volatility_precision_weigthed_prediction_error, + ) = (0.0, 0.0) + + # Value coupling updates - update the mean of a value parent + # ---------------------------------------------------------- + if edges[node_idx].value_children is not None: + for value_child_idx, value_coupling, coupling_fn in zip( + edges[node_idx].value_children, # type: ignore + attributes[node_idx]["value_coupling_children"], + edges[node_idx].coupling_fn, + ): + # get the value prediction error (VAPE) + # if this is jnp.nan (no observation) set the VAPE to 0.0 + value_prediction_error = attributes[value_child_idx]["temp"][ + "value_prediction_error" + ] + + # cancel the prediction error if the child value was not observed + value_prediction_error *= attributes[value_child_idx]["observed"] + + # get differential of coupling function with value children + if coupling_fn is None: # linear coupling + coupling_fn_prime = 1 + else: # non-linear coupling + # Compute the derivative of the coupling function + coupling_fn_prime = grad(coupling_fn)(attributes[node_idx]["mean"]) + + # expected precisions from the value children + # sum the precision weigthed prediction errors over all children + value_precision_weigthed_prediction_error += ( + ( + ( + value_coupling + * attributes[value_child_idx]["expected_precision"] + * coupling_fn_prime + ) + / node_precision + ) + ) * value_prediction_error + + # Volatility coupling updates - update the mean of a volatility parent + # -------------------------------------------------------------------- + if edges[node_idx].volatility_children is not None: + for volatility_child_idx, volatility_coupling in zip( + edges[node_idx].volatility_children, # type: ignore + attributes[node_idx]["volatility_coupling_children"], + ): + # get the volatility prediction error (VOPE) + volatility_prediction_error = attributes[volatility_child_idx]["temp"][ + "volatility_prediction_error" + ] + + # retrieve the effective precision (γ) + # computed during the prediction step + effective_precision = attributes[volatility_child_idx]["temp"][ + "effective_precision" + ] + + # the precision weigthed prediction error + precision_weigthed_prediction_error = ( + volatility_coupling * effective_precision * volatility_prediction_error + ) + + # weight using the node's precision + precision_weigthed_prediction_error *= 1 / (2 * node_precision) + + # cancel the prediction error if the child value was not observed + precision_weigthed_prediction_error *= attributes[volatility_child_idx][ + "observed" + ] + + # aggregate over volatility children + volatility_precision_weigthed_prediction_error += ( + precision_weigthed_prediction_error + ) + + # Compute the new posterior mean + # using value prediction errors from both value and volatility coupling + posterior_mean = ( + attributes[node_idx]["expected_mean"] + + value_precision_weigthed_prediction_error + + volatility_precision_weigthed_prediction_error + ) + + return posterior_mean
    + + + +
    +[docs] +@partial(jit, static_argnames=("edges", "node_idx")) +def posterior_update_precision_continuous_node( + attributes: Dict, + edges: Edges, + node_idx: int, +) -> float: + r"""Update the precision of a state node using the volatility prediction errors. + + #. Precision update from value coupling. + + The new precision of a state node :math:`b` value coupled with other input and/or + state nodes :math:`j` at time :math:`k` is given by: + + For linear coupling (default) + + .. math:: + + \pi_b^{(k)} = \hat{\pi}_b^{(k)} + \sum_{j=1}^{N_{children}} + \kappa_j^2 \hat{\pi}_j^{(k)} + + Where :math:`\kappa_j` is the volatility coupling strength between the child node + and the state node and :math:`\delta_j^{(k)}` is the value prediction error that + was computed before hand by + :py:func:`pyhgf.updates.prediction_errors.continuous.continuous_node_value_prediction_error`. + + For non-linear value coupling: + + .. math:: + + \pi_b^{(k)} = \hat{\pi}_b^{(k)} + \sum_{j=1}^{N_{children}} + \hat{\pi}_j^{(k)} * (\kappa_j^2 * g'_{j,b}(\mu_b^(k-1))^2 - + g''_{j,b}(\mu_b^(k-1))*\delta_j) + + #. Precision update from volatility coupling. + + The new precision of a state node :math:`b` volatility coupled with other input + and/or state nodes :math:`j` at time :math:`k` is given by: + + .. math:: + + \pi_b^{(k)} = \hat{\pi}_b^{(k)} + \sum_{j=1}^{N_{children}} + \frac{1}{2} \left( \kappa_j \gamma_j^{(k)} \right) ^2 + + \left( \kappa_j \gamma_j^{(k)} \right) ^2 \Delta_j^{(k)} - + \frac{1}{2} \kappa_j^2 \gamma_j^{(k)} \Delta_j^{(k)} + + where :math:`\kappa_j` is the volatility coupling strength between the volatility + parent and the volatility children :math:`j` and :math:`\Delta_j^{(k)}` is the + volatility prediction error given by: + + .. math:: + + \Delta_j^{(k)} = \frac{\hat{\pi}_j^{(k)}}{\pi_j^{(k)}} + + \hat{\pi}_j^{(k)} \left( \delta_j^{(k)} \right)^2 - 1 + + with :math:`\delta_j^{(k)}` the value prediction error + :math:`\delta_j^{(k)} = \mu_j^{k} - \hat{\mu}_j^{k}`. + + :math:`\gamma_j^{(k)}` is the effective precision of the prediction, given by: + + .. math:: + + \gamma_j^{(k)} = \Omega_j^{(k)} \hat{\pi}_j^{(k)} + + that was computed in the prediction step. + + Parameters + ---------- + attributes : + The attributes of the probabilistic nodes. + edges : + The edges of the probabilistic nodes as a tuple of + :py:class:`pyhgf.typing.Indexes`. The tuple has the same length as node number. + For each node, the index list value and volatility parents and children. + node_idx : + Pointer to the value parent node that will be updated. + time_step : + The time elapsed between this observation and the previous one. + + Returns + ------- + posterior_precision : + The new posterior precision. + + Notes + ----- + This update step is similar to the one used for the state node, except that it uses + the observed value instead of the mean of the child node, and the expected mean of + the parent node instead of the expected mean of the child node. + + See Also + -------- + posterior_update_mean_continuous_node + + References + ---------- + .. [1] Weber, L. A., Waade, P. T., Legrand, N., Møller, A. H., Stephan, K. E., & + Mathys, C. (2023). The generalized Hierarchical Gaussian Filter (Version 1). + arXiv. https://doi.org/10.48550/ARXIV.2305.10937 + + """ + # sum the prediction errors from both value and volatility coupling + precision_weigthed_prediction_error = 0.0 + + # Value coupling updates - update the precision of a value parent + # --------------------------------------------------------------- + if edges[node_idx].value_children is not None: + for value_child_idx, value_coupling, coupling_fn in zip( + edges[node_idx].value_children, # type: ignore + attributes[node_idx]["value_coupling_children"], + edges[node_idx].coupling_fn, + ): + if coupling_fn is None: # linear coupling + coupling_fn_prime = 1 + coupling_fn_second = 0 + else: # non-linear coupling + coupling_fn_prime = grad(coupling_fn)(attributes[node_idx]["mean"]) ** 2 + value_prediction_error = attributes[value_child_idx]["temp"][ + "value_prediction_error" + ] + coupling_fn_second = ( + grad(grad(coupling_fn))(attributes[node_idx]["mean"]) + * value_prediction_error + ) + + # cancel the prediction error if the child value was not observed + precision_weigthed_prediction_error += ( + value_coupling**2 + * attributes[value_child_idx]["expected_precision"] + * coupling_fn_prime + - coupling_fn_second + ) * attributes[value_child_idx]["observed"] + + # Volatility coupling updates - update the precision of a volatility parent + # ------------------------------------------------------------------------- + if edges[node_idx].volatility_children is not None: + for volatility_child_idx, volatility_coupling in zip( + edges[node_idx].volatility_children, # type: ignore + attributes[node_idx]["volatility_coupling_children"], + ): + # volatility weigthed precision for the volatility child (γ) + effective_precision = attributes[volatility_child_idx]["temp"][ + "effective_precision" + ] + + # retrieve the volatility prediction error + volatility_prediction_error = attributes[volatility_child_idx]["temp"][ + "volatility_prediction_error" + ] + + # sum over all volatility children + # cancel the prediction error if the child value was not observed + precision_weigthed_prediction_error += ( + 0.5 * (volatility_coupling * effective_precision) ** 2 + + (volatility_coupling * effective_precision) ** 2 + * volatility_prediction_error + - 0.5 + * volatility_coupling**2 + * effective_precision + * volatility_prediction_error + ) * attributes[volatility_child_idx]["observed"] + + # Compute the new posterior precision + # using value prediction errors from both value and volatility coupling + posterior_precision = ( + attributes[node_idx]["expected_precision"] + precision_weigthed_prediction_error + ) + + # ensure the new precision is greater than 0 + observed_posterior_precision = jnp.where( + posterior_precision > 1e-128, posterior_precision, jnp.nan + ) + + # additionnal steps for unobserved values + # --------------------------------------- + + # List the node's volatility parents + volatility_parents_idxs = edges[node_idx].volatility_parents + + # Get the tonic volatility from the node + total_volatility = attributes[node_idx]["tonic_volatility"] + + # Look at the (optional) volatility parents and add their value to the tonic + # volatility to get the total volatility + if volatility_parents_idxs is not None: + for volatility_parents_idx, volatility_coupling in zip( + volatility_parents_idxs, + attributes[node_idx]["volatility_coupling_parents"], + ): + total_volatility += ( + volatility_coupling * attributes[volatility_parents_idx]["mean"] + ) + + # compute the predicted_volatility from the total volatility + time_step = attributes[-1]["time_step"] + predicted_volatility = time_step * jnp.exp(total_volatility) + + # Estimate the new precision for the continuous state node + unobserved_posterior_precision = 1 / ( + (1 / attributes[node_idx]["precision"]) + predicted_volatility + ) + + # for all children, look at the values of VAPE + # if all these values are NaNs, the node has not received observations + observations = [] + if edges[node_idx].value_children is not None: + for children_idx in edges[node_idx].value_children: # type: ignore + observations.append(attributes[children_idx]["observed"]) + if edges[node_idx].volatility_children is not None: + for children_idx in edges[node_idx].volatility_children: # type: ignore + observations.append(attributes[children_idx]["observed"]) + observations = jnp.any(jnp.array(observations)) + + posterior_precision = ( + unobserved_posterior_precision * (1 - observations) # type: ignore + + observed_posterior_precision * observations + ) + + return posterior_precision
    + + + +
    +[docs] +@partial(jit, static_argnames=("edges", "node_idx")) +def continuous_node_posterior_update( + attributes: Dict, node_idx: int, edges: Edges, **args +) -> Dict: + """Update the posterior of a continuous node using the standard HGF update. + + The standard HGF posterior update is a two-step process: + 1. Update the posterior precision. + 2. Update the posterior mean and assume that the posterior precision is the value + updated in the first step. + + Parameters + ---------- + attributes : + The attributes of the probabilistic nodes. + node_idx : + Pointer to the node that needs to be updated. After continuous updates, the + parameters of value and volatility parents (if any) will be different. + edges : + The edges of the probabilistic nodes as a tuple of + :py:class:`pyhgf.typing.Indexes`. The tuple has the same length as node number. + For each node, the index list value and volatility parents and children. + + Returns + ------- + attributes : + The updated attributes of the probabilistic nodes. + + See Also + -------- + posterior_update_precision_continuous_node, posterior_update_mean_continuous_node + + References + ---------- + .. [1] Weber, L. A., Waade, P. T., Legrand, N., Møller, A. H., Stephan, K. E., & + Mathys, C. (2023). The generalized Hierarchical Gaussian Filter (Version 1). + arXiv. https://doi.org/10.48550/ARXIV.2305.10937 + + """ + # update the posterior mean and precision + attributes[node_idx]["precision"] = posterior_update_precision_continuous_node( + attributes, edges, node_idx + ) + + attributes[node_idx]["mean"] = posterior_update_mean_continuous_node( + attributes, edges, node_idx, node_precision=attributes[node_idx]["precision"] + ) + + return attributes
    + + + +
    +[docs] +@partial(jit, static_argnames=("edges", "node_idx")) +def continuous_node_posterior_update_ehgf( + attributes: Dict, node_idx: int, edges: Edges, **args +) -> Dict: + """Update the posterior of a continuous node using the eHGF update. + + The eHGF posterior update is a two-step process: + 1. Update the posterior mean and assume that the posterior precision is equal to + the expected precision. + 2. Update the posterior precision. + + .. note:: + By updating the mean first, and approximating the precision using the expected, + precision, this update step often perform better than the regular update and + limit the occurence of negative precision that cause the model to fail under + some circumstances + + Parameters + ---------- + attributes : + The attributes of the probabilistic nodes. + node_idx : + Pointer to the node that needs to be updated. After continuous updates, the + parameters of value and volatility parents (if any) will be different. + edges : + The edges of the probabilistic nodes as a tuple of + :py:class:`pyhgf.typing.Indexes`. The tuple has the same length as node number. + For each node, the index list value and volatility parents and children. + + Returns + ------- + attributes : + The updated attributes of the probabilistic nodes. + + See Also + -------- + posterior_update_precision_continuous_node, posterior_update_mean_continuous_node + + References + ---------- + .. [1] Weber, L. A., Waade, P. T., Legrand, N., Møller, A. H., Stephan, K. E., & + Mathys, C. (2023). The generalized Hierarchical Gaussian Filter (Version 1). + arXiv. https://doi.org/10.48550/ARXIV.2305.10937 + + """ + # update the posterior mean and precision using the eHGF update step + # we start with the mean update using the expected precision as an approximation + posterior_mean = posterior_update_mean_continuous_node( + attributes, + edges, + node_idx, + node_precision=attributes[node_idx]["expected_precision"], + ) + attributes[node_idx]["mean"] = posterior_mean + + posterior_precision = posterior_update_precision_continuous_node( + attributes, + edges, + node_idx, + ) + attributes[node_idx]["precision"] = posterior_precision + + return attributes
    + +
    + +
    + + + + + +
    + +
    +
    +
    + +
    + + + + +
    +
    + +
    + +
    +
    +
    + + + + + +
    + + +
    + + \ No newline at end of file diff --git a/dev/_modules/pyhgf/updates/posterior/continuous/continuous_node_posterior_update.html b/dev/_modules/pyhgf/updates/posterior/continuous/continuous_node_posterior_update.html deleted file mode 100644 index f02d85178..000000000 --- a/dev/_modules/pyhgf/updates/posterior/continuous/continuous_node_posterior_update.html +++ /dev/null @@ -1,587 +0,0 @@ - - - - - - - - - - pyhgf.updates.posterior.continuous.continuous_node_posterior_update — pyhgf 0.2.0 documentation - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    - - - - - - - - - - -
    -
    -
    -
    -
    - -
    - -
    - - - - - -
    -
    - - - - - -
    - - - - - - - - - - - -
    - -
    - - -
    -
    - -
    -
    - -
    - -
    - - - - -
    - -
    - - -
    -
    - - - - - -
    - -

    Source code for pyhgf.updates.posterior.continuous.continuous_node_posterior_update

    -# Author: Nicolas Legrand <nicolas.legrand@cas.au.dk>
    -
    -from functools import partial
    -from typing import Dict
    -
    -from jax import jit
    -
    -from pyhgf.typing import Edges
    -
    -from .posterior_update_mean_continuous_node import posterior_update_mean_continuous_node
    -from .posterior_update_precision_continuous_node import (
    -    posterior_update_precision_continuous_node,
    -)
    -
    -
    -
    -[docs] -@partial(jit, static_argnames=("edges", "node_idx")) -def continuous_node_posterior_update( - attributes: Dict, node_idx: int, edges: Edges, **args -) -> Dict: - """Update the posterior of a continuous node using the standard HGF update. - - The standard HGF posterior update is a two-step process: - 1. Update the posterior precision. - 2. Update the posterior mean and assume that the posterior precision is the value - updated in the first step. - - Parameters - ---------- - attributes : - The attributes of the probabilistic nodes. - node_idx : - Pointer to the node that needs to be updated. After continuous updates, the - parameters of value and volatility parents (if any) will be different. - edges : - The edges of the probabilistic nodes as a tuple of - :py:class:`pyhgf.typing.Indexes`. The tuple has the same length as node number. - For each node, the index list value and volatility parents and children. - - Returns - ------- - attributes : - The updated attributes of the probabilistic nodes. - - See Also - -------- - posterior_update_precision_continuous_node, posterior_update_mean_continuous_node - - References - ---------- - .. [1] Weber, L. A., Waade, P. T., Legrand, N., Møller, A. H., Stephan, K. E., & - Mathys, C. (2023). The generalized Hierarchical Gaussian Filter (Version 1). - arXiv. https://doi.org/10.48550/ARXIV.2305.10937 - - """ - # update the posterior mean and precision - attributes[node_idx]["precision"] = posterior_update_precision_continuous_node( - attributes, edges, node_idx - ) - - attributes[node_idx]["mean"] = posterior_update_mean_continuous_node( - attributes, edges, node_idx, node_precision=attributes[node_idx]["precision"] - ) - - return attributes
    - -
    - -
    - - - - - -
    - -
    -
    -
    - -
    - - - - -
    -
    - -
    - -
    -
    -
    - - - - - -
    - - -
    - - \ No newline at end of file diff --git a/dev/_modules/pyhgf/updates/posterior/continuous/continuous_node_posterior_update_ehgf.html b/dev/_modules/pyhgf/updates/posterior/continuous/continuous_node_posterior_update_ehgf.html deleted file mode 100644 index 5faeb17fa..000000000 --- a/dev/_modules/pyhgf/updates/posterior/continuous/continuous_node_posterior_update_ehgf.html +++ /dev/null @@ -1,601 +0,0 @@ - - - - - - - - - - pyhgf.updates.posterior.continuous.continuous_node_posterior_update_ehgf — pyhgf 0.2.0 documentation - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    - - - - - - - - - - -
    -
    -
    -
    -
    - -
    - -
    - - - - - -
    -
    - - - - - -
    - - - - - - - - - - - -
    - -
    - - -
    -
    - -
    -
    - -
    - -
    - - - - -
    - -
    - - -
    -
    - - - - - -
    - -

    Source code for pyhgf.updates.posterior.continuous.continuous_node_posterior_update_ehgf

    -# Author: Nicolas Legrand <nicolas.legrand@cas.au.dk>
    -
    -from functools import partial
    -from typing import Dict
    -
    -from jax import jit
    -
    -from pyhgf.typing import Edges
    -
    -from .posterior_update_mean_continuous_node import posterior_update_mean_continuous_node
    -from .posterior_update_precision_continuous_node import (
    -    posterior_update_precision_continuous_node,
    -)
    -
    -
    -
    -[docs] -@partial(jit, static_argnames=("edges", "node_idx")) -def continuous_node_posterior_update_ehgf( - attributes: Dict, node_idx: int, edges: Edges, **args -) -> Dict: - """Update the posterior of a continuous node using the eHGF update. - - The eHGF posterior update is a two-step process: - 1. Update the posterior mean and assume that the posterior precision is equal to - the expected precision. - 2. Update the posterior precision. - - .. note:: - By updating the mean first, and approximating the precision using the expected, - precision, this update step often perform better than the regular update and - limit the occurence of negative precision that cause the model to fail under - some circumstances - - Parameters - ---------- - attributes : - The attributes of the probabilistic nodes. - node_idx : - Pointer to the node that needs to be updated. After continuous updates, the - parameters of value and volatility parents (if any) will be different. - edges : - The edges of the probabilistic nodes as a tuple of - :py:class:`pyhgf.typing.Indexes`. The tuple has the same length as node number. - For each node, the index list value and volatility parents and children. - - Returns - ------- - attributes : - The updated attributes of the probabilistic nodes. - - See Also - -------- - posterior_update_precision_continuous_node, posterior_update_mean_continuous_node - - References - ---------- - .. [1] Weber, L. A., Waade, P. T., Legrand, N., Møller, A. H., Stephan, K. E., & - Mathys, C. (2023). The generalized Hierarchical Gaussian Filter (Version 1). - arXiv. https://doi.org/10.48550/ARXIV.2305.10937 - - """ - # update the posterior mean and precision using the eHGF update step - # we start with the mean update using the expected precision as an approximation - posterior_mean = posterior_update_mean_continuous_node( - attributes, - edges, - node_idx, - node_precision=attributes[node_idx]["expected_precision"], - ) - attributes[node_idx]["mean"] = posterior_mean - - posterior_precision = posterior_update_precision_continuous_node( - attributes, - edges, - node_idx, - ) - attributes[node_idx]["precision"] = posterior_precision - - return attributes
    - -
    - -
    - - - - - -
    - -
    -
    -
    - -
    - - - - -
    -
    - -
    - -
    -
    -
    - - - - - -
    - - -
    - - \ No newline at end of file diff --git a/dev/_modules/pyhgf/utils/get_update_sequence.html b/dev/_modules/pyhgf/utils/get_update_sequence.html index 0a39ea1c9..f85e85140 100644 --- a/dev/_modules/pyhgf/utils/get_update_sequence.html +++ b/dev/_modules/pyhgf/utils/get_update_sequence.html @@ -456,7 +456,6 @@

    Source code for pyhgf.utils.get_update_sequence

    < from pyhgf.updates.posterior.continuous import ( continuous_node_posterior_update, continuous_node_posterior_update_ehgf, - continuous_node_posterior_update_unbounded, ) from pyhgf.updates.prediction.binary import binary_state_node_prediction from pyhgf.updates.prediction.continuous import continuous_node_prediction @@ -585,12 +584,7 @@

    Source code for pyhgf.utils.get_update_sequence

    < if all([i not in nodes_without_prediction_error for i in all_children]): no_update = False if network.edges[idx].node_type == 2: - if update_type == "unbounded": - if network.edges[idx].volatility_children is not None: - update_fn = continuous_node_posterior_update_unbounded - else: - update_fn = continuous_node_posterior_update - elif update_type == "eHGF": + if update_type == "eHGF": if network.edges[idx].volatility_children is not None: update_fn = continuous_node_posterior_update_ehgf else: diff --git a/dev/_sources/generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.posterior_update_mean_continuous_node.rst.txt b/dev/_sources/generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.posterior_update_mean_continuous_node.rst.txt index 162e06368..aee5477e8 100644 --- a/dev/_sources/generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.posterior_update_mean_continuous_node.rst.txt +++ b/dev/_sources/generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.posterior_update_mean_continuous_node.rst.txt @@ -1,12 +1,6 @@ pyhgf.updates.posterior.continuous.posterior\_update\_mean\_continuous\_node ============================================================================ -.. automodule:: pyhgf.updates.posterior.continuous.posterior_update_mean_continuous_node +.. currentmodule:: pyhgf.updates.posterior.continuous - - .. rubric:: Functions - - .. autosummary:: - - posterior_update_mean_continuous_node - \ No newline at end of file +.. autofunction:: posterior_update_mean_continuous_node \ No newline at end of file diff --git a/dev/_sources/generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.posterior_update_precision_continuous_node.rst.txt b/dev/_sources/generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.posterior_update_precision_continuous_node.rst.txt index e2f6dbf2c..1e922433b 100644 --- a/dev/_sources/generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.posterior_update_precision_continuous_node.rst.txt +++ b/dev/_sources/generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.posterior_update_precision_continuous_node.rst.txt @@ -1,12 +1,6 @@ pyhgf.updates.posterior.continuous.posterior\_update\_precision\_continuous\_node ================================================================================= -.. automodule:: pyhgf.updates.posterior.continuous.posterior_update_precision_continuous_node +.. currentmodule:: pyhgf.updates.posterior.continuous - - .. rubric:: Functions - - .. autosummary:: - - posterior_update_precision_continuous_node - \ No newline at end of file +.. autofunction:: posterior_update_precision_continuous_node \ No newline at end of file diff --git a/dev/api.html b/dev/api.html index 53a9d5498..cd25f6c39 100644 --- a/dev/api.html +++ b/dev/api.html @@ -505,11 +505,11 @@

    Categorical nodes

    Continuous nodes#

    - - + + - - + + @@ -691,7 +691,7 @@

    Model

    - + diff --git a/dev/generated/pyhgf.model/pyhgf.model.add_ef_state.html b/dev/generated/pyhgf.model/pyhgf.model.add_ef_state.html index 81d5930ee..425749a31 100644 --- a/dev/generated/pyhgf.model/pyhgf.model.add_ef_state.html +++ b/dev/generated/pyhgf.model/pyhgf.model.add_ef_state.html @@ -557,7 +557,7 @@

    pyhgf.model.add_ef_state#

    -pyhgf.model.add_ef_state(network: Network, n_nodes: int, node_parameters: Dict, additional_parameters: Dict, value_children: Tuple = (None, None))[source]#
    +pyhgf.model.add_ef_state(network: Network, n_nodes: int, node_parameters: Dict, additional_parameters: Dict, value_children: Tuple[Tuple | None] | None)[source]#

    Add exponential family state node(s) to a network.

    diff --git a/dev/generated/pyhgf.model/pyhgf.model.get_couplings.html b/dev/generated/pyhgf.model/pyhgf.model.get_couplings.html index 0938ae0bd..cb6eb66eb 100644 --- a/dev/generated/pyhgf.model/pyhgf.model.get_couplings.html +++ b/dev/generated/pyhgf.model/pyhgf.model.get_couplings.html @@ -557,7 +557,7 @@

    pyhgf.model.get_couplings#

    -pyhgf.model.get_couplings(value_parents: List | Tuple | int | None, volatility_parents: List | Tuple | int | None, value_children: List | Tuple | int | None, volatility_children: List | Tuple | int | None) Tuple[Tuple, ...][source]#
    +pyhgf.model.get_couplings(value_parents: Tuple | None, volatility_parents: Tuple | None, value_children: Tuple | None, volatility_children: Tuple | None) Tuple[Tuple, ...][source]#

    Transform coupling parameter into tuple of indexes and strenghts.

    diff --git a/dev/generated/pyhgf.model/pyhgf.model.insert_nodes.html b/dev/generated/pyhgf.model/pyhgf.model.insert_nodes.html index 93521ed8f..d3ec0e30a 100644 --- a/dev/generated/pyhgf.model/pyhgf.model.insert_nodes.html +++ b/dev/generated/pyhgf.model/pyhgf.model.insert_nodes.html @@ -557,7 +557,7 @@

    pyhgf.model.insert_nodes#

    -pyhgf.model.insert_nodes(network: Network, n_nodes: int, node_type: int, node_parameters: Dict, value_parents: Tuple = (None, None), volatility_parents: Tuple = (None, None), value_children: Tuple = (None, None), volatility_children: Tuple = (None, None), coupling_fn: Tuple[Callable | None, ...] = (None,)) Network[source]#
    +pyhgf.model.insert_nodes(network: Network, n_nodes: int, node_type: int, node_parameters: Dict, value_parents: Tuple = (None, None), volatility_parents: Tuple = (None, None), value_children: Tuple = (None, None), volatility_children: Tuple = (None, None), coupling_fn: Tuple[Callable | None, ...] | None = (None,)) Network[source]#

    Insert a set of parametrised node in a network.

    diff --git a/dev/generated/pyhgf.model/pyhgf.model.update_parameters.html b/dev/generated/pyhgf.model/pyhgf.model.update_parameters.html index 1afa31c9f..4afa19161 100644 --- a/dev/generated/pyhgf.model/pyhgf.model.update_parameters.html +++ b/dev/generated/pyhgf.model/pyhgf.model.update_parameters.html @@ -558,7 +558,7 @@

    pyhgf.model.update_parameters
    pyhgf.model.update_parameters(node_parameters: Dict, default_parameters: Dict, additional_parameters: Dict) Dict[source]#
    -

    Update the default node parameters using keywords args and dictonary.

    +

    Update the default node parameters using keywords args and dictonary

    diff --git a/dev/generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.continuous_node_posterior_update.html b/dev/generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.continuous_node_posterior_update.html index 3c8484ccc..12f5b2480 100644 --- a/dev/generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.continuous_node_posterior_update.html +++ b/dev/generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.continuous_node_posterior_update.html @@ -557,7 +557,7 @@

    pyhgf.updates.posterior.continuous.continuous_node_posterior_update#

    -pyhgf.updates.posterior.continuous.continuous_node_posterior_update(attributes: Dict, node_idx: int, edges: Tuple[AdjacencyLists, ...], **args) Dict[source]#
    +pyhgf.updates.posterior.continuous.continuous_node_posterior_update(attributes: Dict, node_idx: int, edges: Tuple[AdjacencyLists, ...], **args) Dict[source]#

    Update the posterior of a continuous node using the standard HGF update.

    The standard HGF posterior update is a two-step process: 1. Update the posterior precision. @@ -587,7 +587,7 @@

    pyhgf.updates.posterior.continuous.continuous_node_posterior_update

    See also

    -
    posterior_update_precision_continuous_node, posterior_update_mean_continuous_node
    +
    posterior_update_precision_continuous_node, posterior_update_mean_continuous_node

    References

    diff --git a/dev/generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.continuous_node_posterior_update_ehgf.html b/dev/generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.continuous_node_posterior_update_ehgf.html index c15a7a478..05c4e79b2 100644 --- a/dev/generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.continuous_node_posterior_update_ehgf.html +++ b/dev/generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.continuous_node_posterior_update_ehgf.html @@ -557,7 +557,7 @@

    pyhgf.updates.posterior.continuous.continuous_node_posterior_update_ehgf#

    -pyhgf.updates.posterior.continuous.continuous_node_posterior_update_ehgf(attributes: Dict, node_idx: int, edges: Tuple[AdjacencyLists, ...], **args) Dict[source]#
    +pyhgf.updates.posterior.continuous.continuous_node_posterior_update_ehgf(attributes: Dict, node_idx: int, edges: Tuple[AdjacencyLists, ...], **args) Dict[source]#

    Update the posterior of a continuous node using the eHGF update.

    The eHGF posterior update is a two-step process: 1. Update the posterior mean and assume that the posterior precision is equal to @@ -594,7 +594,7 @@

    pyhgf.updates.posterior.continuous.continuous_node_posterior_update_ehgf

    See also

    -
    posterior_update_precision_continuous_node, posterior_update_mean_continuous_node
    +
    posterior_update_precision_continuous_node, posterior_update_mean_continuous_node

    References

    diff --git a/dev/generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.posterior_update_mean_continuous_node.html b/dev/generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.posterior_update_mean_continuous_node.html index b10ed186b..e68920a14 100644 --- a/dev/generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.posterior_update_mean_continuous_node.html +++ b/dev/generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.posterior_update_mean_continuous_node.html @@ -50,6 +50,8 @@ + + @@ -553,17 +555,100 @@
    -
    -

    pyhgf.updates.posterior.continuous.posterior_update_mean_continuous_node#

    -

    Functions

    -

    posterior_update_mean_continuous_node

    posterior_update_mean_continuous_node(...)

    Update the mean of a state node using the value prediction errors.

    posterior_update_precision_continuous_node

    posterior_update_precision_continuous_node(...)

    Update the precision of a state node using the volatility prediction errors.

    continuous_node_posterior_update(attributes, ...)

    Update the posterior of a continuous node using the standard HGF update.

    update_parameters

    Update the default node parameters using keywords args and dictonary.

    Update the default node parameters using keywords args and dictonary

    insert_nodes

    Insert a set of parametrised node in a network.

    - - - - - -

    posterior_update_mean_continuous_node(...)

    Update the mean of a state node using the value prediction errors.

    +
    +

    pyhgf.updates.posterior.continuous.posterior_update_mean_continuous_node#

    +
    +
    +pyhgf.updates.posterior.continuous.posterior_update_mean_continuous_node(attributes: Dict, edges: Tuple[AdjacencyLists, ...], node_idx: int, node_precision: float) float[source]#
    +

    Update the mean of a state node using the value prediction errors.

    +
      +
    1. Mean update from value coupling.

    2. +
    +

    The new mean of a state node \(b\) value coupled with other input and/or state +nodes \(j\) at time \(k\) is given by:

    +

    For linear value coupling:

    +
    +\[\mu_b^{(k)} = \hat{\mu}_b^{(k)} + \sum_{j=1}^{N_{children}} + \frac{\kappa_j \hat{\pi}_j^{(k)}}{\pi_b} \delta_j^{(k)}\]
    +

    Where \(\kappa_j\) is the volatility coupling strength between the child node +and the state node and \(\delta_j^{(k)}\) is the value prediction error that +was computed beforehand by +pyhgf.updates.prediction_errors.continuous.continuous_node_value_prediction_error().

    +

    For non-linear value coupling:

    +
    +\[\mu_b^{(k)} = \hat{\mu}_b^{(k)} + \sum_{j=1}^{N_{children}} + \frac{\kappa_j g'_{j,b}({\mu}_b^{(k-1)}) \hat{\pi}_j^{(k)}}{\pi_b} + \delta_j^{(k)}\]
    +
      +
    1. Mean update from volatility coupling.

    2. +
    +

    The new mean of a state node \(b\) volatility coupled with other input and/or +state nodes \(j\) at time \(k\) is given by:

    +
    +\[\mu_b^{(k)} = \hat{\mu}_b^{(k)} + \frac{1}{2\pi_b} + \sum_{j=1}^{N_{children}} \kappa_j \gamma_j^{(k)} \Delta_j^{(k)}\]
    +

    where \(\kappa_j\) is the volatility coupling strength between the volatility +parent and the volatility children \(j\) and \(\Delta_j^{(k)}\) is the +volatility prediction error is given by:

    +
    +\[\Delta_j^{(k)} = \frac{\hat{\pi}_j^{(k)}}{\pi_j^{(k)}} + +\hat{\pi}_j^{(k)} \left( \delta_j^{(k)} \right)^2 - 1\]
    +

    with \(\delta_j^{(k)}\) the value prediction error +\(\delta_j^{(k)} = \mu_j^{k} - \hat{\mu}_j^{k}\).

    +

    \(\gamma_j^{(k)}\) is the effective precision of the prediction, given by:

    +
    +\[\gamma_j^{(k)} = \Omega_j^{(k)} \hat{\pi}_j^{(k)}\]
    +

    with \(\Omega_j^{(k)}\) the predicted volatility computed in the prediction +step pyhgf.updates.prediction.predict_precision().

    +

    If the child node is a continuous state node, the volatility prediction error +\(\Delta_j^{(k)}\) was computed by +pyhgf.updates.prediction_errors.continuous.continuous_node_volatility_prediction_error().

    +
    +
    Parameters:
    +
    +
    attributes

    The attributes of the probabilistic nodes.

    +
    +
    edges

    The edges of the probabilistic nodes as a tuple of +pyhgf.typing.Indexes. The tuple has the same length as the node +number. For each node, the index lists the value and volatility parents and +children.

    +
    +
    node_idx

    Pointer to the value parent node that will be updated.

    +
    +
    node_precision

    The precision of the node. Depending on the kind of volatility update, this +value can be the expected precision (ehgf), or the posterior from the update +(standard).

    +
    +
    +
    +
    Returns:
    +
    +
    posterior_mean

    The new posterior mean.

    +
    +
    +
    +
    + +

    Notes

    +

    This update step is similar to the one used for the state node, except that it uses +the observed value instead of the mean of the child node, and the expected mean of +the parent node instead of the expected mean of the child node.

    +

    References

    +
    +
    +[1] +

    Weber, L. A., Waade, P. T., Legrand, N., Møller, A. H., Stephan, K. E., & +Mathys, C. (2023). The generalized Hierarchical Gaussian Filter (Version 1). +arXiv. https://doi.org/10.48550/ARXIV.2305.10937

    +
    +
    +
    +
    @@ -604,6 +689,18 @@
    @@ -971,8 +971,8 @@

    Sampling#
    NUTS: [tonic_volatility_2, tonic_volatility_3]
     
    -
    
    -
    
    +
    
    +
    
     
    Sampling 2 chains for 1_000 tune and 1_000 draw iterations (2_000 + 2_000 draws total) took 9 seconds.
     
    @@ -990,7 +990,7 @@

    Sampling#

    -../_images/8835b0284c744d5c31e6fd5e4150e3885d2ef1a7aceb9e8ec14eb4587993b0e9.png +../_images/8515dda47fce4e0256647b115a1826941319528ef37680d5bf25a6f88e75db90.png
    @@ -1028,7 +1028,7 @@

    Using the learned parameters -../_images/9f7ff7d8ed0deb881b0d2cf612a03a4a13d74154fcc7c09f63fb84ee0205dc88.png +../_images/b6699df4a6fba0fa8c965eef667200f22955c64ae7cfbff92feeafa2532e1e25.png

    @@ -1038,7 +1038,7 @@

    Using the learned parameters -
    -
    Last updated: Thu Dec 12 2024
    +
    Last updated: Mon Dec 16 2024
     
     Python implementation: CPython
    -Python version       : 3.12.7
    +Python version       : 3.12.8
     IPython version      : 8.29.0
     
    -pyhgf : 0.0.0.post1.dev0+3c75fd7
    +pyhgf : 0.0.0.post1.dev0+f6c21f5
     jax   : 0.4.31
     jaxlib: 0.4.31
     
    -pyhgf     : 0.0.0.post1.dev0+3c75fd7
    +pytensor  : 2.25.5
    +pyhgf     : 0.0.0.post1.dev0+f6c21f5
    +IPython   : 8.29.0
     matplotlib: 3.9.2
    -seaborn   : 0.13.2
     numpy     : 1.26.0
    -IPython   : 8.29.0
    -pytensor  : 2.25.5
    +seaborn   : 0.13.2
     jax       : 0.4.31
    -sys       : 3.12.7 (main, Oct  1 2024, 15:17:55) [GCC 11.4.0]
    +sys       : 3.12.8 (main, Dec  4 2024, 06:19:59) [GCC 11.4.0]
     
     Watermark: 2.5.0
     
    diff --git a/dev/notebooks/1.3-Continuous_HGF.html b/dev/notebooks/1.3-Continuous_HGF.html index 45209f73a..1b66e205f 100644 --- a/dev/notebooks/1.3-Continuous_HGF.html +++ b/dev/notebooks/1.3-Continuous_HGF.html @@ -52,7 +52,7 @@ - + @@ -880,9 +880,9 @@

    Sampling
    NUTS: [tonic_volatility_1]
     
    -
    
    -
    
    -
    @@ -947,7 +947,7 @@

    Using the learned parameters -
    Array(-1106.1184, dtype=float32)
    +
    Array(-1106.149, dtype=float32)
     
    @@ -1023,14 +1023,11 @@

    Sampling#
    NUTS: [tonic_volatility_1]
     
    -
    
    -
    
    +
    
    +
    
     
    Sampling 2 chains for 1_000 tune and 1_000 draw iterations (2_000 + 2_000 draws total) took 9 seconds.
     
    -
    There were 1 divergences after tuning. Increase `target_accept` or reparameterize.
    -
    -
    We recommend running at least 4 chains for robust computation of convergence diagnostics
     
    @@ -1043,7 +1040,7 @@

    Sampling#

    -../_images/202276e567ebd75caa984b0f72286b1436da7f1ce63ef31c400a57e18d687a2a.png +../_images/1c17ffb3fb39cf3303f465a7c9077c0ee19f0200dc983c5b841028ad980bb247.png

    @@ -1077,7 +1074,7 @@

    Using the learned parameters -../_images/45bb4a95e77f968aefdbda19cbbba0cdb45bfdf5313d354191f795dffde4d801.png +../_images/8e249fa159dfc5cc394f7ce13632386fe963d248fc3e2f45ab16111479836604.png

    @@ -1087,7 +1084,7 @@

    Using the learned parameters -
    -
    Last updated: Thu Dec 12 2024
    +
    Last updated: Mon Dec 16 2024
     
     Python implementation: CPython
    -Python version       : 3.12.7
    +Python version       : 3.12.8
     IPython version      : 8.29.0
     
    -pyhgf : 0.0.0.post1.dev0+3c75fd7
    +pyhgf : 0.0.0.post1.dev0+f6c21f5
     jax   : 0.4.31
     jaxlib: 0.4.31
     
    -sys       : 3.12.7 (main, Oct  1 2024, 15:17:55) [GCC 11.4.0]
    -arviz     : 0.20.0
    -pyhgf     : 0.0.0.post1.dev0+3c75fd7
     matplotlib: 3.9.2
    +arviz     : 0.20.0
    +IPython   : 8.29.0
     pymc      : 5.17.0
    +sys       : 3.12.8 (main, Dec  4 2024, 06:19:59) [GCC 11.4.0]
     jax       : 0.4.31
    -IPython   : 8.29.0
    +pyhgf     : 0.0.0.post1.dev0+f6c21f5
     
     Watermark: 2.5.0
     
    diff --git a/dev/notebooks/2-Using_custom_response_functions.html b/dev/notebooks/2-Using_custom_response_functions.html index 40b7b0dea..bee27af4c 100644 --- a/dev/notebooks/2-Using_custom_response_functions.html +++ b/dev/notebooks/2-Using_custom_response_functions.html @@ -52,7 +52,7 @@ - + @@ -890,8 +890,8 @@

    Recovering HGF parameters from the observed behaviors
    NUTS: [tonic_volatility_2]
     

    -
    
    -
    ../_images/263eb18313e5ad7e2428ae84cd4045b74efa0790e927bef864f289a8d66e3d72.png +
    ../_images/0752801a8e9a7ef4bd5c29c58da267363798c77cb6e0eec459b2b8da42201449.png

    The results above indicate that given the responses provided by the participant, the most likely values for the parameter \(\omega_2\) are between -4.9 and -3.1, with a mean at -3.9 (you can find slightly different values if you sample different actions from the decisions function). We can consider this as an excellent estimate given the sparsity of the data, and the complexity of the model.

    @@ -980,24 +980,24 @@

    System configuration

    -
    Last updated: Thu Dec 12 2024
    +
    Last updated: Mon Dec 16 2024
     
     Python implementation: CPython
    -Python version       : 3.12.7
    +Python version       : 3.12.8
     IPython version      : 8.29.0
     
    -pyhgf : 0.0.0.post1.dev0+3c75fd7
    +pyhgf : 0.0.0.post1.dev0+f6c21f5
     jax   : 0.4.31
     jaxlib: 0.4.31
     
    -pyhgf     : 0.0.0.post1.dev0+3c75fd7
    -arviz     : 0.20.0
    -numpy     : 1.26.0
    -jax       : 0.4.31
     IPython   : 8.29.0
    +jax       : 0.4.31
    +pyhgf     : 0.0.0.post1.dev0+f6c21f5
     matplotlib: 3.9.2
    -sys       : 3.12.7 (main, Oct  1 2024, 15:17:55) [GCC 11.4.0]
    +arviz     : 0.20.0
    +numpy     : 1.26.0
     pymc      : 5.17.0
    +sys       : 3.12.8 (main, Dec  4 2024, 06:19:59) [GCC 11.4.0]
     
     Watermark: 2.5.0
     
    diff --git a/dev/notebooks/3-Multilevel_HGF.html b/dev/notebooks/3-Multilevel_HGF.html index f2a42ab78..9e4d37ae4 100644 --- a/dev/notebooks/3-Multilevel_HGF.html +++ b/dev/notebooks/3-Multilevel_HGF.html @@ -52,7 +52,7 @@ - + @@ -806,7 +806,7 @@

    Plot the computational graph -../_images/b6804d4212eb6493bccb3652ca5ec9d4c845eb0245f932b2cb524ab0ebcc65d4.svg +../_images/2d35178e2a199009438042a04b8763688df0de80d47d0fb92c18dd9a2abe16cb.svg

    @@ -832,17 +832,23 @@

    Sampling
    NUTS: [mu_volatility, sigma_volatility, volatility, mu_temperature, sigma_temperature, inverse_temperature]
     
    -
    
    -
    
    -

    The reference values on both posterior distributions indicate the mean of the distribution used for simulation.

    @@ -896,17 +902,17 @@

    Model comparison
    Computed from 2000 posterior samples and 3200 observations log-likelihood matrix.
     
              Estimate       SE
    -elpd_loo -1684.68    25.64
    -p_loo       18.42        -
    +elpd_loo -2346.87    63.55
    +p_loo      574.47        -
     
     There has been a warning during the calculation. Please check the results.
     ------
     
     Pareto k diagnostic values:
                              Count   Pct.
    -(-Inf, 0.70]   (good)     3185   99.5%
    -   (0.70, 1]   (bad)         3    0.1%
    -   (1, Inf)   (very bad)   12    0.4%
    +(-Inf, 0.70]   (good)     2037   63.7%
    +   (0.70, 1]   (bad)         1    0.0%
    +   (1, Inf)   (very bad) 1162   36.3%
     

    @@ -923,25 +929,25 @@

    System configuration

    -
    Last updated: Thu Dec 12 2024
    +
    Last updated: Mon Dec 16 2024
     
     Python implementation: CPython
    -Python version       : 3.12.7
    +Python version       : 3.12.8
     IPython version      : 8.29.0
     
    -pyhgf : 0.0.0.post1.dev0+3c75fd7
    +pyhgf : 0.0.0.post1.dev0+f6c21f5
     jax   : 0.4.31
     jaxlib: 0.4.31
     
    -IPython   : 8.29.0
    -pytensor  : 2.25.5
    -arviz     : 0.20.0
    +pyhgf     : 0.0.0.post1.dev0+f6c21f5
    +matplotlib: 3.9.2
     pymc      : 5.17.0
     numpy     : 1.26.0
    -sys       : 3.12.7 (main, Oct  1 2024, 15:17:55) [GCC 11.4.0]
    +pytensor  : 2.25.5
    +IPython   : 8.29.0
    +sys       : 3.12.8 (main, Dec  4 2024, 06:19:59) [GCC 11.4.0]
     seaborn   : 0.13.2
    -pyhgf     : 0.0.0.post1.dev0+3c75fd7
    -matplotlib: 3.9.2
    +arviz     : 0.20.0
     
     Watermark: 2.5.0
     
    diff --git a/dev/notebooks/4-Parameter_recovery.html b/dev/notebooks/4-Parameter_recovery.html index 8d3bc104b..3a6606d42 100644 --- a/dev/notebooks/4-Parameter_recovery.html +++ b/dev/notebooks/4-Parameter_recovery.html @@ -50,7 +50,7 @@ - + @@ -676,12 +676,12 @@

    Inference from the simulated behaviours
    NUTS: [censored_volatility, inverse_temperature]
     

    -
    
    -
    
    -
    Sampling 2 chains for 1_000 tune and 1_000 draw iterations (2_000 + 2_000 draws total) took 61 seconds.
    +
    
    +
    
    +
    Sampling 2 chains for 1_000 tune and 1_000 draw iterations (2_000 + 2_000 draws total) took 64 seconds.
     
    -
    -
    Last updated: Thu Dec 12 2024
    +
     
    -
    Last updated: Thu Dec 12 2024
    +
    Last updated: Mon Dec 16 2024
     
     Python implementation: CPython
    -Python version       : 3.12.7
    +Python version       : 3.12.8
     IPython version      : 8.29.0
     
    -pyhgf : 0.0.0.post1.dev0+3c75fd7
    +pyhgf : 0.0.0.post1.dev0+f6c21f5
     jax   : 0.4.31
     jaxlib: 0.4.31
     
    -seaborn   : 0.13.2
    +pyhgf     : 0.0.0.post1.dev0+f6c21f5
    +numpy     : 1.26.0
     IPython   : 8.29.0
     matplotlib: 3.9.2
    -numpy     : 1.26.0
    -pyhgf     : 0.0.0.post1.dev0+3c75fd7
    +seaborn   : 0.13.2
    +sys       : 3.12.8 (main, Dec  4 2024, 06:19:59) [GCC 11.4.0]
     jax       : 0.4.31
    -sys       : 3.12.7 (main, Oct  1 2024, 15:17:55) [GCC 11.4.0]
     
     Watermark: 2.5.0
     
    diff --git a/dev/notebooks/Example_1_Heart_rate_variability.html b/dev/notebooks/Example_1_Heart_rate_variability.html index 3eb48f358..52063d41a 100644 --- a/dev/notebooks/Example_1_Heart_rate_variability.html +++ b/dev/notebooks/Example_1_Heart_rate_variability.html @@ -50,7 +50,7 @@ - + @@ -574,16 +574,16 @@

    Loading and preprocessing physiological recording
    Downloading ECG channel:   0%|          | 0/2 [00:00<?, ?it/s]
     

    -
    Downloading ECG channel:  50%|█████     | 1/2 [00:00<00:00,  1.25it/s]
    +
    Downloading ECG channel:  50%|█████     | 1/2 [00:00<00:00,  2.09it/s]
     
    -
    Downloading Respiration channel:  50%|█████     | 1/2 [00:00<00:00,  1.25it/s]
    +
    Downloading Respiration channel:  50%|█████     | 1/2 [00:00<00:00,  2.09it/s]
     
    -
    Downloading Respiration channel: 100%|██████████| 2/2 [00:01<00:00,  1.02it/s]
    +
    Downloading Respiration channel: 100%|██████████| 2/2 [00:01<00:00,  1.43it/s]
     
    -
    Downloading Respiration channel: 100%|██████████| 2/2 [00:01<00:00,  1.04it/s]
    +
    Downloading Respiration channel: 100%|██████████| 2/2 [00:01<00:00,  1.50it/s]
     
    -
    Last updated: Thu Dec 12 2024
    +
    -
    Last updated: Thu Dec 12 2024
    +
    Last updated: Mon Dec 16 2024
     
     Python implementation: CPython
    -Python version       : 3.12.7
    +Python version       : 3.12.8
     IPython version      : 8.29.0
     
    -pyhgf : 0.0.0.post1.dev0+3c75fd7
    +pyhgf : 0.0.0.post1.dev0+f6c21f5
     jax   : 0.4.31
     jaxlib: 0.4.31
     
    -pyhgf     : 0.0.0.post1.dev0+3c75fd7
     seaborn   : 0.13.2
    -matplotlib: 3.9.2
    -IPython   : 8.29.0
     numpy     : 1.26.0
    -sys       : 3.12.7 (main, Oct  1 2024, 15:17:55) [GCC 11.4.0]
    +sys       : 3.12.8 (main, Dec  4 2024, 06:19:59) [GCC 11.4.0]
    +pyhgf     : 0.0.0.post1.dev0+f6c21f5
    +IPython   : 8.29.0
    +matplotlib: 3.9.2
     
     Watermark: 2.5.0
     
    diff --git a/dev/notebooks/Example_3_Multi_armed_bandit.html b/dev/notebooks/Example_3_Multi_armed_bandit.html index f7bafb407..51db783f8 100644 --- a/dev/notebooks/Example_3_Multi_armed_bandit.html +++ b/dev/notebooks/Example_3_Multi_armed_bandit.html @@ -52,7 +52,7 @@ - + @@ -1085,14 +1085,11 @@

    Bayesian inference
    NUTS: [omega]
     

    -
    
    -
    @@ -1123,26 +1120,26 @@

    System configuration

    -
    Last updated: Thu Dec 12 2024
    +
     
    -
    Last updated: Thu Dec 12 2024
    +
    Last updated: Mon Dec 16 2024
     
     Python implementation: CPython
    -Python version       : 3.12.7
    +Python version       : 3.12.8
     IPython version      : 8.29.0
     
    -pyhgf : 0.0.0.post1.dev0+3c75fd7
    +pyhgf : 0.0.0.post1.dev0+f6c21f5
     jax   : 0.4.31
     jaxlib: 0.4.31
     
    +sys       : 3.12.8 (main, Dec  4 2024, 06:19:59) [GCC 11.4.0]
     numpy     : 1.26.0
    -seaborn   : 0.13.2
    -sys       : 3.12.7 (main, Oct  1 2024, 15:17:55) [GCC 11.4.0]
    -IPython   : 8.29.0
    +pyhgf     : 0.0.0.post1.dev0+f6c21f5
     matplotlib: 3.9.2
    -pyhgf     : 0.0.0.post1.dev0+3c75fd7
     pandas    : 2.2.3
    +IPython   : 8.29.0
    +seaborn   : 0.13.2
     
     Watermark: 2.5.0
     
    diff --git a/dev/notebooks/Exercise_2_Bayesian_reinforcement_learning.html b/dev/notebooks/Exercise_2_Bayesian_reinforcement_learning.html index 7db0cdd18..e694c4380 100644 --- a/dev/notebooks/Exercise_2_Bayesian_reinforcement_learning.html +++ b/dev/notebooks/Exercise_2_Bayesian_reinforcement_learning.html @@ -52,7 +52,7 @@ - + @@ -726,8 +726,8 @@

    Parameters optimization
    NUTS: [tonic_volatility_2]
     

    -
    
    -
    -../_images/8e63abafbcb1d32b0175e1116c948c496ed5ab3f1d1f89e35c4925e7017b34ae.png +../_images/1c1e257687fb28d1f91191530db3698e1bc9b6f0cc79b1c9d0e576843ac4491e.png
    -
    
    -

    Assess model fitting, here using leave-one-out cross-validation from the Arviz library.

    @@ -921,16 +921,16 @@

    Rescorla-Wagner
    NUTS: [initial_belief, learning_rate]
     

    -
    /opt/hostedtoolcache/Python/3.12.7/x64/lib/python3.12/multiprocessing/popen_fork.py:66: RuntimeWarning: os.fork() was called. os.fork() is incompatible with multithreaded code, and JAX is multithreaded, so this will likely lead to a deadlock.
    +
    /opt/hostedtoolcache/Python/3.12.8/x64/lib/python3.12/multiprocessing/popen_fork.py:66: RuntimeWarning: os.fork() was called. os.fork() is incompatible with multithreaded code, and JAX is multithreaded, so this will likely lead to a deadlock.
       self.pid = os.fork()
     
    -

    We have saved the pointwise log probabilities as a variable, here we simply move this variable to the log_likelihoo field of the idata object, so Arviz knows that this can be used later for model comparison.

    @@ -1147,12 +1147,12 @@

    Three-level HGF
    NUTS: [tonic_volatility_2]
     

    -
    
    -

    The resulting samples show belief trajectories for 10 samples for each model (we are not depicting the biased random here for clarity). The trajectories are highly similar, but we can see that the two and three-level HGF are slightly adjusting their learning rates in a way that was more consistent with the observed behaviours.

    @@ -1476,25 +1476,25 @@

    System configuration

    -
    Last updated: Thu Dec 12 2024
    +
    Last updated: Mon Dec 16 2024
     
     Python implementation: CPython
    -Python version       : 3.12.7
    +Python version       : 3.12.8
     IPython version      : 8.29.0
     
    -pyhgf : 0.0.0.post1.dev0+3c75fd7
    +pyhgf : 0.0.0.post1.dev0+f6c21f5
     jax   : 0.4.31
     jaxlib: 0.4.31
     
    -pymc      : 5.17.0
    -pyhgf     : 0.0.0.post1.dev0+3c75fd7
    -pytensor  : 2.25.5
    -sys       : 3.12.7 (main, Oct  1 2024, 15:17:55) [GCC 11.4.0]
    +pyhgf     : 0.0.0.post1.dev0+f6c21f5
     numpy     : 1.26.0
    -arviz     : 0.20.0
     IPython   : 8.29.0
    -seaborn   : 0.13.2
     matplotlib: 3.9.2
    +seaborn   : 0.13.2
    +sys       : 3.12.8 (main, Dec  4 2024, 06:19:59) [GCC 11.4.0]
    +pytensor  : 2.25.5
    +arviz     : 0.20.0
    +pymc      : 5.17.0
     
     Watermark: 2.5.0
     
    diff --git a/dev/objects.inv b/dev/objects.inv index 30b20a616..60ab3b8fe 100644 Binary files a/dev/objects.inv and b/dev/objects.inv differ diff --git a/dev/py-modindex.html b/dev/py-modindex.html deleted file mode 100644 index 90f941454..000000000 --- a/dev/py-modindex.html +++ /dev/null @@ -1,521 +0,0 @@ - - - - - - - - - - Python Module Index — pyhgf 0.2.0 documentation - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    - -
    - - - - - - - - - - -
    -
    -
    -
    -
    - -
    - -
    - - -
    - - -
    -
    - - - - - -
    - - - - - - - - - - - -
    - -
    - - -
    -
    - -
    - - - - - - - - - - - -
    - -
    -
    -
    - -
    - - - - -
    -
    - -
    - -
    -
    -
    - - - - - - - - \ No newline at end of file diff --git a/dev/searchindex.js b/dev/searchindex.js index 99864d792..1efae6547 100644 --- a/dev/searchindex.js +++ b/dev/searchindex.js @@ -1 +1 @@ -Search.setIndex({"alltitles": {"": [[80, "exercise1.1"], [80, "exercise1.2"], [80, "exercise1.3"], [80, "exercise1.4"], [80, "exercise1.5"], [80, "exercise1.6"], [81, "exercise2.1"], [81, "exercise2.2"]], "API": [[0, "api"]], "Acknowledgments": [[65, "acknowledgments"]], "Add data": [[70, "add-data"], [70, "id4"], [72, "add-data"], [72, "id3"]], "Adding a drift to the random walk": [[67, "adding-a-drift-to-the-random-walk"]], "Autoregressive processes": [[67, "autoregressive-processes"]], "Bayesian inference": [[79, "bayesian-inference"]], "Beliefs trajectories": [[81, "beliefs-trajectories"]], "Biased random": [[81, "biased-random"]], "Binary nodes": [[0, "binary-nodes"]], "Bivariate normal distribution": [[69, "bivariate-normal-distribution"]], "Categorical nodes": [[0, "categorical-nodes"]], "Continuous nodes": [[0, "continuous-nodes"], [0, "id1"]], "Continuous value coupling": [[68, "continuous-value-coupling"]], "Continuous volatility coupling": [[68, "continuous-volatility-coupling"]], "Coupling with binary nodes": [[68, "coupling-with-binary-nodes"]], "Create the model": [[70, "create-the-model"], [70, "id3"], [72, "create-the-model"], [72, "id2"]], "Creating a new response function": [[73, "creating-a-new-response-function"]], "Creating a new response function: the binary surprise": [[73, "creating-a-new-response-function-the-binary-surprise"]], "Creating and manipulating networks of probabilistic nodes": [[68, null]], "Creating custom update functions": [[68, "creating-custom-update-functions"]], "Creating custom update sequences": [[68, "creating-custom-update-sequences"]], "Creating probabilistic nodes": [[68, "creating-probabilistic-nodes"]], "Creating the decision rule": [[73, "creating-the-decision-rule"]], "Creating the model": [[70, "creating-the-model"], [70, "id7"], [72, "creating-the-model"], [72, "id5"]], "Creating the probabilistic network": [[71, "creating-the-probabilistic-network"]], "Decision rule": [[79, "decision-rule"]], "Dirichlet processes": [[0, "dirichlet-processes"]], "Distribution": [[0, "distribution"]], "Dynamic assignation of update sequences": [[68, "dynamic-assignation-of-update-sequences"]], "Dynamic beliefs updating": [[67, "dynamic-beliefs-updating"]], "Example 1: Bayesian filtering of cardiac volatility": [[77, null]], "Example 2: Estimating the mean and precision of a time-varying Gaussian distributions": [[78, null]], "Example 3: A multi-armed bandit task with independent rewards and punishments": [[79, null]], "Exercises": [[66, "exercises"]], "Filtering the Sufficient Statistics of a Non-Stationary Distribution": [[69, "filtering-the-sufficient-statistics-of-a-non-stationary-distribution"]], "Filtering the Sufficient Statistics of a Stationary Distribution": [[69, "filtering-the-sufficient-statistics-of-a-stationary-distribution"]], "Fitting behaviours to different RL models": [[81, "fitting-behaviours-to-different-rl-models"]], "Fitting the binary HGF with fixed parameters": [[70, "fitting-the-binary-hgf-with-fixed-parameters"]], "Fitting the continuous HGF with fixed parameters": [[72, "fitting-the-continuous-hgf-with-fixed-parameters"]], "Fitting the model forwards": [[71, "fitting-the-model-forwards"]], "Frequency tracking": [[76, "frequency-tracking"]], "From Reinforcement Learning to Generalised Bayesian Filtering": [[69, null]], "Gaussian Random Walks": [[67, "gaussian-random-walks"], [80, "gaussian-random-walks"]], "Getting started": [[65, "getting-started"]], "Glossary": [[67, "glossary"], [73, "glossary"]], "Group-level inference": [[74, "group-level-inference"]], "Hierarchical Bayesian modelling with probabilistic neural networks": [[74, null]], "How does it work?": [[65, "how-does-it-work"]], "How to cite?": [[1, null]], "Imports": [[70, "imports"]], "Inference from the simulated behaviours": [[75, "inference-from-the-simulated-behaviours"]], "Inference using MCMC sampling": [[71, "inference-using-mcmc-sampling"]], "Installation": [[65, "installation"]], "Introduction to the Generalised Hierarchical Gaussian Filter": [[67, null]], "Kown mean, unknown precision": [[78, "kown-mean-unknown-precision"]], "Learn": [[66, null]], "Learning parameters with MCMC sampling": [[70, "learning-parameters-with-mcmc-sampling"], [72, "learning-parameters-with-mcmc-sampling"]], "Loading and preprocessing physiological recording": [[77, "loading-and-preprocessing-physiological-recording"]], "Math": [[0, "math"]], "Model": [[0, "model"], [77, "model"]], "Model comparison": [[74, "model-comparison"], [81, "model-comparison"]], "Model fitting": [[65, "model-fitting"]], "Model inversion: the generalized Hierarchical Gaussian Filter": [[80, "model-inversion-the-generalized-hierarchical-gaussian-filter"]], "Modifying the attributes": [[68, "modifying-the-attributes"]], "Modifying the edges": [[68, "modifying-the-edges"]], "Multivariate coupling": [[68, "multivariate-coupling"]], "Non-linear predictions": [[76, "non-linear-predictions"]], "Non-linear value coupling between continuous state nodes": [[76, null]], "Parameter recovery": [[79, "parameter-recovery"]], "Parameters optimization": [[81, "parameters-optimization"]], "Plot correlation": [[72, "plot-correlation"]], "Plot the computational graph": [[74, "plot-the-computational-graph"]], "Plot the signal with instantaneous heart rate derivations": [[77, "plot-the-signal-with-instantaneous-heart-rate-derivations"]], "Plot trajectories": [[70, "plot-trajectories"], [70, "id5"], [72, "plot-trajectories"], [72, "id4"]], "Plots": [[0, "plots"]], "Posterior predictive sampling": [[81, "posterior-predictive-sampling"]], "Posterior updates": [[0, "posterior-updates"]], "Practice: Filtering the worlds weather": [[80, "practice-filtering-the-worlds-weather"]], "Prediction error steps": [[0, "prediction-error-steps"]], "Prediction steps": [[0, "prediction-steps"]], "Preprocessing": [[77, "preprocessing"]], "Probabilistic coupling between nodes": [[80, "probabilistic-coupling-between-nodes"]], "PyHGF: A Neural Network Library for Predictive Coding": [[65, null]], "ReLU (rectified linear unit) activation function": [[76, "relu-rectified-linear-unit-activation-function"]], "Real-time decision and belief updating": [[79, "real-time-decision-and-belief-updating"]], "Recovering HGF parameters from the observed behaviors": [[73, "recovering-hgf-parameters-from-the-observed-behaviors"]], "Recovering computational parameters from observed behaviours": [[75, null]], "References": [[65, "references"], [82, null]], "Rescorla-Wagner": [[81, "rescorla-wagner"]], "Response": [[0, "response"]], "Sampling": [[70, "sampling"], [70, "id9"], [72, "sampling"], [72, "id7"], [74, "sampling"]], "Simulate a dataset": [[74, "simulate-a-dataset"], [79, "simulate-a-dataset"]], "Simulate behaviours from a one-armed bandit task": [[75, "simulate-behaviours-from-a-one-armed-bandit-task"]], "Simulate responses from a participant": [[79, "simulate-responses-from-a-participant"]], "Simulating a dataset": [[71, "simulating-a-dataset"]], "Solution to Exercise 1": [[80, "solution-exercise1.1"]], "Solution to Exercise 2": [[80, "solution-exercise1.2"]], "Solution to Exercise 3": [[80, "solution-exercise1.3"]], "Solution to Exercise 4": [[80, "solution-exercise1.4"]], "Solution to Exercise 5": [[80, "solution-exercise1.5"]], "Solution to Exercise 7": [[81, "solution-exercise2.1"]], "Solution to Exercise 8": [[81, "solution-exercise2.2"]], "Solutions": [[80, "solutions"], [81, "solutions"]], "Static assignation of update sequences": [[68, "static-assignation-of-update-sequences"]], "Surprise": [[70, "surprise"], [70, "id6"], [72, "surprise"]], "System configuration": [[67, "system-configuration"], [68, "system-configuration"], [69, "system-configuration"], [70, "system-configuration"], [71, "system-configuration"], [72, "system-configuration"], [73, "system-configuration"], [74, "system-configuration"], [75, "system-configuration"], [76, "system-configuration"], [77, "system-configuration"], [78, "system-configuration"], [79, "system-configuration"], [80, "system-configuration"], [81, "system-configuration"]], "Table of Contents": [[0, null]], "Task structure": [[79, "task-structure"]], "The Generalized Hierarchical Gaussian Filter": [[65, "the-generalized-hierarchical-gaussian-filter"]], "The Hierarchical Gaussian Filter": [[66, "the-hierarchical-gaussian-filter"]], "The Hierarchical Gaussian Filter in a network of predictive nodes": [[67, "the-hierarchical-gaussian-filter-in-a-network-of-predictive-nodes"]], "The binary HGF": [[81, "the-binary-hgf"]], "The binary Hierarchical Gaussian Filter": [[70, null]], "The case of multivariate ascendency": [[68, "the-case-of-multivariate-ascendency"]], "The case of multivariate descendency": [[68, "the-case-of-multivariate-descendency"]], "The categorical Hierarchical Gaussian Filter": [[71, null]], "The categorical state node": [[71, "the-categorical-state-node"]], "The categorical state-transition node": [[71, "the-categorical-state-transition-node"]], "The continuous Hierarchical Gaussian Filter": [[72, null]], "The generative model": [[67, "the-generative-model"], [80, "the-generative-model"]], "The propagation of prediction and prediction errors": [[67, "the-propagation-of-prediction-and-prediction-errors"]], "The three-level binary Hierarchical Gaussian Filter": [[70, "the-three-level-binary-hierarchical-gaussian-filter"]], "The three-level continuous Hierarchical Gaussian Filter": [[72, "the-three-level-continuous-hierarchical-gaussian-filter"]], "The two-level binary Hierarchical Gaussian Filter": [[70, "the-two-level-binary-hierarchical-gaussian-filter"]], "The two-level continuous Hierarchical Gaussian Filter": [[72, "the-two-level-continuous-hierarchical-gaussian-filter"]], "Theory": [[66, "theory"]], "Theory and implementation details": [[68, "theory-and-implementation-details"]], "Three-level HGF": [[81, "three-level-hgf"]], "Three-level model": [[70, "three-level-model"], [72, "three-level-model"]], "Time-varying update sequences": [[68, "time-varying-update-sequences"]], "Tutorials": [[66, "tutorials"]], "Two-level HGF": [[81, "two-level-hgf"]], "Two-level model": [[70, "two-level-model"], [72, "two-level-model"]], "Univariate normal distribution": [[69, "univariate-normal-distribution"]], "Unkown mean, known precision": [[78, "unkown-mean-known-precision"]], "Unkown mean, unknown precision": [[78, "unkown-mean-unknown-precision"]], "Update functions": [[68, "update-functions"]], "Updates functions": [[0, "updates-functions"]], "Use cases": [[66, "use-cases"]], "Using a dynamically adapted \\nu through a collection of Hierarchical Gaussian Filters": [[69, "using-a-dynamically-adapted-nu-through-a-collection-of-hierarchical-gaussian-filters"]], "Using a fixed \\nu": [[69, "using-a-fixed-nu"]], "Using custom response models": [[73, null]], "Using the learned parameters": [[70, "using-the-learned-parameters"], [70, "id10"], [72, "using-the-learned-parameters"], [72, "id8"]], "Utils": [[0, "utils"]], "Value coupling": [[67, "value-coupling"], [68, "value-coupling"], [80, "value-coupling"]], "Visualization of the posterior distributions": [[74, "visualization-of-the-posterior-distributions"]], "Visualizing parameters recovery": [[75, "visualizing-parameters-recovery"]], "Visualizing probabilistic networks": [[68, "visualizing-probabilistic-networks"]], "Visualizing the model": [[70, "visualizing-the-model"], [70, "id8"], [72, "visualizing-the-model"], [72, "id6"]], "Volatility coupling": [[67, "volatility-coupling"], [68, "volatility-coupling"], [80, "volatility-coupling"]], "Where to go next?": [[81, "where-to-go-next"]], "Working with missing or unobserved input sequences": [[68, "working-with-missing-or-unobserved-input-sequences"]], "Zurich CPC I: Introduction to the Generalised Hierarchical Gaussian Filter": [[80, null]], "Zurich CPC II: Application to reinforcement learning": [[81, null]], "pyhgf.distribution.HGFDistribution": [[2, null]], "pyhgf.distribution.HGFLogpGradOp": [[3, null]], "pyhgf.distribution.HGFPointwise": [[4, null]], "pyhgf.distribution.hgf_logp": [[5, null]], "pyhgf.distribution.logp": [[6, null]], "pyhgf.math.MultivariateNormal": [[7, null]], "pyhgf.math.Normal": [[8, null]], "pyhgf.math.binary_surprise": [[9, null]], "pyhgf.math.binary_surprise_finite_precision": [[10, null]], "pyhgf.math.dirichlet_kullback_leibler": [[11, null]], "pyhgf.math.gaussian_density": [[12, null]], "pyhgf.math.gaussian_predictive_distribution": [[13, null]], "pyhgf.math.gaussian_surprise": [[14, null]], "pyhgf.math.sigmoid": [[15, null]], "pyhgf.model.HGF": [[16, null]], "pyhgf.model.Network": [[17, null]], "pyhgf.model.add_binary_state": [[18, null]], "pyhgf.model.add_categorical_state": [[19, null]], "pyhgf.model.add_continuous_state": [[20, null]], "pyhgf.model.add_dp_state": [[21, null]], "pyhgf.model.add_ef_state": [[22, null]], "pyhgf.model.get_couplings": [[23, null]], "pyhgf.model.insert_nodes": [[24, null]], "pyhgf.model.update_parameters": [[25, null]], "pyhgf.plots.plot_correlations": [[26, null]], "pyhgf.plots.plot_network": [[27, null]], "pyhgf.plots.plot_nodes": [[28, null]], "pyhgf.plots.plot_trajectories": [[29, null]], "pyhgf.response.binary_softmax": [[30, null]], "pyhgf.response.binary_softmax_inverse_temperature": [[31, null]], "pyhgf.response.first_level_binary_surprise": [[32, null]], "pyhgf.response.first_level_gaussian_surprise": [[33, null]], "pyhgf.response.total_gaussian_surprise": [[34, null]], "pyhgf.updates.posterior.categorical.categorical_state_update": [[35, null]], "pyhgf.updates.posterior.continuous.continuous_node_posterior_update": [[36, null]], "pyhgf.updates.posterior.continuous.continuous_node_posterior_update_ehgf": [[37, null]], "pyhgf.updates.posterior.continuous.posterior_update_mean_continuous_node": [[38, null]], "pyhgf.updates.posterior.continuous.posterior_update_precision_continuous_node": [[39, null]], "pyhgf.updates.prediction.binary.binary_state_node_prediction": [[40, null]], "pyhgf.updates.prediction.continuous.continuous_node_prediction": [[41, null]], "pyhgf.updates.prediction.continuous.predict_mean": [[42, null]], "pyhgf.updates.prediction.continuous.predict_precision": [[43, null]], "pyhgf.updates.prediction.dirichlet.dirichlet_node_prediction": [[44, null]], "pyhgf.updates.prediction_error.binary.binary_finite_state_node_prediction_error": [[45, null]], "pyhgf.updates.prediction_error.binary.binary_state_node_prediction_error": [[46, null]], "pyhgf.updates.prediction_error.categorical.categorical_state_prediction_error": [[47, null]], "pyhgf.updates.prediction_error.continuous.continuous_node_prediction_error": [[48, null]], "pyhgf.updates.prediction_error.continuous.continuous_node_value_prediction_error": [[49, null]], "pyhgf.updates.prediction_error.continuous.continuous_node_volatility_prediction_error": [[50, null]], "pyhgf.updates.prediction_error.dirichlet.clusters_likelihood": [[51, null]], "pyhgf.updates.prediction_error.dirichlet.create_cluster": [[52, null]], "pyhgf.updates.prediction_error.dirichlet.dirichlet_node_prediction_error": [[53, null]], "pyhgf.updates.prediction_error.dirichlet.get_candidate": [[54, null]], "pyhgf.updates.prediction_error.dirichlet.likely_cluster_proposal": [[55, null]], "pyhgf.updates.prediction_error.dirichlet.update_cluster": [[56, null]], "pyhgf.updates.prediction_error.exponential.prediction_error_update_exponential_family": [[57, null]], "pyhgf.utils.add_edges": [[58, null]], "pyhgf.utils.beliefs_propagation": [[59, null]], "pyhgf.utils.fill_categorical_state_node": [[60, null]], "pyhgf.utils.get_input_idxs": [[61, null]], "pyhgf.utils.get_update_sequence": [[62, null]], "pyhgf.utils.list_branches": [[63, null]], "pyhgf.utils.to_pandas": [[64, null]]}, "docnames": ["api", "cite", "generated/pyhgf.distribution/pyhgf.distribution.HGFDistribution", "generated/pyhgf.distribution/pyhgf.distribution.HGFLogpGradOp", "generated/pyhgf.distribution/pyhgf.distribution.HGFPointwise", "generated/pyhgf.distribution/pyhgf.distribution.hgf_logp", "generated/pyhgf.distribution/pyhgf.distribution.logp", "generated/pyhgf.math/pyhgf.math.MultivariateNormal", "generated/pyhgf.math/pyhgf.math.Normal", "generated/pyhgf.math/pyhgf.math.binary_surprise", "generated/pyhgf.math/pyhgf.math.binary_surprise_finite_precision", "generated/pyhgf.math/pyhgf.math.dirichlet_kullback_leibler", "generated/pyhgf.math/pyhgf.math.gaussian_density", "generated/pyhgf.math/pyhgf.math.gaussian_predictive_distribution", "generated/pyhgf.math/pyhgf.math.gaussian_surprise", "generated/pyhgf.math/pyhgf.math.sigmoid", "generated/pyhgf.model/pyhgf.model.HGF", "generated/pyhgf.model/pyhgf.model.Network", "generated/pyhgf.model/pyhgf.model.add_binary_state", "generated/pyhgf.model/pyhgf.model.add_categorical_state", "generated/pyhgf.model/pyhgf.model.add_continuous_state", "generated/pyhgf.model/pyhgf.model.add_dp_state", "generated/pyhgf.model/pyhgf.model.add_ef_state", "generated/pyhgf.model/pyhgf.model.get_couplings", "generated/pyhgf.model/pyhgf.model.insert_nodes", "generated/pyhgf.model/pyhgf.model.update_parameters", "generated/pyhgf.plots/pyhgf.plots.plot_correlations", "generated/pyhgf.plots/pyhgf.plots.plot_network", "generated/pyhgf.plots/pyhgf.plots.plot_nodes", "generated/pyhgf.plots/pyhgf.plots.plot_trajectories", "generated/pyhgf.response/pyhgf.response.binary_softmax", "generated/pyhgf.response/pyhgf.response.binary_softmax_inverse_temperature", "generated/pyhgf.response/pyhgf.response.first_level_binary_surprise", "generated/pyhgf.response/pyhgf.response.first_level_gaussian_surprise", "generated/pyhgf.response/pyhgf.response.total_gaussian_surprise", "generated/pyhgf.updates.posterior.categorical/pyhgf.updates.posterior.categorical.categorical_state_update", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.continuous_node_posterior_update", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.continuous_node_posterior_update_ehgf", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.posterior_update_mean_continuous_node", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.posterior_update_precision_continuous_node", "generated/pyhgf.updates.prediction.binary/pyhgf.updates.prediction.binary.binary_state_node_prediction", "generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.continuous_node_prediction", "generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.predict_mean", "generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.predict_precision", "generated/pyhgf.updates.prediction.dirichlet/pyhgf.updates.prediction.dirichlet.dirichlet_node_prediction", "generated/pyhgf.updates.prediction_error.binary/pyhgf.updates.prediction_error.binary.binary_finite_state_node_prediction_error", "generated/pyhgf.updates.prediction_error.binary/pyhgf.updates.prediction_error.binary.binary_state_node_prediction_error", "generated/pyhgf.updates.prediction_error.categorical/pyhgf.updates.prediction_error.categorical.categorical_state_prediction_error", "generated/pyhgf.updates.prediction_error.continuous/pyhgf.updates.prediction_error.continuous.continuous_node_prediction_error", "generated/pyhgf.updates.prediction_error.continuous/pyhgf.updates.prediction_error.continuous.continuous_node_value_prediction_error", "generated/pyhgf.updates.prediction_error.continuous/pyhgf.updates.prediction_error.continuous.continuous_node_volatility_prediction_error", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.clusters_likelihood", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.create_cluster", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.dirichlet_node_prediction_error", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.get_candidate", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.likely_cluster_proposal", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.update_cluster", "generated/pyhgf.updates.prediction_error.exponential/pyhgf.updates.prediction_error.exponential.prediction_error_update_exponential_family", "generated/pyhgf.utils/pyhgf.utils.add_edges", "generated/pyhgf.utils/pyhgf.utils.beliefs_propagation", "generated/pyhgf.utils/pyhgf.utils.fill_categorical_state_node", "generated/pyhgf.utils/pyhgf.utils.get_input_idxs", "generated/pyhgf.utils/pyhgf.utils.get_update_sequence", "generated/pyhgf.utils/pyhgf.utils.list_branches", "generated/pyhgf.utils/pyhgf.utils.to_pandas", "index", "learn", "notebooks/0.1-Theory", "notebooks/0.2-Creating_networks", "notebooks/0.3-Generalised_filtering", "notebooks/1.1-Binary_HGF", "notebooks/1.2-Categorical_HGF", "notebooks/1.3-Continuous_HGF", "notebooks/2-Using_custom_response_functions", "notebooks/3-Multilevel_HGF", "notebooks/4-Parameter_recovery", "notebooks/5-Non_linear_value_coupling", "notebooks/Example_1_Heart_rate_variability", "notebooks/Example_2_Input_node_volatility_coupling", "notebooks/Example_3_Multi_armed_bandit", "notebooks/Exercise_1_Introduction_to_the_generalised_hierarchical_gaussian_filter", "notebooks/Exercise_2_Bayesian_reinforcement_learning", "references"], "envversion": {"sphinx": 64, "sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.viewcode": 1, "sphinxcontrib.bibtex": 9}, "filenames": ["api.rst", "cite.md", "generated/pyhgf.distribution/pyhgf.distribution.HGFDistribution.rst", "generated/pyhgf.distribution/pyhgf.distribution.HGFLogpGradOp.rst", "generated/pyhgf.distribution/pyhgf.distribution.HGFPointwise.rst", "generated/pyhgf.distribution/pyhgf.distribution.hgf_logp.rst", "generated/pyhgf.distribution/pyhgf.distribution.logp.rst", "generated/pyhgf.math/pyhgf.math.MultivariateNormal.rst", "generated/pyhgf.math/pyhgf.math.Normal.rst", "generated/pyhgf.math/pyhgf.math.binary_surprise.rst", "generated/pyhgf.math/pyhgf.math.binary_surprise_finite_precision.rst", "generated/pyhgf.math/pyhgf.math.dirichlet_kullback_leibler.rst", "generated/pyhgf.math/pyhgf.math.gaussian_density.rst", "generated/pyhgf.math/pyhgf.math.gaussian_predictive_distribution.rst", "generated/pyhgf.math/pyhgf.math.gaussian_surprise.rst", "generated/pyhgf.math/pyhgf.math.sigmoid.rst", "generated/pyhgf.model/pyhgf.model.HGF.rst", "generated/pyhgf.model/pyhgf.model.Network.rst", "generated/pyhgf.model/pyhgf.model.add_binary_state.rst", "generated/pyhgf.model/pyhgf.model.add_categorical_state.rst", "generated/pyhgf.model/pyhgf.model.add_continuous_state.rst", "generated/pyhgf.model/pyhgf.model.add_dp_state.rst", "generated/pyhgf.model/pyhgf.model.add_ef_state.rst", "generated/pyhgf.model/pyhgf.model.get_couplings.rst", "generated/pyhgf.model/pyhgf.model.insert_nodes.rst", "generated/pyhgf.model/pyhgf.model.update_parameters.rst", "generated/pyhgf.plots/pyhgf.plots.plot_correlations.rst", "generated/pyhgf.plots/pyhgf.plots.plot_network.rst", "generated/pyhgf.plots/pyhgf.plots.plot_nodes.rst", "generated/pyhgf.plots/pyhgf.plots.plot_trajectories.rst", "generated/pyhgf.response/pyhgf.response.binary_softmax.rst", "generated/pyhgf.response/pyhgf.response.binary_softmax_inverse_temperature.rst", "generated/pyhgf.response/pyhgf.response.first_level_binary_surprise.rst", "generated/pyhgf.response/pyhgf.response.first_level_gaussian_surprise.rst", "generated/pyhgf.response/pyhgf.response.total_gaussian_surprise.rst", "generated/pyhgf.updates.posterior.categorical/pyhgf.updates.posterior.categorical.categorical_state_update.rst", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.continuous_node_posterior_update.rst", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.continuous_node_posterior_update_ehgf.rst", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.posterior_update_mean_continuous_node.rst", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.posterior_update_precision_continuous_node.rst", "generated/pyhgf.updates.prediction.binary/pyhgf.updates.prediction.binary.binary_state_node_prediction.rst", "generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.continuous_node_prediction.rst", "generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.predict_mean.rst", "generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.predict_precision.rst", "generated/pyhgf.updates.prediction.dirichlet/pyhgf.updates.prediction.dirichlet.dirichlet_node_prediction.rst", "generated/pyhgf.updates.prediction_error.binary/pyhgf.updates.prediction_error.binary.binary_finite_state_node_prediction_error.rst", "generated/pyhgf.updates.prediction_error.binary/pyhgf.updates.prediction_error.binary.binary_state_node_prediction_error.rst", "generated/pyhgf.updates.prediction_error.categorical/pyhgf.updates.prediction_error.categorical.categorical_state_prediction_error.rst", "generated/pyhgf.updates.prediction_error.continuous/pyhgf.updates.prediction_error.continuous.continuous_node_prediction_error.rst", "generated/pyhgf.updates.prediction_error.continuous/pyhgf.updates.prediction_error.continuous.continuous_node_value_prediction_error.rst", "generated/pyhgf.updates.prediction_error.continuous/pyhgf.updates.prediction_error.continuous.continuous_node_volatility_prediction_error.rst", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.clusters_likelihood.rst", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.create_cluster.rst", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.dirichlet_node_prediction_error.rst", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.get_candidate.rst", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.likely_cluster_proposal.rst", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.update_cluster.rst", "generated/pyhgf.updates.prediction_error.exponential/pyhgf.updates.prediction_error.exponential.prediction_error_update_exponential_family.rst", "generated/pyhgf.utils/pyhgf.utils.add_edges.rst", "generated/pyhgf.utils/pyhgf.utils.beliefs_propagation.rst", "generated/pyhgf.utils/pyhgf.utils.fill_categorical_state_node.rst", "generated/pyhgf.utils/pyhgf.utils.get_input_idxs.rst", "generated/pyhgf.utils/pyhgf.utils.get_update_sequence.rst", "generated/pyhgf.utils/pyhgf.utils.list_branches.rst", "generated/pyhgf.utils/pyhgf.utils.to_pandas.rst", "index.md", "learn.md", "notebooks/0.1-Theory.ipynb", "notebooks/0.2-Creating_networks.ipynb", "notebooks/0.3-Generalised_filtering.ipynb", "notebooks/1.1-Binary_HGF.ipynb", "notebooks/1.2-Categorical_HGF.ipynb", "notebooks/1.3-Continuous_HGF.ipynb", "notebooks/2-Using_custom_response_functions.ipynb", "notebooks/3-Multilevel_HGF.ipynb", "notebooks/4-Parameter_recovery.ipynb", "notebooks/5-Non_linear_value_coupling.ipynb", "notebooks/Example_1_Heart_rate_variability.ipynb", "notebooks/Example_2_Input_node_volatility_coupling.ipynb", "notebooks/Example_3_Multi_armed_bandit.ipynb", "notebooks/Exercise_1_Introduction_to_the_generalised_hierarchical_gaussian_filter.ipynb", "notebooks/Exercise_2_Bayesian_reinforcement_learning.ipynb", "references.md"], "indexentries": {"__init__() (pyhgf.distribution.hgfdistribution method)": [[2, "pyhgf.distribution.HGFDistribution.__init__", false]], "__init__() (pyhgf.distribution.hgflogpgradop method)": [[3, "pyhgf.distribution.HGFLogpGradOp.__init__", false]], "__init__() (pyhgf.distribution.hgfpointwise method)": [[4, "pyhgf.distribution.HGFPointwise.__init__", false]], "__init__() (pyhgf.math.multivariatenormal method)": [[7, "pyhgf.math.MultivariateNormal.__init__", false]], "__init__() (pyhgf.math.normal method)": [[8, "pyhgf.math.Normal.__init__", false]], "__init__() (pyhgf.model.hgf method)": [[16, "pyhgf.model.HGF.__init__", false]], "__init__() (pyhgf.model.network method)": [[17, "pyhgf.model.Network.__init__", false]], "add_binary_state() (in module pyhgf.model)": [[18, "pyhgf.model.add_binary_state", false]], "add_categorical_state() (in module pyhgf.model)": [[19, "pyhgf.model.add_categorical_state", false]], "add_continuous_state() (in module pyhgf.model)": [[20, "pyhgf.model.add_continuous_state", false]], "add_dp_state() (in module pyhgf.model)": [[21, "pyhgf.model.add_dp_state", false]], "add_edges() (in module pyhgf.utils)": [[58, "pyhgf.utils.add_edges", false]], "add_ef_state() (in module pyhgf.model)": [[22, "pyhgf.model.add_ef_state", false]], "beliefs_propagation() (in module pyhgf.utils)": [[59, "pyhgf.utils.beliefs_propagation", false]], "binary_finite_state_node_prediction_error() (in module pyhgf.updates.prediction_error.binary)": [[45, "pyhgf.updates.prediction_error.binary.binary_finite_state_node_prediction_error", false]], "binary_softmax() (in module pyhgf.response)": [[30, "pyhgf.response.binary_softmax", false]], "binary_softmax_inverse_temperature() (in module pyhgf.response)": [[31, "pyhgf.response.binary_softmax_inverse_temperature", false]], "binary_state_node_prediction() (in module pyhgf.updates.prediction.binary)": [[40, "pyhgf.updates.prediction.binary.binary_state_node_prediction", false]], "binary_state_node_prediction_error() (in module pyhgf.updates.prediction_error.binary)": [[46, "pyhgf.updates.prediction_error.binary.binary_state_node_prediction_error", false]], "binary_surprise() (in module pyhgf.math)": [[9, "pyhgf.math.binary_surprise", false]], "binary_surprise_finite_precision() (in module pyhgf.math)": [[10, "pyhgf.math.binary_surprise_finite_precision", false]], "categorical_state_prediction_error() (in module pyhgf.updates.prediction_error.categorical)": [[47, "pyhgf.updates.prediction_error.categorical.categorical_state_prediction_error", false]], "categorical_state_update() (in module pyhgf.updates.posterior.categorical)": [[35, "pyhgf.updates.posterior.categorical.categorical_state_update", false]], "clusters_likelihood() (in module pyhgf.updates.prediction_error.dirichlet)": [[51, "pyhgf.updates.prediction_error.dirichlet.clusters_likelihood", false]], "continuous_node_posterior_update() (in module pyhgf.updates.posterior.continuous)": [[36, "pyhgf.updates.posterior.continuous.continuous_node_posterior_update", false]], "continuous_node_posterior_update_ehgf() (in module pyhgf.updates.posterior.continuous)": [[37, "pyhgf.updates.posterior.continuous.continuous_node_posterior_update_ehgf", false]], "continuous_node_prediction() (in module pyhgf.updates.prediction.continuous)": [[41, "pyhgf.updates.prediction.continuous.continuous_node_prediction", false]], "continuous_node_prediction_error() (in module pyhgf.updates.prediction_error.continuous)": [[48, "pyhgf.updates.prediction_error.continuous.continuous_node_prediction_error", false]], "continuous_node_value_prediction_error() (in module pyhgf.updates.prediction_error.continuous)": [[49, "pyhgf.updates.prediction_error.continuous.continuous_node_value_prediction_error", false]], "continuous_node_volatility_prediction_error() (in module pyhgf.updates.prediction_error.continuous)": [[50, "pyhgf.updates.prediction_error.continuous.continuous_node_volatility_prediction_error", false]], "create_cluster() (in module pyhgf.updates.prediction_error.dirichlet)": [[52, "pyhgf.updates.prediction_error.dirichlet.create_cluster", false]], "decision rule": [[73, "term-Decision-rule", true]], "dirichlet_kullback_leibler() (in module pyhgf.math)": [[11, "pyhgf.math.dirichlet_kullback_leibler", false]], "dirichlet_node_prediction() (in module pyhgf.updates.prediction.dirichlet)": [[44, "pyhgf.updates.prediction.dirichlet.dirichlet_node_prediction", false]], "dirichlet_node_prediction_error() (in module pyhgf.updates.prediction_error.dirichlet)": [[53, "pyhgf.updates.prediction_error.dirichlet.dirichlet_node_prediction_error", false]], "fill_categorical_state_node() (in module pyhgf.utils)": [[60, "pyhgf.utils.fill_categorical_state_node", false]], "first_level_binary_surprise() (in module pyhgf.response)": [[32, "pyhgf.response.first_level_binary_surprise", false]], "first_level_gaussian_surprise() (in module pyhgf.response)": [[33, "pyhgf.response.first_level_gaussian_surprise", false]], "gaussian random walk": [[67, "term-Gaussian-Random-Walk", true]], "gaussian_density() (in module pyhgf.math)": [[12, "pyhgf.math.gaussian_density", false]], "gaussian_predictive_distribution() (in module pyhgf.math)": [[13, "pyhgf.math.gaussian_predictive_distribution", false]], "gaussian_surprise() (in module pyhgf.math)": [[14, "pyhgf.math.gaussian_surprise", false]], "get_candidate() (in module pyhgf.updates.prediction_error.dirichlet)": [[54, "pyhgf.updates.prediction_error.dirichlet.get_candidate", false]], "get_couplings() (in module pyhgf.model)": [[23, "pyhgf.model.get_couplings", false]], "get_input_idxs() (in module pyhgf.utils)": [[61, "pyhgf.utils.get_input_idxs", false]], "get_update_sequence() (in module pyhgf.utils)": [[62, "pyhgf.utils.get_update_sequence", false]], "hgf (class in pyhgf.model)": [[16, "pyhgf.model.HGF", false]], "hgf_logp() (in module pyhgf.distribution)": [[5, "pyhgf.distribution.hgf_logp", false]], "hgfdistribution (class in pyhgf.distribution)": [[2, "pyhgf.distribution.HGFDistribution", false]], "hgflogpgradop (class in pyhgf.distribution)": [[3, "pyhgf.distribution.HGFLogpGradOp", false]], "hgfpointwise (class in pyhgf.distribution)": [[4, "pyhgf.distribution.HGFPointwise", false]], "insert_nodes() (in module pyhgf.model)": [[24, "pyhgf.model.insert_nodes", false]], "likely_cluster_proposal() (in module pyhgf.updates.prediction_error.dirichlet)": [[55, "pyhgf.updates.prediction_error.dirichlet.likely_cluster_proposal", false]], "list_branches() (in module pyhgf.utils)": [[63, "pyhgf.utils.list_branches", false]], "logp() (in module pyhgf.distribution)": [[6, "pyhgf.distribution.logp", false]], "module": [[38, "module-pyhgf.updates.posterior.continuous.posterior_update_mean_continuous_node", false], [39, "module-pyhgf.updates.posterior.continuous.posterior_update_precision_continuous_node", false]], "multivariatenormal (class in pyhgf.math)": [[7, "pyhgf.math.MultivariateNormal", false]], "network (class in pyhgf.model)": [[17, "pyhgf.model.Network", false]], "node": [[67, "term-Node", true]], "normal (class in pyhgf.math)": [[8, "pyhgf.math.Normal", false]], "perceptual model": [[73, "term-Perceptual-model", true]], "plot_correlations() (in module pyhgf.plots)": [[26, "pyhgf.plots.plot_correlations", false]], "plot_network() (in module pyhgf.plots)": [[27, "pyhgf.plots.plot_network", false]], "plot_nodes() (in module pyhgf.plots)": [[28, "pyhgf.plots.plot_nodes", false]], "plot_trajectories() (in module pyhgf.plots)": [[29, "pyhgf.plots.plot_trajectories", false]], "predict_mean() (in module pyhgf.updates.prediction.continuous)": [[42, "pyhgf.updates.prediction.continuous.predict_mean", false]], "predict_precision() (in module pyhgf.updates.prediction.continuous)": [[43, "pyhgf.updates.prediction.continuous.predict_precision", false]], "prediction": [[67, "term-Prediction", true]], "prediction error": [[67, "term-Prediction-error", true]], "prediction_error_update_exponential_family() (in module pyhgf.updates.prediction_error.exponential)": [[57, "pyhgf.updates.prediction_error.exponential.prediction_error_update_exponential_family", false]], "pyhgf.updates.posterior.continuous.posterior_update_mean_continuous_node": [[38, "module-pyhgf.updates.posterior.continuous.posterior_update_mean_continuous_node", false]], "pyhgf.updates.posterior.continuous.posterior_update_precision_continuous_node": [[39, "module-pyhgf.updates.posterior.continuous.posterior_update_precision_continuous_node", false]], "response function": [[73, "term-Response-function", true]], "response model": [[73, "term-Response-model", true]], "sigmoid() (in module pyhgf.math)": [[15, "pyhgf.math.sigmoid", false]], "to_pandas() (in module pyhgf.utils)": [[64, "pyhgf.utils.to_pandas", false]], "total_gaussian_surprise() (in module pyhgf.response)": [[34, "pyhgf.response.total_gaussian_surprise", false]], "update": [[67, "term-Update", true]], "update_cluster() (in module pyhgf.updates.prediction_error.dirichlet)": [[56, "pyhgf.updates.prediction_error.dirichlet.update_cluster", false]], "update_parameters() (in module pyhgf.model)": [[25, "pyhgf.model.update_parameters", false]], "vape": [[67, "term-VAPE", true]], "vope": [[67, "term-VOPE", true]]}, "objects": {"pyhgf.distribution": [[2, 0, 1, "", "HGFDistribution"], [3, 0, 1, "", "HGFLogpGradOp"], [4, 0, 1, "", "HGFPointwise"], [5, 2, 1, "", "hgf_logp"], [6, 2, 1, "", "logp"]], "pyhgf.distribution.HGFDistribution": [[2, 1, 1, "", "__init__"]], "pyhgf.distribution.HGFLogpGradOp": [[3, 1, 1, "", "__init__"]], "pyhgf.distribution.HGFPointwise": [[4, 1, 1, "", "__init__"]], "pyhgf.math": [[7, 0, 1, "", "MultivariateNormal"], [8, 0, 1, "", "Normal"], [9, 2, 1, "", "binary_surprise"], [10, 2, 1, "", "binary_surprise_finite_precision"], [11, 2, 1, "", "dirichlet_kullback_leibler"], [12, 2, 1, "", "gaussian_density"], [13, 2, 1, "", "gaussian_predictive_distribution"], [14, 2, 1, "", "gaussian_surprise"], [15, 2, 1, "", "sigmoid"]], "pyhgf.math.MultivariateNormal": [[7, 1, 1, "", "__init__"]], "pyhgf.math.Normal": [[8, 1, 1, "", "__init__"]], "pyhgf.model": [[16, 0, 1, "", "HGF"], [17, 0, 1, "", "Network"], [18, 2, 1, "", "add_binary_state"], [19, 2, 1, "", "add_categorical_state"], [20, 2, 1, "", "add_continuous_state"], [21, 2, 1, "", "add_dp_state"], [22, 2, 1, "", "add_ef_state"], [23, 2, 1, "", "get_couplings"], [24, 2, 1, "", "insert_nodes"], [25, 2, 1, "", "update_parameters"]], "pyhgf.model.HGF": [[16, 1, 1, "", "__init__"]], "pyhgf.model.Network": [[17, 1, 1, "", "__init__"]], "pyhgf.plots": [[26, 2, 1, "", "plot_correlations"], [27, 2, 1, "", "plot_network"], [28, 2, 1, "", "plot_nodes"], [29, 2, 1, "", "plot_trajectories"]], "pyhgf.response": [[30, 2, 1, "", "binary_softmax"], [31, 2, 1, "", "binary_softmax_inverse_temperature"], [32, 2, 1, "", "first_level_binary_surprise"], [33, 2, 1, "", "first_level_gaussian_surprise"], [34, 2, 1, "", "total_gaussian_surprise"]], "pyhgf.updates.posterior.categorical": [[35, 2, 1, "", "categorical_state_update"]], "pyhgf.updates.posterior.continuous": [[36, 2, 1, "", "continuous_node_posterior_update"], [37, 2, 1, "", "continuous_node_posterior_update_ehgf"], [38, 3, 0, "-", "posterior_update_mean_continuous_node"], [39, 3, 0, "-", "posterior_update_precision_continuous_node"]], "pyhgf.updates.prediction.binary": [[40, 2, 1, "", "binary_state_node_prediction"]], "pyhgf.updates.prediction.continuous": [[41, 2, 1, "", "continuous_node_prediction"], [42, 2, 1, "", "predict_mean"], [43, 2, 1, "", "predict_precision"]], "pyhgf.updates.prediction.dirichlet": [[44, 2, 1, "", "dirichlet_node_prediction"]], "pyhgf.updates.prediction_error.binary": [[45, 2, 1, "", "binary_finite_state_node_prediction_error"], [46, 2, 1, "", "binary_state_node_prediction_error"]], "pyhgf.updates.prediction_error.categorical": [[47, 2, 1, "", "categorical_state_prediction_error"]], "pyhgf.updates.prediction_error.continuous": [[48, 2, 1, "", "continuous_node_prediction_error"], [49, 2, 1, "", "continuous_node_value_prediction_error"], [50, 2, 1, "", "continuous_node_volatility_prediction_error"]], "pyhgf.updates.prediction_error.dirichlet": [[51, 2, 1, "", "clusters_likelihood"], [52, 2, 1, "", "create_cluster"], [53, 2, 1, "", "dirichlet_node_prediction_error"], [54, 2, 1, "", "get_candidate"], [55, 2, 1, "", "likely_cluster_proposal"], [56, 2, 1, "", "update_cluster"]], "pyhgf.updates.prediction_error.exponential": [[57, 2, 1, "", "prediction_error_update_exponential_family"]], "pyhgf.utils": [[58, 2, 1, "", "add_edges"], [59, 2, 1, "", "beliefs_propagation"], [60, 2, 1, "", "fill_categorical_state_node"], [61, 2, 1, "", "get_input_idxs"], [62, 2, 1, "", "get_update_sequence"], [63, 2, 1, "", "list_branches"], [64, 2, 1, "", "to_pandas"]]}, "objnames": {"0": ["py", "class", "Python class"], "1": ["py", "method", "Python method"], "2": ["py", "function", "Python function"], "3": ["py", "module", "Python module"]}, "objtypes": {"0": "py:class", "1": "py:method", "2": "py:function", "3": "py:module"}, "terms": {"": [1, 2, 17, 18, 19, 20, 22, 28, 29, 32, 33, 34, 42, 58, 59, 62, 65, 67, 68, 69, 70, 72, 73, 75, 76, 77, 79, 80, 81], "0": [0, 1, 2, 3, 4, 5, 6, 9, 10, 14, 15, 16, 28, 29, 30, 31, 42, 55, 58, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "00": [77, 80, 81], "000000": 81, "000000e": 81, "00039": [1, 65, 82], "008003": 81, "00825": [1, 65, 82], "01": [69, 75, 76, 77, 80], "012": 73, "014": 81, "01566": 70, "016": [73, 82], "016216": 73, "0167": 72, "018": 80, "0183": 72, "019": 81, "02": [69, 80], "027": 2, "02it": 77, "03": [76, 80], "030": [13, 57], "038": 2, "04": [28, 29, 72, 80], "04it": 77, "05": [68, 76, 79, 81], "051805": 81, "056613": 81, "060": 82, "061": 80, "064361": 73, "065": 2, "067450": 73, "068": 82, "068983": 73, "077038": 73, "08": 82, "08008": 75, "084338": 81, "088": 73, "09045": 70, "09206": [1, 65], "1": [1, 2, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 28, 29, 30, 31, 36, 37, 40, 41, 42, 43, 45, 48, 49, 50, 53, 57, 58, 59, 62, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 78, 79, 81, 82], "10": [1, 13, 36, 37, 41, 42, 43, 45, 48, 49, 50, 57, 65, 67, 68, 69, 71, 72, 74, 76, 78, 79, 81, 82], "100": [69, 75, 77], "1000": [2, 67, 68, 69, 76, 77, 78, 80], "10000": [16, 67], "1007": [13, 57, 82], "1016": [65, 82], "1017": 82, "104333": 81, "109": 81, "10937": [1, 36, 37, 41, 42, 43, 45, 48, 49, 50, 65, 82], "11": [2, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82], "1106": 72, "1118": 72, "1119": 73, "112": 81, "113": 81, "114": 82, "117590": [65, 82], "1184": 72, "12": [2, 28, 29, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "1224": 82, "123": [67, 68, 69, 74, 75, 78, 79, 80, 81], "1239": 82, "124": 80, "125": [67, 80], "1251": 82, "1265": 82, "128": [69, 80], "13": [28, 29, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81], "138": 65, "14": [2, 73], "1413": 82, "1432": 82, "147": 80, "15": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "150": 71, "1500": 68, "16": [2, 69], "1662": 1, "16625161": 1, "1684": 74, "169607": 81, "17": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "18": [28, 29, 73, 74], "185465": 73, "1903": 75, "1910": 72, "1938": 74, "196": 80, "1998": 75, "1_000": [70, 72, 73, 74, 75, 77, 79, 81], "1d": [2, 4], "1e1": [28, 29, 70, 72, 77], "1e2": 80, "1e4": [16, 28, 29, 68, 70, 72, 73, 77, 78, 80], "1i": [11, 71], "1rst": 70, "2": [1, 2, 3, 4, 5, 6, 11, 13, 14, 16, 17, 28, 29, 36, 37, 50, 53, 59, 62, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 81, 82], "20": [1, 70, 71, 72, 73, 74, 75, 76, 77, 79, 81, 82], "200": [67, 68, 69, 80], "2000": [68, 74], "20000": [54, 55], "2001": 11, "2010": 72, "2011": [1, 65, 67, 68, 72, 82], "2013": 65, "2014": [1, 65, 67, 68, 74, 80, 82], "2016": [74, 80, 82], "2017": [79, 82], "2019": [75, 80, 82], "202": 70, "2020": [13, 57, 65, 69, 82], "2021": [65, 70, 73, 81, 82], "2023": [0, 1, 36, 37, 41, 42, 43, 45, 48, 49, 50, 65, 67, 68, 80, 82], "2024": [1, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "203": 70, "205": 73, "206": 70, "21": 71, "21596": 70, "21629826": 1, "222": 81, "222960": 81, "224": 80, "226": [65, 82], "2305": [1, 36, 37, 41, 42, 43, 45, 48, 49, 50, 65, 82], "230946": 73, "232583": 73, "233799": 73, "234603": 73, "235004": 73, "24": [80, 81], "2410": [1, 65], "243111": 81, "244": 80, "245": 80, "247": 80, "249": 80, "25": [69, 71, 74, 78, 79, 81], "250": [67, 68, 71, 76, 78, 80], "2516081684": 72, "256": 69, "25it": 77, "26": [67, 68, 69, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81], "260191": 73, "2633": 70, "2679": 72, "27": [73, 82], "270900": 73, "27879": 82, "283697": 73, "29": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "296556": 73, "2_000": [70, 72, 73, 74, 75, 77, 79, 81], "2_i": 74, "2a2a2a": 71, "2i": [11, 71], "2nd": 70, "3": [2, 3, 4, 5, 13, 16, 17, 28, 29, 57, 59, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 81, 82], "30": [67, 68, 69, 80, 82], "301674": 73, "308": 80, "30963": 72, "31": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "3185": 74, "32": 69, "3200": 74, "3389": [1, 65, 82], "345082": 81, "345825": 81, "35": 69, "350": 76, "35667497": 9, "376": 81, "379192": 81, "387": 80, "389923": 73, "3c75fd7": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "4": [1, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 81, 82], "40": 79, "400": [68, 69, 76], "406": 81, "4093": 72, "416410": 73, "42": [55, 74, 76], "43": 76, "445": 81, "45": [68, 74], "458906": 73, "466356": 73, "467": 81, "471469": 73, "472": 80, "474077": 73, "482": 73, "48550": [1, 36, 37, 41, 42, 43, 45, 48, 49, 50, 65], "49547": 82, "4c72b0": [67, 68, 73, 80, 81], "5": [0, 1, 2, 28, 29, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 81, 82], "50": [77, 78], "500": [74, 78], "500000": 73, "506923": 73, "510792": 81, "510971": 73, "512": 69, "5161": 1, "518301": 73, "52": [13, 57, 82], "520583": 73, "528095": 81, "530355": 73, "530717": 73, "5311": 70, "53662109": 74, "536678": 73, "5377": 80, "54": 73, "540697": 73, "55": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "550": 76, "551": 70, "55585": 70, "556243": 81, "55a868": [67, 75, 81], "566859": 73, "58": [13, 57, 82], "580905e": 81, "582766": [69, 78], "588": 81, "5d1e51": 81, "6": [29, 67, 68, 69, 74, 75, 78, 79, 80, 81, 82], "60": [75, 77], "600": [68, 69, 76], "602961": 73, "61": 75, "612856": 81, "6174": 72, "622459": 73, "624085": 73, "627284": 73, "631975": 73, "635": 80, "638038": 73, "64": [69, 74], "64919": [13, 57], "650": 76, "66": 81, "68": 74, "680811": 65, "687501": 81, "698": 72, "7": [9, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 82], "70": 74, "701": 80, "731660": 73, "745316": 73, "750": 68, "7554": 82, "766": 2, "776": 2, "7_7": [13, 57], "7f7f7f": 71, "8": [1, 11, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 82], "80": 79, "800": [68, 69], "806": 2, "818": 73, "822948": 81, "828": 72, "834867": 73, "850": 76, "865": 80, "87854": 73, "886": 72, "896535": 81, "8992462158203": 65, "9": [11, 28, 29, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82], "90": 68, "900": 68, "903": [72, 73], "905922": 81, "910": 72, "9189386": 14, "9297": 72, "931": 80, "932": 73, "938": 2, "944": 2, "948": 81, "950": 76, "964": 72, "965": 72, "9696": 82, "972256": 81, "978": [13, 57], "99": 74, "999": 69, "A": [0, 1, 2, 3, 4, 5, 16, 17, 28, 29, 31, 36, 37, 41, 42, 43, 45, 48, 49, 50, 55, 59, 62, 63, 66, 67, 68, 70, 72, 73, 74, 75, 76, 80, 81, 82], "And": 73, "As": [68, 74, 79], "At": [66, 67, 80], "Being": 73, "But": [68, 72, 73, 74, 80], "By": [2, 3, 4, 37, 42, 65, 72, 73], "For": [1, 6, 17, 35, 36, 37, 40, 41, 42, 43, 44, 45, 47, 48, 52, 53, 56, 57, 61, 67, 68, 69, 73, 75, 76, 80, 81], "If": [1, 2, 3, 4, 16, 28, 29, 42, 58, 63, 67, 71, 73, 74, 76, 79, 81], "In": [1, 13, 57, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82], "It": [1, 16, 35, 47, 58, 67, 68, 69, 72, 73, 75, 76, 78, 79, 81], "NOT": 81, "OR": 80, "On": 73, "One": [68, 70, 72, 81], "Or": 80, "Such": [67, 69, 81], "That": 81, "The": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 16, 17, 26, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 69, 73, 74, 75, 76, 77, 78, 79, 82], "Then": [76, 80], "There": [72, 73, 74, 75, 79, 80, 81], "These": [1, 65, 67, 70], "To": [67, 70, 72, 73, 74, 76, 80, 81], "With": [67, 76], "_": [29, 31, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 79, 80, 81], "_1": [73, 74], "__init__": [2, 3, 4, 7, 8, 16, 17], "_a": [40, 42, 43], "_b": 40, "_i": 67, "_j": [49, 50], "a_custom_hgf": 68, "aarhu": [76, 80], "aarhus_weather_df": 80, "ab": [1, 75], "aberr": 72, "abil": 75, "abl": [70, 73, 74, 76], "about": [1, 66, 67, 68, 69, 70, 71, 72, 73, 79, 80, 81], "abov": [63, 67, 68, 69, 72, 73, 76, 79, 80, 81], "absenc": [75, 79], "abstract": [1, 69, 82], "ac": 11, "acceler": 72, "accept": [70, 72, 76], "access": [2, 3, 4, 68, 73], "accommod": 1, "accord": [0, 73, 76], "accordingli": [5, 67, 70, 72, 79, 80], "account": [1, 67, 68, 79], "accumul": 59, "accur": [75, 81], "acetylcholin": 1, "achiev": 69, "across": [29, 34, 67, 69, 70, 72, 79], "act": [70, 72, 73, 74], "action": [65, 73, 74, 81], "actionmodel": 73, "activ": [13, 57, 65, 73, 81, 82], "actual": [65, 68, 71, 79, 81], "acycl": 68, "ad": [70, 71, 72, 76, 78, 79, 80], "adapt": [1, 65, 66, 67, 72, 73, 81], "adapt_diag": [70, 72, 73, 74, 75, 77, 79, 81], "add": [18, 19, 20, 21, 22, 58, 65, 67, 76, 79, 80, 81], "add_group": [74, 81], "add_nod": [2, 3, 4, 65, 68, 69, 71, 72, 76, 78, 79, 80, 81], "addit": [2, 3, 4, 5, 6, 68, 69, 72, 73], "addition": [65, 75, 81], "additional_paramet": [18, 19, 20, 21, 22, 25], "additionn": [30, 31, 32, 33, 34], "adjac": 68, "adjacencylist": [17, 35, 36, 37, 40, 41, 42, 43, 44, 45, 47, 48, 52, 53, 56, 57, 58, 59, 61, 68], "adjust": [65, 81], "adopt": [70, 72], "advanc": 66, "advantag": [67, 68, 81], "aesara": [70, 72], "affect": [5, 6, 16, 72, 79, 82], "after": [0, 17, 28, 35, 36, 37, 45, 59, 69, 70, 72, 74, 75, 79, 80, 81], "afterward": [2, 3, 4, 16], "again": [71, 72], "against": 72, "agent": [1, 65, 66, 68, 69, 70, 72, 73, 74, 75, 77, 79, 80, 81], "agnost": 1, "ai": 1, "aim": 72, "air": 80, "aki": 82, "al": [0, 65, 67, 68, 70, 73, 74, 80, 81], "algorithm": [1, 65, 67, 70, 77, 80], "align": [67, 69, 73], "alin": [1, 82], "all": [0, 1, 2, 5, 16, 29, 32, 58, 61, 62, 63, 70, 72, 73, 74, 75, 76, 77, 79, 80, 81], "alloc": 53, "allow": [1, 65, 68, 70, 72, 73, 76, 79, 80], "alon": 80, "along": [5, 81], "alpha": [68, 69, 71, 73, 75, 76, 78, 79, 80, 81], "alpha_": [11, 71, 76], "alpha_1": 11, "alpha_2": 11, "alreadi": [63, 68, 73, 74], "also": [1, 16, 28, 41, 43, 48, 63, 65, 67, 68, 70, 72, 73, 74, 76, 78, 79, 80, 81], "altern": [59, 62, 68, 72, 73, 79, 81], "alternative\u00e6li": 74, "alwai": [53, 71, 74, 75, 79, 80, 81], "among": 73, "amount": 72, "an": [1, 2, 3, 4, 5, 6, 7, 8, 14, 17, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 48, 54, 56, 57, 59, 61, 62, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "analys": [1, 81], "analyt": 1, "andrew": 82, "ani": [0, 1, 36, 37, 45, 61, 63, 66, 67, 69, 70, 71, 72, 73, 74, 76], "anim": 69, "ann": 82, "anna": [1, 82], "anoth": [67, 71, 72, 76, 78, 80, 81], "another_custom_hgf": 68, "answer": 75, "anymor": [42, 67, 69], "anyth": [67, 71], "api": [65, 70, 71, 72, 73, 74, 75, 77, 79, 81], "apont": 65, "appar": 67, "appear": [68, 76], "append": [28, 67, 69, 74, 75, 79, 80, 81], "appli": [17, 59, 62, 66, 68, 69, 71, 73, 74, 75, 79, 80, 81], "applic": [1, 6, 65, 66, 68, 69, 72, 73, 75], "apply_along_axi": 69, "approach": [67, 69, 70, 71, 74, 75], "appropri": 78, "approxim": [1, 37, 65, 67, 68, 80], "april": [72, 82], "ar": [0, 1, 2, 4, 5, 16, 17, 28, 35, 58, 59, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "ar1": [67, 79], "arang": [68, 69, 71, 73, 76, 79, 81], "arbitrari": [2, 68, 73, 76, 80], "area": [28, 80], "arg": [7, 8, 25, 35, 36, 37, 40, 41, 44, 45, 46, 47, 48, 53, 57], "argument": [2, 3, 4, 68, 70, 72, 73, 76], "arm": [66, 73, 74, 81], "around": [28, 29, 66, 67, 68, 72, 73, 81], "arrai": [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 30, 31, 35, 42, 43, 46, 49, 51, 54, 55, 59, 68, 69, 70, 71, 72, 73, 74, 75, 76, 79, 80, 81], "arrang": 80, "arriv": 67, "articl": [1, 82], "artifici": [1, 76], "arviz": [2, 70, 72, 73, 74, 75, 77, 79, 81], "arxiv": [1, 36, 37, 41, 42, 43, 45, 48, 49, 50, 65, 75, 82], "as_tensor_vari": [71, 79, 81], "asarrai": [71, 79], "ask": [1, 72], "aspect": 71, "assert": [68, 70, 72], "assess": [53, 70, 72, 81], "assign": [59, 70, 71, 72, 73, 74, 75, 77, 79, 81], "associ": [2, 3, 4, 5, 6, 62, 65, 71, 73, 74, 75, 76, 79, 81, 82], "assum": [1, 36, 37, 57, 58, 67, 68, 70, 72, 73, 74, 75, 76, 78, 79, 80, 81], "assumpt": [78, 81], "astyp": [76, 79], "atmospher": 80, "attribut": [1, 2, 3, 4, 16, 17, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 56, 57, 58, 59, 65, 69, 71, 74, 75, 78, 79], "au": 76, "august": [72, 82], "author": [1, 76], "auto": [70, 71, 72, 73, 74, 75, 77, 79, 81], "autoconnect": [42, 67, 76], "autoconnection_strength": [76, 78], "autocorrel": 76, "autom": 80, "automat": [68, 70, 72, 74], "autoregress": 42, "avail": [0, 65, 80], "averag": [70, 80, 81], "avoid": 75, "awai": 69, "ax": [26, 28, 29, 67, 68, 69, 71, 75, 76, 78, 79, 81], "axi": [5, 67, 69, 74], "axvlin": 79, "az": [2, 70, 71, 72, 73, 74, 75, 77, 79, 81], "b": [40, 42, 65, 69, 76, 79], "back": [42, 67, 74], "backgroud": 28, "backslash": 1, "backward": 68, "bad": 74, "badg": 66, "bandit": [66, 73, 74, 81], "bank": 72, "base": [1, 55, 67, 70, 71, 72, 73, 74, 75, 77, 79, 81], "batch": [5, 79], "bay": 1, "bayesian": [1, 65, 66, 67, 70, 71, 72, 73, 81, 82], "becaus": [67, 68, 70, 71, 72, 76, 79, 80], "becom": 67, "been": [62, 67, 68, 69, 71, 72, 73, 74, 80, 81], "befor": [0, 28, 62, 67, 68, 69, 72, 73, 74, 75, 79, 80], "beforehand": [72, 81], "begin": [9, 13, 66, 67, 69, 73, 76, 81], "behav": [1, 70, 72, 76, 80], "behavior": [1, 81, 82], "behaviour": [5, 6, 65, 66, 67, 70, 72, 73, 74, 76, 77, 79], "behind": [66, 67, 80], "being": [67, 68, 70, 74, 76, 77, 81], "belief": [0, 6, 17, 28, 55, 59, 65, 66, 68, 69, 72, 73, 74, 75, 76, 80], "beliefs_propag": [17, 69, 79], "belong": [63, 69], "below": [0, 67, 70, 71, 73, 76, 79, 80, 81], "bernoulli": [9, 81], "best": [1, 54, 72, 76, 77, 81], "beta": [79, 81], "better": [37, 72, 73, 74, 75, 80, 81], "between": [0, 1, 5, 6, 11, 16, 40, 58, 59, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 77, 79, 81], "beyond": 67, "bia": [74, 81, 82], "biased_random": 81, "biased_random_idata": 81, "biased_random_model": 81, "big": 67, "binari": [2, 3, 4, 5, 6, 9, 10, 16, 18, 29, 30, 31, 32, 35, 47, 60, 65, 66, 67, 69, 71, 72, 74, 75, 79], "binary_hgf": 81, "binary_input_upd": [35, 47], "binary_paramet": [60, 71], "binary_precis": [16, 29, 70], "binary_softmax": [73, 81], "binary_softmax_inverse_temperatur": [65, 74, 75], "binary_states_idx": 60, "binary_surpris": [73, 79], "bind": [65, 68], "binomi": [68, 73, 74, 75, 79], "bio": 1, "biolog": [1, 65], "bit": [72, 74], "bivariate_hgf": 69, "bla": [70, 71, 72, 73, 74, 75, 77, 79, 81], "blackjax": 73, "blank": 71, "block": [67, 70, 72, 79], "blog": 71, "blue": [73, 76], "bollmann": 65, "bool": [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 28, 29, 30, 31, 51, 54, 55, 59], "bool_": [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 30, 31, 51, 54, 55, 59], "boolean": [35, 59, 71, 72, 81], "boom": 82, "both": [1, 42, 66, 67, 68, 71, 73, 74, 76, 78, 79, 80, 81], "bottom": [29, 65, 67, 80], "brain": 1, "branch": [53, 63, 65, 73, 79], "branch_list": 63, "break": 80, "briefli": 81, "broad": 71, "broadcast": [5, 74], "broader": 69, "brodersen": [1, 65, 82], "broken": 72, "brown": [79, 82], "bucklei": 82, "build": [66, 67, 70, 72, 76, 80], "built": [65, 68, 70, 72, 80, 81], "burst": 68, "bv": 65, "c": [1, 13, 36, 37, 41, 42, 43, 45, 48, 49, 50, 57, 65, 70, 71, 72, 73, 74, 75, 77, 79, 81, 82], "c44e52": [67, 69, 73, 75, 81], "ca": 76, "calcul": [74, 76], "call": [0, 35, 67, 69, 70, 72, 73, 74, 79, 80, 81], "callabl": [0, 2, 3, 4, 5, 6, 20, 24, 57, 58, 59, 62, 73], "cambridg": 82, "can": [0, 1, 2, 3, 4, 5, 6, 16, 58, 59, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "candid": [51, 53, 54, 55, 79], "cannot": [16, 68, 69, 79], "capabl": [67, 76], "capitalis": 67, "captur": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "capture_output": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "cardiac": [66, 72], "carlo": [1, 70, 72, 81], "carri": 81, "carryov": 59, "case": [9, 13, 67, 69, 71, 72, 73, 74, 76, 77, 79, 81], "categor": [16, 19, 60, 66, 69, 74, 79], "categori": [10, 69, 71, 79], "categorical_hgf": 71, "categorical_idata": 71, "categorical_surpris": 71, "caus": 37, "cbo9781139087759": 82, "cdot": 76, "cedric": 82, "cell": [67, 72, 80], "censor": 75, "censored_volatil": 75, "centr": [71, 72], "central": [67, 68, 72, 76, 81], "certain": [1, 67, 68], "chain": [1, 2, 70, 71, 72, 73, 74, 75, 77, 79, 80, 81], "cham": 82, "chanc": 79, "chance_conting": 79, "chang": [67, 68, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81], "channel": 77, "chaotic": 79, "check": [72, 74], "chf": [28, 29], "child": [0, 53, 61, 67, 68, 69, 76, 80], "children": [0, 16, 17, 28, 35, 36, 37, 40, 41, 42, 43, 44, 45, 47, 48, 52, 53, 56, 57, 58, 61, 62, 63, 65, 67, 68, 76], "children_idx": 58, "children_input": 28, "choic": 68, "cholinerg": [65, 82], "choos": [69, 72, 79], "chose": [31, 53, 69, 73, 79], "chosen": 79, "chri": 1, "christoph": [1, 82], "chunck": 76, "ci": [28, 29], "circl": 73, "circumst": 37, "citi": 80, "clarifi": 74, "clariti": [72, 81], "class": [0, 2, 3, 4, 7, 8, 16, 17, 27, 28, 29, 57, 68, 69, 70, 71, 72, 73, 74, 79, 81], "classic": [72, 81], "cldtot": 80, "clear": [73, 80], "clearli": [68, 73], "clock": 76, "close": [73, 75], "closer": 76, "cloud": 80, "cloudi": 80, "cluster": [51, 52, 53, 54, 55, 56], "cm": 78, "cmap": [71, 75], "co": 69, "code": [1, 17, 66, 67, 68, 69, 73, 74, 76, 80, 81], "coeffici": [67, 75], "cognit": [1, 65, 77, 82], "colab": [66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "collect": [0, 71], "colleg": 11, "collin": [75, 82], "color": [28, 67, 68, 69, 71, 73, 75, 76, 78, 79, 80, 81], "column": 59, "column_stack": [69, 79], "com": [65, 80], "combin": [1, 42, 67, 68], "come": [1, 67, 69, 73, 74, 76, 80], "command": 81, "common": [1, 68, 71], "commonli": [73, 76, 80], "commun": [13, 67], "compar": [1, 65, 72, 74, 81], "compare_df": 81, "comparison": [4, 66, 75], "compat": [2, 68, 70, 71, 72, 73, 74], "compil": 65, "complet": [67, 80, 81], "complex": [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 30, 31, 51, 54, 55, 59, 66, 67, 68, 73, 80], "complexifi": 67, "compli": 73, "complic": 1, "compon": [67, 68, 72, 74, 79], "compromis": 68, "comput": [0, 1, 2, 3, 4, 5, 6, 10, 11, 13, 32, 33, 42, 43, 46, 49, 50, 57, 62, 65, 66, 67, 68, 69, 70, 71, 72, 73, 77, 79, 80, 81, 82], "computation": 1, "computationalpsychiatri": 65, "concaten": 79, "concentr": 11, "concept": [67, 74, 80], "concern": 67, "concis": 80, "cond": 76, "condit": 81, "connect": [1, 6, 16, 67, 68, 73, 76, 80], "consequ": [67, 68], "consid": [62, 67, 68, 70, 72, 73, 76, 79, 80, 81], "consider": 1, "consist": [17, 59, 67, 68, 69, 71, 73, 75, 76, 79, 81], "constand": 76, "constant": [14, 67, 69, 76], "constitud": 67, "constitut": [76, 80], "constrained_layout": [67, 68, 69, 70, 72, 73, 74, 76, 77, 79, 81], "contain": [0, 1, 2, 3, 4, 16, 26, 30, 31, 42, 43, 53, 59, 65, 67, 68, 74, 77, 80], "context": [2, 4, 59, 69, 70, 72, 73, 79, 80, 81], "contextu": 1, "contin": 3, "conting": [68, 71, 73, 79, 81], "contingencylist": 68, "continu": [1, 2, 3, 4, 5, 6, 16, 20, 28, 29, 33, 45, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 80, 81], "continuous_input_upd": [35, 47], "continuous_node_prediction_error": [49, 50], "continuous_node_value_prediction_error": [48, 50], "continuous_node_volatility_prediction_error": [48, 49], "continuous_precis": 16, "contrari": 68, "control": [1, 67, 68, 74, 80, 81], "conveni": [67, 73], "converg": [70, 72, 73, 74, 75, 77, 79, 81], "convert": [28, 29, 67, 70, 71, 77, 79, 81], "copyright": 1, "core": [2, 17, 65, 68, 70, 72, 73, 74, 75, 77, 79, 81], "correct": [69, 82], "correctli": [27, 75], "correl": [0, 26, 75], "correspond": [16, 28, 29, 69, 70, 73, 74, 75, 76, 79, 80], "cost": 79, "could": [32, 33, 34, 68, 71, 72, 73, 76, 79, 81], "count": [13, 69, 74], "counterpart": [68, 70], "coupl": [0, 1, 5, 6, 16, 23, 28, 35, 41, 42, 43, 47, 48, 58, 62, 65, 66, 70, 78, 79, 81], "coupling_fn": [20, 24, 58, 68, 76], "coupling_strength": 58, "cours": [66, 80], "covari": 69, "cover": [67, 80, 81], "cpc": 66, "cpython": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "creat": [0, 2, 3, 4, 16, 28, 29, 52, 53, 65, 66, 69, 74, 75, 76, 77, 79, 80, 81], "create_belief_propagation_fn": 79, "creation": [68, 73, 80, 81], "creativ": 1, "crisi": 72, "critic": [1, 68, 73], "cross": [4, 74, 81, 82], "crucial": 74, "csv": 80, "cumsum": [67, 76, 80], "currenc": 72, "current": [0, 1, 40, 58, 65, 67, 68, 69, 73, 80, 82], "current_belief": 81, "curv": 28, "custom": [16, 66, 70, 71, 74, 79, 80, 81], "custom_op": [71, 79], "customdist": [74, 81], "customis": 66, "customop": [71, 79], "d": [1, 11, 65, 69, 82], "dai": 80, "dark": 80, "dash": 67, "data": [0, 1, 2, 3, 4, 5, 6, 28, 29, 32, 33, 34, 59, 64, 65, 67, 69, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82], "data2": 69, "databas": 80, "datafram": 64, "dataset": [73, 77, 80, 81], "daugaard": [1, 65], "daunizeau": [1, 65, 82], "de": 82, "deadlock": 81, "deal": [1, 79], "debug": 80, "dec": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "decid": [67, 72, 73, 81], "decis": [1, 6, 30, 31, 65, 70, 71, 74, 75, 81], "declar": [68, 74, 76], "decreas": 79, "dedic": 72, "deeper": 65, "def": [68, 69, 71, 73, 74, 76, 79, 81], "default": [2, 3, 4, 5, 6, 16, 25, 28, 29, 32, 33, 59, 61, 62, 65, 67, 68, 69, 70, 72, 73, 74, 75, 76, 77, 79, 81], "default_paramet": 25, "defin": [12, 16, 17, 28, 65, 67, 68, 69, 70, 71, 72, 73, 74, 76, 80, 81], "definit": [62, 73], "degre": [69, 70, 72, 76], "deliv": 80, "delta": [69, 76], "delta_j": [49, 50], "demonstr": [1, 65, 69, 70, 73, 75, 77, 78], "denmark": 76, "denot": 67, "densiti": [0, 2, 11, 12, 13, 70, 72, 74, 78, 80], "depend": [5, 40, 67, 70, 72, 73, 74, 76, 80], "depict": [29, 67, 81], "deriv": [1, 67, 69, 76], "describ": [0, 65, 66, 67, 68, 69, 70, 73, 80], "descript": [1, 67, 80], "design": [65, 66, 68, 71, 73, 74, 79, 80, 81], "despin": [67, 68, 69, 71, 74, 75, 76, 78, 79, 80, 81], "detail": [67, 75, 79, 80], "detect": 77, "determin": 1, "determinist": [1, 74, 81], "dev0": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "develop": [65, 68, 81], "deviat": [28, 29, 51, 54, 55, 74, 77], "df": [69, 70, 72], "diagnos": 81, "diagnost": [70, 72, 73, 74, 75, 77, 79, 81], "dict": [16, 18, 19, 20, 21, 22, 24, 25, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 56, 57, 58, 59, 60], "dictionari": [16, 59, 65, 68, 70, 72, 80], "dictonari": 25, "did": [72, 74], "differ": [1, 2, 3, 4, 5, 16, 36, 37, 45, 58, 67, 68, 69, 70, 72, 73, 74, 76, 79, 80], "differenti": [65, 69, 70, 72, 76], "difficult": [1, 69, 80], "diffus": [65, 68], "dimens": [3, 5, 6, 67, 68, 74], "dimension": [69, 79], "dir": 11, "direct": [67, 68], "directli": [35, 68, 70, 72, 73, 74, 76, 79], "dirichlet": [11, 21, 35, 69, 71], "dirichlet_nod": 44, "disambigu": 68, "disappear": 76, "discrep": [70, 72], "discret": [1, 71, 81], "discuss": [1, 67, 79, 81], "displai": [69, 74, 76, 81], "dissoci": [0, 68], "dist": 75, "dist_mean": 78, "dist_std": 78, "distanc": 69, "distant": 69, "distinguish": [74, 80], "distribut": [7, 8, 9, 10, 11, 13, 14, 35, 55, 57, 65, 66, 67, 68, 70, 71, 72, 73, 75, 77, 80, 81], "dive": [67, 68], "diverg": [0, 11, 71, 72, 74, 75, 79, 81], "dk": 76, "do": [65, 68, 70, 71, 72, 73, 74, 76, 80, 81], "documatt": 68, "document": [65, 71, 80, 81], "doe": [69, 71, 73, 80, 81], "doesn": 76, "doi": [1, 13, 36, 37, 41, 42, 43, 45, 48, 49, 50, 57, 65, 82], "dollar": 72, "domain": [72, 81], "don": [67, 80], "done": 68, "dopamin": 1, "dopaminerg": [65, 82], "dot": 72, "down": [0, 65, 67, 69, 80], "download": [65, 77, 80], "drag": 72, "drai": 70, "draw": [1, 28, 29, 70, 72, 73, 74, 75, 77, 79, 81], "drift": [5, 6, 16, 42, 68, 76, 80], "dse": 81, "dtype": [9, 14, 55, 69, 70, 71, 72, 73, 79, 80, 81], "due": 68, "duplic": [74, 75], "dure": [0, 17, 43, 55, 65, 68, 72, 74, 75, 76, 82], "dx": 82, "dynam": [17, 65, 66, 73, 76, 77, 80, 81], "e": [1, 2, 5, 6, 16, 28, 31, 36, 37, 40, 41, 42, 43, 45, 48, 49, 50, 58, 59, 63, 65, 66, 67, 68, 70, 72, 73, 74, 75, 77, 79, 80, 81, 82], "e49547": 82, "each": [2, 3, 4, 17, 28, 29, 35, 36, 37, 40, 41, 42, 43, 44, 45, 47, 48, 51, 52, 53, 55, 56, 57, 59, 61, 64, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81], "eas": 65, "easili": [68, 71, 73, 80, 81], "ecg": 77, "ecg_peak": 77, "ecosystem": 65, "edg": [17, 35, 36, 37, 40, 41, 42, 43, 44, 45, 47, 48, 52, 53, 56, 57, 58, 59, 61, 62, 63, 65, 69, 79], "edgecolor": [68, 69, 73, 75, 79, 81], "editor": 82, "ef": 69, "effect": [43, 65, 72, 75, 82], "effective_precis": 43, "effici": [1, 65, 67], "ehgf": [37, 62], "either": [53, 68, 73, 74, 76, 80], "ekaterina": [1, 82], "elaps": [67, 79], "electrocardiographi": 77, "electron": 1, "element": 76, "elicit": 14, "elif": 82, "ellicit": 9, "elpd": 74, "elpd_diff": 81, "elpd_loo": [74, 81], "els": [75, 79], "elsevi": 65, "emb": [70, 72], "embed": [0, 66, 70, 72, 74], "empir": 1, "empti": 17, "en": [7, 8], "enabl": 1, "encapsul": [71, 79], "encod": [1, 65, 67, 71, 73, 75, 80, 81], "end": [9, 13, 67, 69, 73, 76], "endogen": 43, "energi": [1, 82], "enhanc": 65, "enlarg": 69, "enno": [1, 82], "ensur": [62, 70, 72, 74, 75, 79, 80], "enter": 67, "entir": 68, "entri": 16, "enumer": [67, 69, 81], "environ": [1, 67, 68, 73, 74, 80, 81], "environment": [1, 68, 75], "eq": 11, "equal": [1, 3, 37, 59, 76], "equat": [1, 11, 67, 70, 71, 72, 73, 76, 79, 80], "equival": [69, 73], "erdem": 82, "eric": 82, "error": [1, 46, 47, 48, 49, 50, 53, 59, 62, 65, 68, 69, 72, 76, 77, 80, 81, 82], "especi": [67, 74, 79, 81], "ess": 75, "ess_bulk": [2, 73, 81], "ess_tail": [2, 73, 81], "estim": [0, 1, 2, 28, 29, 66, 67, 69, 73, 74, 75, 79, 80, 81], "et": [0, 65, 67, 68, 70, 73, 74, 80, 81], "eta": 69, "eta0": [10, 16, 29, 70], "eta1": [10, 16, 29, 70], "etc": 68, "euro": 72, "european": 82, "eval": 74, "evalu": [13, 67, 71, 73, 79, 82], "even": [1, 67, 76], "event": [1, 72, 78], "everi": [66, 67, 68, 71, 74, 79, 80, 81], "everyth": 73, "evid": [6, 69, 81], "evidenc": 69, "evolut": [67, 70, 72, 73, 80, 81], "evolutionari": 1, "evolv": [66, 67, 79], "exact": [67, 73, 80], "exactli": [67, 71, 73, 74], "exampl": [1, 2, 9, 14, 28, 29, 65, 66, 67, 68, 70, 71, 72, 73, 74, 76, 80, 81], "excel": 73, "except": [70, 72, 73, 81], "exchang": 72, "exclud": [63, 79], "exclus": 63, "execut": [0, 68], "exert": [67, 68], "exhibit": [70, 72], "exist": [51, 53, 54, 55, 56, 68], "exogen": 43, "exot": 71, "exp": [43, 67, 69, 74, 79, 80], "expect": [0, 5, 6, 9, 10, 14, 16, 28, 29, 31, 35, 37, 40, 41, 42, 43, 54, 67, 68, 69, 70, 72, 73, 74, 76, 77, 78, 79, 80, 81], "expected_mean": [9, 10, 14, 42, 51, 54, 55, 67, 68, 69, 73, 74, 75, 78, 79, 81], "expected_precis": [10, 14, 43, 68, 78], "expected_sigma": [51, 54, 55], "experi": [73, 81], "experiment": [1, 66, 73, 74, 75, 79, 81], "explain": [74, 80, 81], "explan": 81, "explicit": 73, "explicitli": [1, 68, 74, 77], "explor": 81, "exponenti": [7, 8, 13, 22, 66, 67, 69, 80], "exponential_famili": [7, 8], "export": [64, 73], "express": [1, 68, 69, 71, 72, 76, 79, 80], "extend": [68, 69, 70, 72, 74], "extens": [1, 66, 81], "extract": [70, 72, 77, 78, 81], "extrem": [1, 72, 79], "f": [42, 65, 67, 68, 76, 80], "f_1": 68, "f_i": 68, "f_n": 68, "f_x": 69, "facilit": 68, "fact": [76, 79], "fail": 37, "fairli": 75, "fall": 72, "fals": [28, 29, 76, 81], "famili": [7, 8, 13, 22, 57, 66, 67, 69, 80], "familiar": 73, "far": [68, 72, 73, 80, 81], "fashion": 1, "fast": [76, 79, 81], "featur": [68, 74, 77, 80], "februari": 82, "fed": 74, "feed": [28, 29, 79], "fewer": 78, "field": [1, 68, 73, 81], "fig": [69, 71, 75, 76, 78], "figsiz": [28, 29, 67, 68, 69, 71, 73, 75, 76, 78, 79, 80, 81], "figur": [28, 29, 67, 68, 69, 70, 71, 72, 73, 74, 76, 77, 79, 80, 81], "fil": 11, "file": 1, "filer": 1, "fill": 75, "fill_between": [71, 78, 79], "filter": [0, 1, 5, 6, 13, 16, 36, 37, 41, 42, 43, 45, 48, 49, 50, 57, 68, 73, 74, 75, 78, 79, 81, 82], "final": [1, 80, 81], "find": [54, 65, 66, 68, 72, 73, 80], "finit": [10, 45], "fir": 77, "firebrick": 79, "first": [0, 1, 3, 5, 6, 10, 16, 33, 36, 37, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 77, 79, 80, 81], "first_level_binary_surpris": [70, 81], "first_level_gaussian_surpris": [72, 77, 80], "firt": 31, "fit": [2, 3, 4, 5, 6, 32, 33, 34, 73, 74, 75, 76, 79, 80], "fix": [2, 57, 67, 73, 74, 76, 80, 81], "flatten": 74, "flexibl": [1, 65, 71, 80, 81], "flexibli": 69, "flight": 72, "float": [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 30, 31, 32, 33, 34, 51, 54, 55, 58, 59, 74, 79], "float32": [9, 14, 70, 72, 73, 80, 81], "float64": [71, 79], "floor": 72, "fluctuat": 67, "flux": 80, "fn": 81, "fnhum": [1, 65, 82], "fo": 1, "focus": [68, 79], "folder": 65, "follow": [1, 11, 62, 65, 67, 68, 69, 70, 71, 72, 76, 79, 80, 81], "forc": 79, "fork": [70, 81], "form": [1, 67, 68, 69, 74, 76, 80], "formal": 67, "formul": 1, "forward": [65, 67, 70, 72, 74, 75, 79, 80, 81], "found": [1, 67, 68, 70, 72, 80], "foundat": [1, 65, 80, 82], "four": [1, 68, 79, 81], "fpsyt": 65, "frac": [11, 13, 14, 28, 31, 40, 42, 43, 50, 57, 67, 69, 71, 74, 79], "fraction": 80, "frame": [64, 67, 69, 77, 80], "framework": [1, 65, 66, 67, 68, 69], "franc": 72, "free": [1, 65, 70, 73, 75], "freedom": 69, "friston": [1, 65, 82], "from": [0, 1, 2, 5, 6, 9, 11, 13, 14, 28, 29, 30, 31, 47, 59, 62, 63, 65, 66, 67, 68, 70, 71, 72, 74, 76, 77, 78, 80, 81], "frontier": [1, 65, 82], "frontiersin": [1, 82], "fry": 55, "fr\u00e4ssle": 65, "full": [1, 6, 69], "fulli": [67, 80], "func": 69, "funcanim": 69, "function": [1, 2, 3, 4, 5, 6, 15, 17, 27, 28, 29, 30, 31, 32, 33, 34, 35, 38, 39, 58, 59, 62, 63, 65, 66, 67, 69, 70, 71, 72, 74, 75, 77, 79, 80, 81], "fundament": 67, "fundat": 1, "further": [65, 67, 68, 74, 78, 79], "fusion": 73, "futur": [0, 67, 82], "g": [1, 5, 6, 65, 67, 73, 75, 76, 81], "g_": [69, 76], "gabri": 82, "gamma": [11, 13, 69, 71], "gamma_a": 43, "gaussian": [0, 1, 2, 5, 6, 12, 13, 14, 16, 28, 33, 34, 36, 37, 41, 42, 43, 45, 48, 49, 50, 57, 68, 73, 74, 75, 76, 77, 79, 81, 82], "gaussian_predictive_distribut": 69, "gcc": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "ge": 82, "gelman": 82, "gener": [1, 36, 37, 41, 42, 43, 45, 48, 49, 50, 60, 62, 66, 68, 69, 70, 71, 73, 74, 75, 76, 79, 81, 82], "generalis": [1, 66, 71, 73], "generalised_filt": 69, "get": [40, 68, 69, 72, 73, 74, 75, 78, 79, 80, 81], "get_legend_handles_label": [67, 81], "get_network": [69, 79], "get_update_sequ": 68, "ghgf": [65, 80, 81], "gif": 69, "git": 65, "github": [11, 65], "githubusercont": 80, "give": [70, 72, 73, 76, 79, 81], "given": [0, 6, 9, 11, 14, 28, 31, 32, 33, 34, 35, 42, 43, 45, 49, 50, 54, 55, 57, 63, 65, 67, 68, 69, 70, 71, 72, 73, 75, 76, 79, 80, 81], "global": [1, 72], "go": [67, 70, 72, 73, 74, 79, 80], "goe": 71, "good": [73, 74, 75, 79], "googl": [66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "grad": [71, 79], "gradient": [3, 71, 79], "grai": 79, "grandpar": 68, "graph": [59, 66, 68, 71, 79], "graphviz": [27, 70, 72], "greater": 68, "greatli": 69, "greec": 72, "green": [75, 76], "grei": [28, 67, 69, 72, 75, 78], "grid": [67, 69, 75, 76, 78, 80, 81], "ground": 80, "group": [66, 67, 75, 81], "grow": 71, "grw": [67, 80], "grw_1": 80, "grw_2": 80, "guid": 67, "gz": [71, 79], "h": [1, 36, 37, 41, 42, 43, 45, 48, 49, 50, 65, 67, 69, 81, 82], "ha": [1, 17, 35, 36, 37, 40, 41, 42, 43, 44, 45, 47, 48, 52, 53, 56, 57, 58, 61, 67, 68, 69, 70, 71, 72, 73, 74, 79, 80, 81], "had": [73, 74, 81], "halfnorm": 74, "hamiltonian": [70, 72, 81], "hand": [66, 73], "handi": 76, "handl": [66, 67, 69, 71, 73, 74, 81], "happen": [67, 73, 76, 80], "harrison": [65, 82], "hat": [9, 14, 28, 31, 40, 42, 43, 49, 50, 67, 73, 74, 76], "have": [1, 35, 47, 62, 67, 68, 70, 71, 72, 73, 74, 76, 79, 80, 81], "hdi_3": [2, 73, 81], "hdi_97": [2, 73, 81], "he": 73, "head": [73, 80], "heart": [0, 67, 68], "heartbeat": 77, "heatmap": 26, "heavi": 68, "hedvig": [1, 82], "height": [28, 29, 80], "heinzl": 65, "help": [72, 74, 80], "her": 73, "here": [1, 2, 30, 31, 32, 33, 34, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 77, 79, 80, 81], "hgf": [0, 1, 2, 3, 4, 5, 6, 26, 28, 29, 30, 31, 32, 33, 34, 35, 36, 60, 65, 66, 67, 68, 69, 71, 74, 75, 76, 77, 78, 79, 80], "hgf_loglik": [70, 72, 73, 75, 77, 81], "hgf_logp_op": [2, 70, 72, 73, 74, 75, 77, 81], "hgf_logp_op_pointwis": [74, 81], "hgf_mcmc": [70, 72], "hgfdistribut": [70, 71, 72, 73, 74, 75, 77, 81], "hgfpointwis": [74, 81], "hhgf_loglik": 2, "hidden": [1, 67, 79, 80, 81], "hide": 79, "hierarch": [0, 1, 5, 6, 13, 16, 36, 37, 41, 42, 43, 45, 48, 49, 50, 57, 68, 73, 75, 77, 78, 79, 81, 82], "hierarchi": [0, 1, 2, 3, 4, 16, 65, 67, 68, 70, 72, 80], "hierarchicalgaussianfilt": 73, "high": [78, 79], "high_nois": 76, "high_prob": 79, "higher": [67, 70, 72, 74, 75, 76, 80, 81], "highest": 1, "highli": [1, 72, 81], "hist": 79, "hold": [67, 73], "home": 1, "hood": 69, "hostedtoolcach": 81, "hour": [66, 80], "hourli": [80, 82], "how": [66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "howev": [1, 67, 68, 69, 71, 72, 73, 74, 76, 77, 81], "html": 11, "http": [1, 7, 8, 11, 36, 37, 41, 42, 43, 45, 48, 49, 50, 57, 65, 75, 80, 82], "human": [1, 65, 82], "hyper": 74, "hyperparamet": [13, 57, 69], "hyperprior": [74, 75], "i": [0, 1, 2, 3, 4, 5, 6, 9, 11, 13, 14, 16, 17, 28, 29, 31, 32, 33, 35, 36, 37, 41, 42, 43, 47, 48, 49, 50, 53, 57, 58, 59, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 81, 82], "iain": 82, "idata": [2, 77, 79, 81], "idata_kwarg": 81, "idea": [67, 68, 72, 73, 75], "ident": 76, "identifi": 75, "idx": [71, 75], "iglesia": [1, 65, 70, 73, 81, 82], "ignor": [5, 6], "ii": [1, 66], "iii": 1, "ilabcod": 80, "illustr": [1, 67, 68, 71, 72, 73, 76, 77, 79, 80, 81], "imagin": 76, "impact": 79, "implement": [0, 16, 42, 57, 65, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "impli": [35, 60, 67, 69, 71, 72, 79, 80], "implicitli": 73, "import": [1, 2, 9, 14, 28, 29, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "import_dataset1": 77, "importantli": [67, 68], "imposs": 62, "improv": [62, 81], "imshow": 71, "includ": [5, 6, 16, 67, 68, 69, 70, 72, 73, 74, 76, 77, 81], "incom": [67, 80], "incompat": 81, "incorpor": [16, 41, 48, 69, 73, 74], "incorrect": 76, "increas": [69, 70, 72, 74, 75, 76, 79, 80, 81], "increment": [59, 67], "inde": 74, "independ": [66, 69, 75], "index": [17, 23, 28, 35, 36, 37, 40, 41, 42, 43, 44, 45, 47, 48, 52, 53, 56, 57, 58, 59, 60, 61, 63, 65, 68], "indic": [58, 67, 72, 73, 74, 75, 76, 77, 79, 81], "individu": [1, 65, 75, 82], "inf": [5, 16, 29, 32, 33, 34, 70, 71, 74, 79], "infer": [0, 1, 5, 6, 13, 57, 59, 65, 66, 67, 68, 72, 73, 78, 81, 82], "inferred_paramet": 75, "infin": 80, "infinit": [71, 79], "influenc": [0, 1, 42, 67, 68, 69, 70, 72, 74, 76, 79, 80, 81], "inform": [1, 13, 17, 59, 68, 69, 70, 71, 72, 74, 76, 79, 80, 81], "infti": 72, "ingredi": 73, "inherit": [5, 6, 65, 67, 80], "initi": [2, 3, 4, 16, 17, 68, 69, 70, 72, 73, 74, 75, 77, 79, 80, 81], "initial_belief": 81, "initial_mean": [16, 28, 29, 70, 72, 73, 74, 75, 77, 81], "initial_precis": [16, 28, 29, 70, 72, 73, 77, 81], "initv": 75, "inplac": 71, "input": [0, 1, 2, 3, 4, 5, 6, 16, 17, 28, 29, 30, 31, 32, 33, 34, 35, 44, 45, 47, 48, 52, 53, 54, 56, 59, 61, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "input_convers": 77, "input_data": [2, 3, 4, 5, 6, 28, 29, 65, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "input_idx": [59, 69, 79], "input_nodes_idx": 44, "input_precis": [5, 6], "input_typ": 77, "insert": [24, 67], "insid": [73, 76, 79, 81], "inspir": [65, 67, 68], "instal": [27, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "instanc": [0, 6, 26, 27, 28, 29, 30, 31, 32, 33, 34, 60, 62, 65, 68, 70, 72, 73, 74, 80], "instanti": [71, 79], "instead": [2, 3, 4, 72, 79, 80, 81], "instruct": 68, "instrument": 76, "int": [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 28, 29, 30, 31, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 69, 71, 76, 79], "int32": 81, "integ": [2, 3, 4, 68], "integr": [1, 65, 69, 81], "intellig": 1, "inter": 1, "interact": [66, 67, 81], "intercept": 67, "interest": [67, 74, 75, 79, 80], "interestingli": 69, "interfac": 73, "interleav": [0, 69, 79], "intern": [1, 57, 66, 71, 73, 74, 76, 80, 82], "interocept": 66, "interpol": 71, "interpret": 1, "intersect": 66, "interv": [40, 69, 76, 77], "interven": 72, "intervent": 72, "introduc": [1, 66, 67, 71, 80, 81], "introduct": [65, 66], "introductori": 80, "intuit": [1, 66, 73], "invers": [1, 5, 6, 31, 65, 66, 67, 73, 74, 75, 79], "inverse_temperatur": [74, 75], "invert": [1, 80, 81], "involv": 1, "io": [11, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "ion": 11, "ipykernel_2721": 72, "ipython": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "irrespect": 55, "isbn": 1, "isclos": [70, 72], "isnan": [71, 79], "issn": 1, "item": [2, 3, 4], "iter": [67, 70, 72, 73, 74, 75, 77, 78, 79, 81], "its": [1, 40, 42, 53, 58, 65, 66, 67, 68, 70, 72, 73, 74, 76, 77, 80, 81], "itself": [67, 68, 70, 76, 80], "iv": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "j": [1, 43, 50, 65, 82], "jacobian": [71, 79], "jan": 82, "jax": [0, 5, 17, 29, 30, 31, 55, 59, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "jaxlib": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "jean": [1, 82], "jit": [65, 71, 79], "jitted_custom_op_jax": [71, 79], "jitted_vjp_custom_op_jax": [71, 79], "jitter": [70, 72, 73, 74, 75, 77, 79, 81], "jl": 73, "jnp": [16, 29, 32, 33, 34, 69, 70, 71, 72, 73, 75, 76, 79], "job": [70, 72, 73, 74, 75, 77, 79, 81], "joint": [68, 69], "jonah": 82, "journal": [1, 82], "julia": [65, 68, 73], "jump": 67, "just": [73, 74, 75, 76, 80, 81], "k": [1, 11, 30, 31, 36, 37, 40, 41, 42, 43, 45, 48, 49, 50, 65, 67, 68, 69, 71, 73, 74, 75, 76, 79, 80, 81], "kai": [1, 82], "kalman": [67, 73], "kappa": 67, "kappa_1": 67, "kappa_j": 43, "karl": [1, 82], "kasper": [65, 82], "kdeplot": 75, "keep": [76, 80], "kei": [1, 55, 67, 68, 81], "keyword": [1, 25, 68, 73], "kg": 80, "khodadadi": [1, 65], "kind": [58, 65, 67, 68, 69, 71, 72, 74, 76, 79, 80, 81], "kl": [11, 71], "kl_diverg": 71, "klaa": [1, 82], "knew": [70, 72], "know": [67, 73, 76, 81], "knowledg": 80, "known": 76, "kora": 76, "kullback": [11, 71], "kwarg": [7, 8], "l": [1, 13, 36, 37, 41, 42, 43, 45, 48, 49, 50, 57, 65, 67, 81, 82], "l_a": 79, "l_b": 79, "label": [67, 68, 69, 71, 73, 74, 78, 79, 80, 81], "laew": 1, "lambda": [67, 74, 76], "lambda_1": 67, "lambda_2": [67, 76], "lambda_2x_2": 76, "lambda_3": [67, 76], "lambda_a": [42, 67, 76], "land": 80, "lanillo": 82, "lar": 82, "larg": [68, 69, 80], "larger": [68, 69, 75, 80], "last": [59, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "latent": 67, "later": [43, 65, 67, 74, 81], "latter": 79, "lax": [17, 59, 76, 79], "layer": [5, 67, 72, 80, 81], "layout": 72, "lead": [67, 72, 81], "learn": [1, 65, 67, 71, 75, 76, 78, 80, 82], "learning_r": 81, "learnt": 76, "least": [0, 70, 72, 73, 74, 75, 77, 79, 81], "leav": [0, 59, 67, 74, 80, 81, 82], "lee": [74, 82], "left": [11, 13, 42, 43, 50, 67, 69, 71, 73, 80], "leftarrow": [57, 69], "legend": [67, 68, 69, 73, 74, 76, 78, 79, 80, 81], "legrand": [1, 36, 37, 41, 42, 43, 45, 48, 49, 50, 65, 76, 82], "leibler": [11, 71], "len": [71, 73, 79, 81], "length": [2, 3, 4, 17, 35, 36, 37, 40, 41, 42, 43, 44, 45, 47, 48, 52, 53, 56, 57, 59, 61, 73, 74], "leq": 76, "less": [16, 68, 73], "let": [67, 68, 69, 71, 73, 76, 80, 81], "level": [0, 1, 2, 5, 6, 16, 28, 29, 31, 33, 65, 66, 67, 68, 69, 73, 75, 76, 77, 78, 79, 80], "leverag": 74, "lg": 1, "li": 67, "lib": 81, "librari": [0, 1, 68, 70, 72, 81], "like": [55, 70, 71, 72, 73, 74, 76, 80, 81], "likelihood": [51, 53, 72, 73, 74, 81], "lilian": [1, 82], "limit": [1, 37, 67, 69, 73, 76, 79, 81], "line": [67, 68, 72, 73, 76], "linear": [58, 66], "linear_hgf": 76, "linearli": 69, "linestyl": [67, 68, 69, 73, 75, 76, 78, 81], "linewidth": [67, 69, 71, 80, 81], "link": [1, 58, 65, 68, 74], "linspac": [74, 75, 78], "list": [2, 3, 4, 5, 17, 23, 28, 29, 35, 36, 37, 40, 41, 42, 43, 44, 45, 47, 48, 52, 53, 56, 57, 58, 59, 60, 61, 63, 65, 68, 71, 73, 74, 79, 80], "lit": 1, "ln": [11, 71], "load": [65, 80, 81], "load_data": [2, 28, 29, 65, 70, 72, 73, 74, 75, 80, 81], "load_ext": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "loc": [67, 69, 71, 78, 79, 80], "log": [2, 4, 5, 6, 9, 14, 28, 65, 70, 72, 73, 74, 79, 80, 81], "log_likelihoo": 81, "log_likelihood": [74, 81], "log_prob": 5, "logist": 15, "logit": [70, 81], "lognorm": 74, "logp": [5, 74, 81], "logp_fn": 79, "logp_pointwis": [74, 81], "lomakina": [1, 65, 82], "london": 11, "long": [76, 82], "loo": 74, "loo_hgf": 74, "look": [70, 71, 72, 76, 81], "loop": [67, 79, 80, 81], "loos": 79, "loss": 79, "loss_arm1": 79, "loss_arm2": 79, "lot": 70, "low": [78, 79], "low_nois": 76, "low_prob": 79, "lower": [67, 68, 69, 70, 71, 75], "lower_bound": 15, "lowest": 65, "luckili": 74, "m": [1, 65, 67, 68], "m2": 80, "m3": 80, "m_1": 67, "m_a": 42, "machin": 1, "made": [16, 68, 73, 74, 79, 80, 81], "magic": 80, "mai": [1, 71, 82], "main": [0, 27, 28, 29, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "major": 1, "make": [1, 65, 67, 68, 70, 71, 73, 74, 78, 79, 80, 81], "make_nod": [71, 79], "manag": 76, "mani": [1, 2, 67, 68, 71, 73, 74], "manipul": [0, 17, 65, 66, 70, 73, 74, 79, 80], "manka": [65, 82], "manual": [68, 69, 74, 76, 81], "many_binary_children_hgf": 68, "many_value_children_hgf": 68, "many_value_parents_hgf": 68, "many_volatility_children_hgf": 68, "many_volatility_parents_hgf": 68, "map": 74, "marker": 76, "market": 72, "markov": 1, "mask": [59, 69, 79], "master": 65, "match": [5, 68, 76, 81], "math": [2, 42, 57, 69, 75, 79], "mathcal": [2, 13, 67, 68, 69, 73, 74, 80], "mathemat": [1, 14, 67, 80], "mathi": [1, 13, 36, 37, 41, 42, 43, 45, 48, 49, 50, 57, 65, 67, 68, 69, 80, 82], "matlab": [65, 67, 72], "matplotlib": [26, 28, 29, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "matrix": [74, 79], "matter": [73, 81], "maxim": 72, "mayb": 74, "mcmc": [2, 66, 81], "mcse_mean": [2, 73, 81], "mcse_sd": [2, 73, 81], "mead": 1, "mean": [1, 2, 5, 6, 9, 12, 14, 16, 28, 29, 36, 37, 40, 41, 42, 51, 54, 55, 62, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81], "mean_1": [2, 5, 6, 72], "mean_2": [5, 6], "mean_3": [5, 6], "mean_hgf": 78, "mean_mu_g0": 55, "mean_precision_hgf": 78, "measur": [71, 73, 75, 76, 77, 80], "mechan": 1, "media": 65, "mention": 67, "mere": 73, "messag": [65, 68], "meta": [68, 72], "meter": 80, "method": [1, 2, 3, 4, 7, 8, 16, 17, 32, 33, 57, 65, 68, 70, 72, 73, 74, 77, 80], "metric": 73, "michael": 82, "might": [2, 3, 4, 16, 73, 81], "miku\u0161": [1, 65], "min": 71, "mind": 81, "minim": [1, 68, 70, 72, 80, 81], "minimis": 77, "misc": 1, "miss": [76, 79], "missing_inputs_u": 79, "mix": 80, "mm": 80, "modal": 77, "model": [1, 2, 3, 4, 5, 6, 26, 28, 29, 30, 31, 32, 33, 34, 37, 60, 62, 66, 68, 69, 75, 76, 78, 79, 82], "model_to_graphviz": [70, 72, 74, 77, 81], "model_typ": [2, 3, 4, 16, 28, 29, 32, 68, 70, 72, 73, 74, 75, 77, 81], "modifi": 73, "modul": [0, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "modular": [65, 67, 68, 81], "mojtaba": 1, "mont": [1, 70, 72, 81], "montemagno": 76, "month": 80, "more": [66, 67, 68, 69, 70, 71, 72, 73, 75, 76, 80, 81], "moreov": 74, "most": [16, 67, 68, 69, 70, 71, 72, 73, 79, 80], "mostli": 79, "move": [67, 74, 81], "mu": [9, 14, 31, 40, 42, 49, 67, 70, 72, 73, 74, 80], "mu_1": [67, 72, 76, 80], "mu_2": [67, 76], "mu_3": 76, "mu_a": [42, 43, 76], "mu_b": 76, "mu_i": 67, "mu_j": 49, "mu_temperatur": 74, "mu_volatil": 74, "much": [68, 69, 72, 80, 81], "multi": [66, 74, 75], "multiarm": 66, "multilevel": [66, 74, 81], "multinomi": 71, "multipl": [1, 5, 28, 58, 68, 71, 73, 74, 76, 77, 79], "multipleloc": 69, "multipli": 68, "multiprocess": 81, "multithread": 81, "multivari": [7, 69], "multivariatenorm": 69, "must": [58, 76], "m\u00f8ller": [1, 36, 37, 41, 42, 43, 45, 48, 49, 50, 65, 82], "m\u00fcller": 65, "n": [1, 2, 4, 36, 37, 41, 42, 43, 45, 48, 49, 50, 59, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "n1662": 1, "n_": 43, "n_1": 68, "n_categori": 71, "n_j": 68, "n_level": [2, 3, 4, 5, 6, 16, 28, 29, 68, 70, 72, 73, 74, 75, 77, 81], "n_node": [18, 19, 20, 21, 22, 24, 68, 69, 76, 79], "n_sampl": [54, 55], "nace": 1, "name": 67, "nan": [2, 3, 4, 5, 81], "nativ": [70, 72, 74, 76], "natur": [1, 67, 69], "nc": 1, "ncol": [67, 75], "ndarrai": [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 30, 31, 51, 54, 55, 59], "ne": 1, "necessarili": 1, "need": [35, 36, 37, 45, 47, 68, 69, 71, 73, 74, 75, 76, 79, 80, 81], "neg": [5, 6, 28, 37, 70, 72, 73, 76, 79, 80], "nelder": 1, "nest": [71, 73, 79, 80], "network": [0, 1, 5, 6, 18, 19, 20, 21, 22, 24, 26, 27, 28, 29, 33, 34, 42, 43, 44, 52, 53, 56, 58, 59, 60, 61, 62, 63, 64, 66, 69, 70, 72, 73, 75, 76, 77, 78, 79, 80, 81], "neural": [0, 1, 17, 44, 52, 53, 56, 58, 62, 66, 67, 68, 76, 81], "neuroimag": [65, 82], "neuromodel": 65, "neuromodul": 1, "neuromodulatori": 1, "neuron": 1, "neurosci": [1, 65, 70, 72, 74, 82], "new": [0, 28, 29, 40, 42, 43, 51, 52, 53, 54, 55, 59, 65, 67, 68, 69, 70, 71, 72, 74, 75, 76, 79, 80, 81], "new_attribut": 68, "new_belief": 81, "new_input_precision_1": 68, "new_input_precision_2": 68, "new_mean": 69, "new_mu": 55, "new_observ": 81, "new_sigma": 55, "newaxi": [2, 70, 72, 73, 74, 77, 81], "next": [1, 67, 70, 72, 73, 80], "nicola": [1, 76, 82], "nodal": 77, "nodalis": 80, "node": [2, 3, 4, 5, 6, 16, 17, 18, 19, 20, 21, 22, 24, 25, 27, 28, 29, 32, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 69, 70, 72, 73, 74, 77, 78, 79, 81], "node_idx": [28, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 56, 57, 60, 63, 68, 71, 79], "node_paramet": [18, 19, 20, 21, 22, 24, 25, 68, 69], "node_trajectori": [17, 69, 71, 73, 74, 75, 78, 79, 81], "node_typ": [24, 68], "nois": [1, 68, 76], "noisi": [68, 69, 76], "noisier": [76, 81], "non": [52, 56, 66], "non_sequ": 81, "none": [2, 3, 4, 6, 16, 17, 20, 22, 23, 24, 28, 29, 32, 33, 34, 35, 58, 67, 68, 70, 71, 73, 74, 76], "nonlinear_hgf": 76, "noon": 80, "norm": [69, 78], "normal": [1, 2, 7, 10, 11, 57, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "note": [16, 27, 35, 41, 47, 48, 58, 67, 70, 72, 73, 74, 76, 79, 80, 81], "notebook": [66, 67, 68, 70, 72, 73, 74, 76, 78, 79, 81], "notic": 76, "notion": [67, 68], "nov": 82, "novel": 1, "novemb": 82, "now": [67, 68, 70, 72, 73, 74, 76, 79, 80, 81], "np": [2, 5, 13, 67, 68, 69, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81], "nrow": [67, 69, 71, 79], "nu": [13, 57], "nu_": 69, "num": 75, "num_sampl": 81, "number": [1, 2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 17, 28, 29, 30, 31, 35, 36, 37, 40, 41, 42, 43, 44, 45, 47, 48, 51, 52, 53, 54, 55, 56, 57, 59, 61, 68, 69, 70, 71, 72, 73, 74, 75, 76, 79, 81], "numer": [1, 71, 79], "numpi": [2, 4, 5, 29, 30, 31, 55, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "nut": [70, 72, 73, 74, 75, 77, 79, 81], "nutshel": 73, "o": [65, 80, 81], "o_": 73, "object": [75, 81], "observ": [0, 9, 10, 13, 14, 28, 35, 47, 51, 53, 54, 55, 59, 65, 66, 67, 68, 69, 70, 71, 72, 74, 76, 77, 79, 80, 81], "obtain": 73, "occur": [37, 71, 74], "oct": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "octob": 82, "offer": [1, 67], "offici": [65, 71], "often": [37, 67, 68, 73, 74, 75], "omega": [70, 71, 72, 74, 77, 79, 80], "omega_": [70, 72, 74], "omega_1": [67, 72, 80], "omega_2": [2, 67, 70, 71, 72, 73, 77, 81], "omega_3": [70, 72], "omega_a": 43, "onc": [67, 68, 81], "one": [1, 2, 3, 4, 28, 42, 57, 67, 68, 69, 73, 74, 79, 80, 81, 82], "ones": [69, 71, 75, 76, 79], "onli": [0, 6, 16, 29, 32, 67, 68, 70, 71, 73, 74, 76, 77, 79, 80], "onlin": 1, "oop": 80, "op": [3, 71, 79], "open": [65, 77], "oper": [65, 69, 71, 73, 79, 80], "operand": [52, 56], "opt": 81, "optim": [1, 62, 65, 67, 68, 70, 72, 79], "optimis": [70, 72, 73], "option": [31, 42, 72, 73], "orang": 72, "order": [58, 65, 67, 68, 69, 70, 72, 73, 76, 81], "org": [1, 7, 8, 36, 37, 41, 42, 43, 45, 48, 49, 50, 57, 65, 75, 82], "organ": 0, "origin": [62, 65, 76], "orphan": 67, "oscil": 76, "oscillatori": 76, "other": [1, 63, 65, 67, 68, 70, 72, 73, 76, 79, 80, 81], "otherwis": 79, "our": [1, 67, 69, 70, 72, 73, 74, 76, 77, 79, 81], "ourselv": [70, 72], "out": [67, 74, 81, 82], "outcom": [9, 14, 65, 66, 68, 70, 73, 74, 79, 81], "outcome_1": 81, "outcome_2": 81, "output": [71, 73, 79, 82], "output_gradi": [71, 79], "output_typ": 77, "outputs_info": 81, "outsid": 76, "over": [2, 5, 6, 13, 65, 66, 67, 68, 69, 70, 72, 73, 74, 76, 77, 79, 80, 81], "overal": [1, 72, 73], "overcom": 76, "overfit": [72, 79], "overlai": 55, "overtim": 78, "overview": 67, "own": [42, 67, 80], "p": [1, 11, 31, 36, 37, 41, 42, 43, 45, 48, 49, 50, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "p1": 71, "p2": 71, "p3": 71, "p_a": [42, 76, 79], "p_loo": [74, 81], "pablo": 82, "packag": [1, 65, 68, 73], "page": 1, "pair": 67, "pan": 77, "panda": [64, 73, 77, 80], "panel": [29, 68, 72, 73], "paper": [1, 65, 67], "paralel": 69, "parallel": [3, 5, 6, 74], "paramet": [0, 1, 2, 3, 4, 5, 6, 9, 10, 11, 13, 14, 16, 23, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 74, 76, 77, 80], "parameter": [16, 67], "parameter_structur": 59, "parametr": [11, 13, 17, 31, 51, 53, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 81], "parametris": [24, 79, 80, 81], "paraticip": [30, 31], "parent": [0, 5, 6, 16, 17, 35, 36, 37, 40, 41, 42, 43, 44, 45, 47, 48, 49, 52, 53, 56, 57, 58, 61, 62, 63, 65, 67, 68, 69, 70, 72, 76, 77, 78, 79, 80], "parent_idx": 58, "pareto": 74, "part": [5, 6, 16, 65, 67, 68, 71, 72, 73, 74, 76, 80, 81], "partial": [71, 75, 79], "particip": [73, 74, 75, 77, 81], "particular": [67, 80], "pass": [2, 3, 4, 5, 6, 17, 35, 47, 65, 67, 68, 69, 70, 72, 73, 76, 79, 80], "past": [69, 73], "patholog": 1, "pattern": 82, "pct": 74, "pd": 80, "pdf": [1, 69, 78], "peak": 77, "penni": 11, "per": [74, 75], "percept": [1, 65, 82], "perceptu": [1, 2, 3, 4, 16, 73, 74, 75], "pereira": 65, "perform": [1, 5, 6, 37, 42, 59, 62, 66, 67, 68, 70, 71, 72, 73, 76, 77, 79, 80, 81], "perspect": [70, 72], "peter": [1, 82], "petzschner": 65, "pfenning": [80, 82], "phasic": [5, 6, 16, 42, 43, 67, 80], "phenomena": 68, "phenomenon": 76, "phi": 67, "physio_df": 77, "physiolog": [66, 72], "pi": [13, 14, 28, 40, 43, 50, 67, 69, 70, 72, 76], "pi_1": 67, "pi_a": 43, "pi_i": 67, "pi_j": 50, "pid": 81, "piec": 81, "pip": [65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "pjitfunct": 5, "place": [67, 68, 74, 79], "plai": [1, 72], "plausibl": 65, "pleas": [1, 74], "plot": [67, 68, 69, 71, 73, 75, 76, 78, 79, 80, 81], "plot_compar": 81, "plot_correl": 72, "plot_network": [68, 69, 70, 71, 72, 76, 78, 79, 80, 81], "plot_nod": [68, 71, 76, 79], "plot_posterior": [74, 79], "plot_raw": 77, "plot_trac": [70, 71, 72, 73, 77, 81], "plot_trajectori": [65, 68, 70, 72, 76, 77, 80, 81], "plt": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "plu": 79, "pm": [2, 70, 71, 72, 73, 74, 75, 77, 79, 81], "pmid": 1, "point": [13, 32, 33, 34, 40, 59, 67, 68, 69, 70, 71, 72, 73, 74, 79, 80], "pointer": [35, 36, 37, 40, 41, 44, 45, 46, 47, 48, 49, 50, 52, 53, 56, 57], "pointwis": [4, 74, 81], "pointwise_loglikelihood": [74, 81], "pool": 75, "poor": 80, "popen_fork": 81, "popul": 74, "popular": 81, "posit": [68, 73, 74, 80], "possess": 76, "possibl": [10, 42, 61, 66, 68, 69, 71, 73, 74, 76, 77, 80, 81], "post": 71, "post1": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "posterior": [1, 2, 28, 29, 45, 59, 62, 65, 66, 67, 69, 80], "posterior_update_mean_continuous_nod": [36, 37], "posterior_update_precision_continuous_nod": [36, 37], "posteriori": 74, "potenti": [2, 70, 71, 72, 73, 75, 77, 79, 81], "power": [81, 82], "pp": [13, 57], "ppg": 77, "pr": [70, 73], "practic": [66, 68, 69, 73, 82], "pre": [16, 17, 51, 53, 55, 70, 71, 72, 81], "precipit": 80, "precis": [1, 5, 6, 10, 12, 14, 16, 28, 29, 36, 37, 40, 41, 43, 45, 46, 54, 62, 65, 66, 67, 68, 69, 70, 71, 72, 76, 79, 80], "precision_1": [2, 5, 6], "precision_2": [2, 5, 6], "precision_3": [5, 6], "precsnoland": 80, "prectotland": 80, "predict": [1, 13, 14, 17, 46, 47, 48, 49, 50, 53, 59, 62, 66, 68, 69, 72, 73, 74, 77, 79, 80, 82], "prediction_sequ": 62, "presenc": 75, "present": [65, 66, 67, 68, 70, 72, 73, 74, 79, 80], "press": 82, "previou": [0, 1, 40, 53, 54, 67, 68, 70, 71, 72, 73, 74, 76, 80, 81], "previous": [67, 73, 80], "principl": [1, 62, 67, 68, 69, 73, 80, 81], "print": [2, 65], "prior": [2, 66, 68, 69, 70, 72, 73, 74, 77, 80, 81], "probabilist": [0, 1, 2, 17, 28, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 56, 57, 61, 65, 66, 67, 69, 72, 73, 77, 79, 81], "probabl": [0, 1, 2, 4, 5, 6, 9, 10, 13, 28, 31, 35, 51, 57, 66, 67, 69, 70, 72, 73, 74, 75, 79, 80, 81], "problem": [66, 75], "procedur": [68, 74, 81], "proceed": 74, "process": [1, 21, 36, 37, 42, 44, 52, 53, 56, 66, 68, 69, 76, 79, 80, 81], "produc": [74, 79, 81], "product": [71, 79], "programmat": 73, "progress": [68, 71, 76], "propag": [0, 17, 59, 68, 69, 73, 80, 81], "propens": [67, 74], "properti": [1, 68], "proport": 69, "propos": 62, "provid": [1, 2, 3, 4, 5, 16, 28, 31, 58, 67, 68, 70, 71, 72, 73, 74, 76, 79, 80, 81], "proxim": 68, "pseudo": [13, 69, 74], "psi": [11, 35, 47, 71], "psychiatri": [65, 66, 73, 74, 80], "psycholog": 73, "pt": [71, 74, 79, 81], "public": [1, 11, 71], "publish": [1, 57, 82], "pulcu": [79, 82], "punish": [66, 82], "purpos": [67, 73, 78], "put": 72, "pv": 82, "pval": 71, "py": [72, 81], "pyhgf": [1, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "pymc": [0, 2, 5, 6, 70, 71, 72, 73, 74, 75, 77, 79, 81], "pyplot": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "pytensor": [70, 71, 72, 73, 74, 75, 77, 79, 81], "python": [65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "python3": 81, "pytre": 68, "pytress": 68, "q": [1, 11, 71], "qualiti": 74, "quantiti": [74, 78, 79, 80, 81], "question": 69, "quickli": [72, 81], "quit": 72, "r": [65, 67, 69, 76, 77, 79], "r_a": 69, "r_hat": [2, 73, 81], "rain": 80, "raman": 65, "rand": 69, "randn": 69, "random": [1, 5, 6, 16, 42, 55, 68, 69, 71, 73, 74, 75, 76, 78, 79], "randomli": [67, 75, 81], "rang": [67, 68, 69, 71, 73, 74, 75, 78, 79, 80], "rank": 81, "rate": [42, 65, 67, 69, 70, 72, 73, 78, 79, 80, 81], "rather": 81, "ratio": 69, "ration": 82, "ravel": [69, 79], "raw": 80, "rcparam": [67, 68, 69, 70, 72, 73, 74, 76, 77, 79, 81], "reach": 68, "react": 72, "read": [28, 29, 80, 81], "read_csv": 80, "reader": 67, "readi": [79, 81], "real": [1, 68, 69, 70, 72, 73, 76, 77, 80, 81], "reanalysi": 82, "reason": [68, 70, 72, 73, 74], "recap": 81, "receiv": [0, 35, 42, 53, 59, 65, 67, 68, 69, 71, 73, 74, 76, 79, 81], "recent": 1, "recommend": [70, 72, 73, 74, 75, 77, 79, 81], "reconstruct": 81, "record": [66, 79, 80], "recov": [0, 66, 79], "recoveri": [66, 73, 81], "recurs": [63, 65], "red": 75, "reduc": 62, "ref": 75, "ref_val": 74, "refer": [1, 7, 8, 11, 13, 36, 37, 41, 42, 43, 45, 48, 49, 50, 57, 67, 68, 69, 71, 73, 74, 75, 79, 80], "reflect": [68, 80], "regist": [68, 76, 81], "regular": [37, 67, 70, 81], "reinforc": [1, 66, 67, 70, 71], "relat": [1, 73, 77], "relationship": 58, "relax": 78, "releas": 65, "relev": [16, 70, 72, 76], "reli": [67, 69, 74], "reliabl": 75, "remain": [65, 79], "rememb": 81, "remot": 67, "remov": 80, "reparameter": [72, 74, 75, 79, 81], "repeat": [67, 74, 79, 80], "replac": [71, 79], "report": [1, 75], "repres": [1, 5, 6, 16, 42, 67, 68, 69, 71, 73, 74, 76, 80], "requier": [71, 79], "requir": [4, 27, 30, 32, 33, 34, 42, 68, 69, 73, 74, 79, 80, 81], "rescorla": [67, 70, 75], "research": [1, 73], "resembl": 73, "resolut": 1, "respect": [11, 67, 68, 72, 81], "respir": 77, "respond": 81, "respons": [2, 3, 4, 5, 6, 65, 66, 70, 72, 74, 75, 77, 80, 81, 82], "response_funct": [2, 3, 4, 6, 65, 70, 72, 73, 74, 75, 77, 80, 81], "response_function_input": [2, 3, 4, 5, 6, 30, 31, 32, 33, 34, 65, 73, 74, 75, 81], "response_function_paramet": [5, 6, 30, 31, 32, 33, 34, 65, 70, 73, 74, 75], "rest": 1, "restrict": [68, 72], "result": [1, 2, 65, 68, 70, 71, 72, 73, 74, 77, 79, 80, 81], "retriev": [68, 72, 77, 81], "return": [0, 4, 5, 6, 9, 10, 11, 13, 14, 26, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 59, 60, 62, 63, 64, 65, 68, 69, 70, 71, 72, 73, 74, 76, 77, 79, 80, 81], "revert": [42, 67], "review": [67, 80], "reward": [66, 73, 81, 82], "rf": [69, 74], "rhat": 75, "rho": [67, 76], "rho_1": 67, "rho_2": 76, "rho_3": 76, "rho_a": [42, 76], "rhoa": 80, "right": [11, 13, 42, 43, 50, 67, 69, 71, 73, 79], "rise": 72, "rl": 1, "robert": 82, "robust": [70, 72, 73, 74, 75, 77, 79, 81], "rocket": 74, "role": [0, 1, 72], "root": [0, 59, 63, 67, 68, 80], "row": 28, "rr": 77, "rr_": 77, "rule": [81, 82], "run": [66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81], "runtimewarn": 81, "rust": 65, "rw": 81, "rw_idata": 81, "rw_model": 81, "rw_updat": 81, "s11222": 82, "s_0": 73, "s_1": 73, "sa": [65, 81], "sake": 73, "salient": 72, "same": [1, 2, 3, 4, 17, 35, 36, 37, 40, 41, 42, 43, 44, 45, 47, 48, 52, 53, 56, 57, 58, 61, 67, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81], "sampl": [1, 2, 54, 55, 62, 66, 67, 68, 69, 73, 75, 77, 78, 79, 80], "sampler": [70, 72, 73, 74, 75, 77, 79, 81], "samuel": 82, "sandra": [1, 82], "satellit": 82, "save": [43, 69, 74, 75, 81], "scalar": 69, "scale": [67, 69, 78, 80, 81], "scall": 67, "scan": [17, 59, 79, 81], "scan_fn": 17, "scat": 69, "scat2": 69, "scatter": [68, 69, 73, 75, 79, 81], "scatterplot": 75, "scheme": [1, 68], "schrader": 65, "sch\u00f6bi": 65, "scienc": [1, 13], "scipi": [69, 78], "scope": 67, "scratch": 65, "sd": [2, 73, 81], "se": [74, 81], "seaborn": [67, 68, 69, 71, 74, 75, 76, 78, 79, 80, 81], "seagreen": 79, "seamless": 65, "search": 63, "second": [0, 1, 2, 5, 6, 10, 16, 66, 67, 68, 70, 72, 73, 74, 75, 76, 77, 79, 80, 81], "section": [66, 67, 70, 71, 72, 74, 80, 81], "see": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 79, 80, 81], "seed": [67, 68, 69, 73, 74, 75, 76, 78, 79, 80], "seen": [67, 80, 81], "select": [73, 79, 80], "self": [71, 79, 81], "send": [67, 68, 72], "sens": [1, 67, 71, 73], "sensori": [1, 65, 67, 80, 81, 82], "sensory_precis": 54, "separ": [69, 74, 75, 81], "septemb": 72, "sequenc": [17, 59, 62, 65, 67, 69, 71, 73, 74, 79, 81], "sequenti": [70, 71, 72, 73, 74, 75, 77, 79, 81], "seri": [1, 2, 3, 4, 5, 6, 13, 32, 57, 64, 65, 67, 68, 69, 70, 71, 72, 74, 77, 80, 81, 82], "serotonin": 1, "session": 66, "set": [16, 24, 28, 29, 58, 60, 63, 65, 67, 68, 69, 70, 72, 73, 74, 75, 76, 78, 79, 81], "set_minor_loc": 69, "set_offset": 69, "set_palett": 74, "set_titl": [69, 71, 75], "set_xdata": 69, "set_xlabel": [69, 75, 78], "set_ydata": 69, "set_ylabel": [69, 71, 75, 78, 79], "sever": [1, 72, 81], "sfreq": 77, "shad": 28, "shape": [0, 1, 3, 68, 69, 71, 74, 75, 76, 79, 80], "share": [68, 70], "sharei": 79, "sharex": [67, 71, 79], "she": 73, "shoot": 72, "shortwav": 80, "should": [0, 2, 4, 5, 28, 29, 35, 42, 43, 47, 54, 57, 58, 68, 69, 71, 73, 74, 79, 81], "show": [28, 29, 68, 72, 81], "show_heart_r": 77, "show_posterior": [28, 29, 76], "show_surpris": [28, 29, 76], "show_total_surpris": [29, 70, 72], "shown": [67, 69, 76], "side": [68, 73, 74], "sidecar": 81, "sigma": [54, 67, 68, 74, 80], "sigma_1": [67, 80], "sigma_2": [67, 80], "sigma_mu_g0": 55, "sigma_pi_g0": 55, "sigma_temperatur": 74, "sigma_volatil": 74, "sigmoid": [67, 74, 75, 79, 81], "sigmoid_hgf": 73, "sigmoid_hgf_idata": 73, "sigmoid_inverse_temperatur": 75, "signal": [0, 66, 76], "sim": [2, 67, 74, 76, 80], "similar": [70, 72, 77, 79, 81], "similarli": [68, 72], "simpl": [2, 67, 68, 69, 73, 75, 79, 80, 81, 82], "simpler": [67, 68, 81], "simplest": [67, 73], "simplex": 1, "simpli": [0, 68, 69, 74, 75, 80, 81], "simplifi": [76, 80], "simpul": 67, "simul": [1, 54, 55, 67, 68, 69, 73, 76, 80, 81, 82], "simultan": 74, "sin": [68, 69, 76], "sinc": [67, 76], "singl": [6, 68, 79, 81], "sinusoid": [68, 76], "sinusoid_linear_hgf": 76, "sinusoid_nonlinear_hgf": 76, "situat": [1, 67, 68, 71, 73, 74, 79], "size": [1, 5, 67, 68, 70, 72, 75, 78, 80], "skew": 71, "slightli": [72, 73, 81], "slope": [67, 76], "slow": [79, 81], "smaller": 75, "smooth": 66, "smoother": 69, "sn": [67, 68, 69, 71, 74, 75, 76, 78, 79, 80, 81], "snoma": 80, "snow": 80, "so": [68, 70, 72, 73, 76, 80, 81], "sofmax": [30, 31], "softmax": [5, 6, 65, 73, 79], "softwar": 65, "solar": 80, "sole": 79, "solid": 81, "solut": 69, "some": [37, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 79, 80], "someth": [67, 68, 73, 76, 78, 81], "sometim": [68, 72, 73, 80, 81], "sort": 69, "sourc": [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65], "space": [62, 72, 74, 76], "sparsiti": 73, "special": 79, "specif": [1, 42, 65, 66, 67, 68, 69, 70, 71, 73, 74, 76, 79], "specifi": [2, 58, 67, 71, 76, 77, 79], "spike": 72, "spiral": 69, "split": [68, 73], "springer": [57, 82], "sqrt": [13, 28, 69, 78], "squar": 74, "stabil": 1, "stabl": 72, "stable_conting": 79, "stack": 69, "staffel": [80, 82], "standard": [0, 28, 29, 36, 51, 54, 55, 62, 66, 67, 68, 70, 71, 72, 73, 74, 78, 80, 81], "start": [2, 3, 4, 59, 62, 67, 69, 71, 73, 74, 79, 80, 81], "stat": [69, 78], "state": [0, 1, 6, 18, 19, 20, 22, 32, 40, 42, 43, 46, 47, 49, 50, 55, 58, 60, 61, 65, 66, 67, 68, 69, 70, 72, 73, 74, 79, 80, 81], "static": [44, 52, 56], "statist": [0, 13, 26, 28, 29, 57, 64, 67, 68, 73, 75, 78, 82], "statproofbook": 11, "std": [76, 78], "steep": 76, "steeper": 76, "stefan": 82, "step": [1, 5, 6, 17, 36, 37, 43, 59, 62, 65, 66, 67, 68, 69, 70, 73, 74, 75, 76, 79, 80, 81], "stephan": [1, 36, 37, 41, 42, 43, 45, 48, 49, 50, 65, 82], "still": [71, 79], "stim_1": 81, "stim_2": 81, "stimuli": [73, 74, 81], "stimulu": [73, 74, 81], "stochast": [67, 69, 71, 76, 80], "storag": 80, "store": [43, 48, 65, 68, 73, 74], "str": [2, 3, 4, 16, 28, 44, 52, 53, 56, 57, 59, 62], "straight": 67, "straightforward": [67, 69, 79], "straigthforwar": 80, "strenght": 23, "strength": [16, 35, 41, 42, 43, 47, 48, 58, 67, 70, 76], "string": 68, "structur": [0, 16, 17, 28, 29, 35, 41, 47, 48, 59, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 80, 81], "student": 69, "studi": [1, 66, 72, 74], "sub": [0, 68, 70], "subject": [1, 81], "subplot": [67, 69, 71, 75, 76, 78, 79, 81], "subtl": 81, "success": 75, "suffici": [0, 13, 26, 28, 29, 57, 64, 67, 68, 73, 78, 82], "sufficient_statist": 69, "sufficient_stats_fn": 57, "suggest": [69, 81], "suitabl": 79, "sum": [5, 29, 34, 42, 43, 65, 70, 71, 72, 73, 74, 77, 79, 80, 81], "sum_": [11, 43, 71, 73], "summari": [2, 70, 72, 73, 75, 77, 81], "summer": 80, "support": [5, 65, 67, 68], "suppos": 76, "sure": [71, 73, 79, 81], "surfac": 80, "surpris": [0, 2, 3, 4, 5, 6, 9, 10, 14, 28, 29, 30, 31, 32, 33, 34, 64, 65, 68, 71, 77, 79, 80, 81], "surprise_fn": 71, "suspect": 72, "swgdn": 80, "swiss": 72, "switch": [69, 70, 81], "swtdn": 80, "sy": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "systol": 77, "t": [1, 31, 36, 37, 41, 42, 43, 45, 48, 49, 50, 57, 65, 67, 68, 69, 70, 71, 73, 74, 76, 79, 80, 81], "t2m": 80, "tailor": [70, 71], "take": [0, 1, 67, 70, 73, 74, 80, 81], "tapa": 65, "target": [59, 65, 69, 80], "target_accept": [72, 74, 75, 79, 81], "task": [65, 66, 68, 70, 73, 74, 77, 81], "techniqu": 75, "tediou": 72, "tem": 80, "temp": 74, "temperatur": [5, 6, 31, 65, 73, 74, 75, 79, 80], "temporari": 53, "ten": 82, "tensor": [70, 71, 72, 73, 74, 75, 77, 79, 81], "term": [1, 43, 67, 68, 73, 76, 82], "terminologi": [71, 74], "test": [74, 75], "text": [9, 73, 76], "th": 74, "than": [16, 37, 67, 69, 71, 72, 74, 75, 76], "thank": [74, 81], "thecomput": 66, "thei": [0, 65, 68, 69, 70, 71, 72, 73, 74, 75, 81], "them": [67, 73, 79, 80], "theoret": [66, 80], "theori": [1, 67, 81], "therefor": [32, 67, 68, 69, 71, 72, 73, 74, 76, 79, 80, 81], "thestrup": [1, 82], "theta": [68, 69, 76], "theta_": 68, "theta_1": [68, 76], "theta_2": 76, "thi": [0, 1, 2, 4, 5, 6, 13, 16, 17, 27, 28, 29, 32, 35, 37, 43, 53, 57, 59, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "thing": [71, 74, 80], "think": [67, 73], "third": [1, 5, 6, 68, 70, 72], "those": [65, 68, 69, 70, 73, 74], "three": [0, 5, 6, 16, 28, 29, 67, 68, 71, 78, 79], "three_level_hgf": [72, 77], "three_level_hgf_idata": [70, 72], "three_level_trajectori": 81, "three_levels_binary_hgf": [70, 81], "three_levels_continuous_hgf": 72, "three_levels_continuous_hgf_bi": 72, "three_levels_hgf": [29, 70], "three_levels_idata": 81, "threshold": 76, "through": [0, 65, 66, 67, 68, 73, 74, 76, 80, 81], "thu": [1, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "ticker": 69, "tight": 72, "tight_layout": [69, 72], "tile": [67, 79, 80], "tim": 82, "time": [1, 2, 3, 4, 5, 6, 13, 30, 31, 32, 33, 34, 40, 42, 43, 57, 59, 64, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 80, 81, 82], "time_step": [2, 3, 4, 5, 6, 40, 73, 79], "timeseri": [2, 28, 29, 72, 80], "timestep": 76, "titl": [1, 67, 69, 71, 74, 76, 78, 81], "tmp": 72, "to_numpi": [80, 81], "to_panda": [69, 70, 72, 73], "toa": 80, "togeth": [29, 70, 72, 73, 81], "tolist": 75, "tomkin": 77, "tonaic_volatil": 69, "tonic": [2, 5, 6, 16, 42, 43, 67, 72, 74, 75, 76, 78, 79, 80, 81], "tonic_drift": [16, 28, 29, 70, 76, 77], "tonic_drift_1": [5, 6], "tonic_drift_2": [5, 6], "tonic_drift_3": [5, 6], "tonic_volatil": [16, 28, 29, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "tonic_volatility_1": [5, 6, 72, 77], "tonic_volatility_2": [2, 5, 6, 70, 71, 72, 73, 74, 75, 77, 81], "tonic_volatility_3": [5, 6, 70, 72], "too": 79, "took": [70, 72, 73, 74, 75, 77, 79, 81], "tool": 74, "toolbox": [65, 67, 72, 73], "top": [0, 28, 29, 65, 67, 70, 72, 73, 78, 80], "total": [42, 43, 67, 70, 72, 73, 74, 75, 76, 77, 79, 80, 81], "total_gaussian_surpris": [2, 77], "total_surpris": 73, "toussaint": 65, "toward": [79, 81], "trace": 76, "track": [67, 68, 69, 70, 73, 78, 80, 81], "tradition": 73, "trajectori": [0, 6, 26, 28, 29, 64, 65, 69, 73, 74, 75, 77, 78, 79, 80], "trajectories_df": 64, "transform": [23, 67, 68, 70, 73, 74, 76, 81], "transit": [60, 66, 69], "translat": 65, "transmiss": 80, "transpar": 68, "treat": 74, "tree": 68, "tree_util": [71, 79], "tri": [68, 70, 73, 81], "trial": [1, 67, 72, 73, 79, 81], "trigger": [0, 65, 67, 80], "tristan": 76, "trivial": 73, "true": [9, 14, 28, 29, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 81], "try": [72, 73, 76, 78, 79, 80, 81], "tune": [2, 70, 72, 73, 74, 75, 77, 79, 81], "tupl": [2, 3, 4, 17, 20, 22, 23, 24, 28, 29, 35, 36, 37, 40, 41, 42, 43, 44, 45, 47, 48, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 65, 68, 69, 73, 76, 79], "turn": [66, 67, 80], "tutori": [65, 67, 70, 73, 74, 75, 76, 79, 80, 81], "two": [0, 1, 5, 6, 11, 16, 28, 29, 36, 37, 59, 65, 67, 68, 69, 71, 73, 74, 75, 76, 77, 78, 79, 80], "two_armed_bandit_hgf": 79, "two_armed_bandit_missing_inputs_hgf": 79, "two_bandits_logp": 79, "two_level_hgf": 72, "two_level_hgf_idata": [70, 72, 74, 75, 81], "two_level_trajectori": 81, "two_levels_binary_hgf": [70, 74, 75, 81], "two_levels_continuous_hgf": [72, 80], "two_levels_hgf": [70, 81], "two_levels_idata": 81, "type": [2, 3, 4, 5, 16, 17, 30, 31, 35, 36, 37, 40, 41, 42, 43, 44, 45, 47, 48, 52, 53, 55, 56, 57, 58, 61, 62, 68, 69, 71, 73, 74, 79, 81], "typic": 68, "u": [29, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "u1": 76, "u2": 76, "u_0": 68, "u_0_prob": 68, "u_1": [67, 68, 76], "u_1_prob": 68, "u_2": [67, 76], "u_loss_arm1": 79, "u_loss_arm2": 79, "u_win_arm1": 79, "u_win_arm2": 79, "ucl": 11, "uk": 11, "uncertain": [1, 68], "uncertainti": [1, 28, 29, 65, 66, 67, 79, 80, 81, 82], "under": [1, 6, 9, 10, 14, 30, 31, 37, 51, 53, 55, 65, 67, 69, 70, 72, 73, 74, 81, 82], "undergo": [73, 74], "underli": [10, 68, 70, 71, 72, 73, 75, 76], "underpin": [67, 69], "understand": [1, 67, 76, 81], "underw": 73, "unexpect": [69, 70, 72], "uniform": [70, 75, 81], "union": [30, 31, 55, 58], "uniqu": [67, 68, 81], "unit": [2, 3, 4, 59, 74], "univari": [8, 57], "univariate_hgf": 69, "univers": [11, 76, 82], "unlik": [67, 72], "unobserv": 79, "until": [71, 76], "up": [28, 29, 65, 67, 72, 80], "updat": [1, 13, 17, 25, 59, 60, 62, 65, 66, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81], "update_binary_input_par": 41, "update_continuous_input_par": 41, "update_fn": 68, "update_fn1": 68, "update_fn2": 68, "update_sequ": [17, 59, 62, 68, 69, 79], "update_typ": 62, "upon": 67, "upper": [67, 68, 75, 79], "upper_bound": 15, "url": [1, 11, 82], "us": [0, 1, 2, 3, 4, 5, 6, 16, 25, 27, 28, 35, 36, 37, 42, 43, 55, 65, 67, 68, 74, 75, 76, 77, 78, 79, 80, 81, 82], "usd": [28, 29], "user": [67, 73], "userwarn": 72, "usual": [0, 59, 67, 68, 75, 78], "util": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "v": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "valid": [4, 13, 32, 68, 70, 72, 74, 81, 82], "valu": [0, 2, 5, 6, 10, 16, 17, 28, 29, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 56, 57, 58, 59, 61, 65, 66, 69, 70, 72, 73, 74, 75, 77, 78, 79, 81], "valuat": 72, "value_children": [18, 20, 22, 23, 24, 65, 68, 69, 72, 76, 78, 79, 80, 81], "value_coupling_children": [16, 41, 48], "value_coupling_par": [16, 41, 48], "value_par": [18, 20, 23, 24, 68], "vape": 67, "var_nam": [2, 70, 73, 74, 75, 81], "vari": [66, 67, 69, 73, 74, 76], "variabl": [1, 13, 42, 59, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81], "varianc": [5, 6, 16, 65, 66, 67, 68, 72, 80], "variat": [0, 1, 68, 69], "varieti": 68, "variou": [1, 68, 80], "vartheta": 69, "vector": [2, 3, 4, 5, 16, 55, 69, 71, 73, 74, 75, 79, 81], "vectorized_logp": 5, "vehtari": [74, 82], "verbelen": 82, "veri": [1, 67, 72, 74, 77, 80], "versatil": 80, "version": [1, 17, 36, 37, 41, 42, 43, 45, 48, 49, 50, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "via": [67, 68], "view": 79, "visibl": 72, "visual": [0, 27, 28, 29, 65, 69, 78, 80, 81], "vizualis": 69, "vjp": [71, 79], "vjp_custom_op": [71, 79], "vjp_custom_op_jax": [71, 79], "vjp_fn": [71, 79], "vjpcustomop": [71, 79], "vol": 65, "volatil": [0, 1, 2, 5, 6, 16, 17, 28, 35, 36, 37, 40, 41, 42, 43, 44, 45, 47, 48, 50, 52, 53, 56, 57, 58, 61, 62, 65, 66, 69, 70, 72, 73, 74, 75, 76, 78, 79, 81], "volatile_conting": 79, "volatility_children": [18, 20, 23, 24, 68, 69, 72, 78, 80], "volatility_coupl": [16, 28, 29, 35, 47, 70, 77], "volatility_coupling_1": [5, 6], "volatility_coupling_2": [5, 6], "volatility_coupling_children": [16, 41, 48], "volatility_coupling_par": [16, 41, 48], "volatility_par": [18, 20, 23, 24, 68], "volum": 1, "vopa": 43, "vope": 67, "vstack": 71, "w": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "w_a": 79, "w_b": 79, "wa": [62, 65, 68, 70, 71, 72, 73, 76, 79, 81], "waad": [1, 36, 37, 41, 42, 43, 45, 48, 49, 50, 65, 82], "wagenmak": [74, 82], "wagner": [67, 70, 75], "wai": [1, 67, 68, 69, 70, 71, 72, 73, 74, 76, 79, 80, 81], "waic": 82, "walk": [1, 5, 6, 16, 42, 76, 79], "want": [1, 2, 68, 70, 72, 73, 74, 76, 77, 78, 79, 80, 81], "warmup": 2, "warn": [70, 71, 72, 73, 74, 75, 77, 79, 81], "watermark": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "wave": [68, 76], "we": [0, 1, 2, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "weak_typ": [9, 14], "weber": [0, 1, 13, 36, 37, 41, 42, 43, 45, 48, 49, 50, 57, 65, 67, 68, 69, 80, 82], "weigh": [69, 80], "weight": [1, 55, 65, 67, 68, 69, 81], "weigth": 55, "well": [1, 59, 68, 75, 80, 81], "were": [67, 70, 72, 73, 74, 75, 79, 81], "what": [68, 71, 72, 73, 76, 79, 80, 81], "when": [2, 4, 5, 6, 32, 42, 53, 67, 68, 69, 70, 71, 72, 73, 74, 76, 79, 80, 81], "where": [0, 3, 4, 5, 6, 14, 28, 29, 31, 42, 43, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 78, 79, 80], "wherea": 77, "whether": 28, "which": [1, 5, 6, 13, 42, 62, 65, 67, 68, 69, 70, 71, 72, 73, 74, 76, 79, 80, 81], "while": [67, 68, 69, 73, 74, 76, 77, 79, 80, 81], "whole": [67, 69, 79], "wide": [16, 70], "width": [28, 29], "wiki": [7, 8], "wikipedia": [7, 8], "william": 11, "wilson": [75, 82], "win": 79, "win_arm1": 79, "win_arm2": 79, "wind": 82, "wine": 79, "wishart": 11, "within": 1, "without": [1, 42, 61, 66, 68, 69, 73, 74, 76], "won": 70, "word": [68, 70, 72, 81], "work": [27, 66, 71, 73, 74, 79, 81], "workflow": [74, 81], "workshop": 80, "world": [67, 69, 73, 81], "worri": [70, 72], "worth": 74, "would": [70, 72, 74, 76, 79, 80], "wpenni": 11, "wrap": [0, 70, 71, 72, 79], "write": [71, 73, 76, 80, 81], "written": 69, "www": [1, 11, 82], "x": [9, 12, 13, 14, 15, 57, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80], "x1": [67, 76], "x2": [67, 76], "x3": 76, "x64": 81, "x_": [67, 70, 80], "x_0": [6, 72], "x_0_expected_mean": 73, "x_0_expected_precis": 73, "x_0_mean": 73, "x_0_precis": 73, "x_0_surpris": [70, 72, 73], "x_0_xis_0": 69, "x_1": [6, 67, 69, 76, 80], "x_1_1": 67, "x_1_2": 67, "x_1_3": 67, "x_1_expected_mean": 73, "x_1_expected_precis": 73, "x_1_mean": 73, "x_1_precis": 73, "x_1_surpris": [70, 72, 73], "x_2": [6, 67, 69, 76, 80], "x_2_1": 67, "x_2_2": 67, "x_2_3": 67, "x_2_surpris": [70, 72], "x_3": [6, 76], "x_b": 42, "x_i": 69, "xaxi": 69, "xflr6": 27, "xi": [13, 57, 68, 69, 71], "xi_": [13, 68, 69], "xi_1": 68, "xi_k": 68, "xi_x": [13, 69], "xlabel": [67, 69, 71, 73, 76, 80, 81], "xlim": 69, "y": [13, 65, 69, 73, 75, 79, 81], "y1": 71, "y2": 71, "yaxi": 69, "ye": 76, "year": [1, 80, 82], "yet": 79, "ylabel": [67, 69, 71, 76, 80, 81], "ylim": 69, "you": [1, 65, 66, 68, 71, 73, 76, 79, 80, 81], "your": [1, 80, 81], "z": [69, 74], "z_": 74, "zero": 76, "zip": [67, 69, 75, 78, 79, 81], "zoom": 76, "zorder": [68, 71, 75], "zurich": 66, "\u03c9_2": 2}, "titles": ["API", "How to cite?", "pyhgf.distribution.HGFDistribution", "pyhgf.distribution.HGFLogpGradOp", "pyhgf.distribution.HGFPointwise", "pyhgf.distribution.hgf_logp", "pyhgf.distribution.logp", "pyhgf.math.MultivariateNormal", "pyhgf.math.Normal", "pyhgf.math.binary_surprise", "pyhgf.math.binary_surprise_finite_precision", "pyhgf.math.dirichlet_kullback_leibler", "pyhgf.math.gaussian_density", "pyhgf.math.gaussian_predictive_distribution", "pyhgf.math.gaussian_surprise", "pyhgf.math.sigmoid", "pyhgf.model.HGF", "pyhgf.model.Network", "pyhgf.model.add_binary_state", "pyhgf.model.add_categorical_state", "pyhgf.model.add_continuous_state", "pyhgf.model.add_dp_state", "pyhgf.model.add_ef_state", "pyhgf.model.get_couplings", "pyhgf.model.insert_nodes", "pyhgf.model.update_parameters", "pyhgf.plots.plot_correlations", "pyhgf.plots.plot_network", "pyhgf.plots.plot_nodes", "pyhgf.plots.plot_trajectories", "pyhgf.response.binary_softmax", "pyhgf.response.binary_softmax_inverse_temperature", "pyhgf.response.first_level_binary_surprise", "pyhgf.response.first_level_gaussian_surprise", "pyhgf.response.total_gaussian_surprise", "pyhgf.updates.posterior.categorical.categorical_state_update", "pyhgf.updates.posterior.continuous.continuous_node_posterior_update", "pyhgf.updates.posterior.continuous.continuous_node_posterior_update_ehgf", "pyhgf.updates.posterior.continuous.posterior_update_mean_continuous_node", "pyhgf.updates.posterior.continuous.posterior_update_precision_continuous_node", "pyhgf.updates.prediction.binary.binary_state_node_prediction", "pyhgf.updates.prediction.continuous.continuous_node_prediction", "pyhgf.updates.prediction.continuous.predict_mean", "pyhgf.updates.prediction.continuous.predict_precision", "pyhgf.updates.prediction.dirichlet.dirichlet_node_prediction", "pyhgf.updates.prediction_error.binary.binary_finite_state_node_prediction_error", "pyhgf.updates.prediction_error.binary.binary_state_node_prediction_error", "pyhgf.updates.prediction_error.categorical.categorical_state_prediction_error", "pyhgf.updates.prediction_error.continuous.continuous_node_prediction_error", "pyhgf.updates.prediction_error.continuous.continuous_node_value_prediction_error", "pyhgf.updates.prediction_error.continuous.continuous_node_volatility_prediction_error", "pyhgf.updates.prediction_error.dirichlet.clusters_likelihood", "pyhgf.updates.prediction_error.dirichlet.create_cluster", "pyhgf.updates.prediction_error.dirichlet.dirichlet_node_prediction_error", "pyhgf.updates.prediction_error.dirichlet.get_candidate", "pyhgf.updates.prediction_error.dirichlet.likely_cluster_proposal", "pyhgf.updates.prediction_error.dirichlet.update_cluster", "pyhgf.updates.prediction_error.exponential.prediction_error_update_exponential_family", "pyhgf.utils.add_edges", "pyhgf.utils.beliefs_propagation", "pyhgf.utils.fill_categorical_state_node", "pyhgf.utils.get_input_idxs", "pyhgf.utils.get_update_sequence", "pyhgf.utils.list_branches", "pyhgf.utils.to_pandas", "PyHGF: A Neural Network Library for Predictive Coding", "Learn", "Introduction to the Generalised Hierarchical Gaussian Filter", "Creating and manipulating networks of probabilistic nodes", "From Reinforcement Learning to Generalised Bayesian Filtering", "The binary Hierarchical Gaussian Filter", "The categorical Hierarchical Gaussian Filter", "The continuous Hierarchical Gaussian Filter", "Using custom response models", "Hierarchical Bayesian modelling with probabilistic neural networks", "Recovering computational parameters from observed behaviours", "Non-linear value coupling between continuous state nodes", "Example 1: Bayesian filtering of cardiac volatility", "Example 2: Estimating the mean and precision of a time-varying Gaussian distributions", "Example 3: A multi-armed bandit task with independent rewards and punishments", "Zurich CPC I: Introduction to the Generalised Hierarchical Gaussian Filter", "Zurich CPC II: Application to reinforcement learning", "References"], "titleterms": {"1": [77, 80], "2": [78, 80], "3": [79, 80], "4": 80, "5": 80, "7": 81, "8": 81, "A": [65, 79], "The": [65, 66, 67, 68, 70, 71, 72, 80, 81], "acknowledg": 65, "activ": 76, "ad": 67, "adapt": 69, "add": [70, 72], "add_binary_st": 18, "add_categorical_st": 19, "add_continuous_st": 20, "add_dp_stat": 21, "add_edg": 58, "add_ef_st": 22, "api": 0, "applic": 81, "arm": [75, 79], "ascend": 68, "assign": 68, "attribut": 68, "autoregress": 67, "bandit": [75, 79], "bayesian": [69, 74, 77, 79], "behavior": 73, "behaviour": [75, 81], "belief": [67, 79, 81], "beliefs_propag": 59, "between": [76, 80], "bias": 81, "binari": [0, 40, 45, 46, 68, 70, 73, 81], "binary_finite_state_node_prediction_error": 45, "binary_softmax": 30, "binary_softmax_inverse_temperatur": 31, "binary_state_node_predict": 40, "binary_state_node_prediction_error": 46, "binary_surpris": 9, "binary_surprise_finite_precis": 10, "bivari": 69, "cardiac": 77, "case": [66, 68], "categor": [0, 35, 47, 71], "categorical_state_prediction_error": 47, "categorical_state_upd": 35, "cite": 1, "clusters_likelihood": 51, "code": 65, "collect": 69, "comparison": [74, 81], "comput": [74, 75], "configur": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "content": 0, "continu": [0, 36, 37, 38, 39, 41, 42, 43, 48, 49, 50, 68, 72, 76], "continuous_node_posterior_upd": 36, "continuous_node_posterior_update_ehgf": 37, "continuous_node_predict": 41, "continuous_node_prediction_error": 48, "continuous_node_value_prediction_error": 49, "continuous_node_volatility_prediction_error": 50, "correl": 72, "coupl": [67, 68, 76, 80], "cpc": [80, 81], "creat": [68, 70, 71, 72, 73], "create_clust": 52, "custom": [68, 73], "data": [70, 72], "dataset": [71, 74, 79], "decis": [73, 79], "deriv": 77, "descend": 68, "detail": 68, "differ": 81, "dirichlet": [0, 44, 51, 52, 53, 54, 55, 56], "dirichlet_kullback_leibl": 11, "dirichlet_node_predict": 44, "dirichlet_node_prediction_error": 53, "distribut": [0, 2, 3, 4, 5, 6, 69, 74, 78], "doe": 65, "drift": 67, "dynam": [67, 68, 69], "edg": 68, "error": [0, 67], "estim": 78, "exampl": [77, 78, 79], "exercis": [66, 80, 81], "exponenti": 57, "fill_categorical_state_nod": 60, "filter": [65, 66, 67, 69, 70, 71, 72, 77, 80], "first_level_binary_surpris": 32, "first_level_gaussian_surpris": 33, "fit": [65, 70, 71, 72, 81], "fix": [69, 70, 72], "forward": 71, "frequenc": 76, "from": [69, 73, 75, 79], "function": [0, 68, 73, 76], "gaussian": [65, 66, 67, 69, 70, 71, 72, 78, 80], "gaussian_dens": 12, "gaussian_predictive_distribut": 13, "gaussian_surpris": 14, "gener": [65, 67, 80], "generalis": [67, 69, 80], "get": 65, "get_candid": 54, "get_coupl": 23, "get_input_idx": 61, "get_update_sequ": 62, "glossari": [67, 73], "go": 81, "graph": 74, "group": 74, "heart": 77, "hgf": [16, 70, 72, 73, 81], "hgf_logp": 5, "hgfdistribut": 2, "hgflogpgradop": 3, "hgfpointwis": 4, "hierarch": [65, 66, 67, 69, 70, 71, 72, 74, 80], "how": [1, 65], "i": 80, "ii": 81, "implement": 68, "import": 70, "independ": 79, "infer": [71, 74, 75, 79], "input": 68, "insert_nod": 24, "instal": 65, "instantan": 77, "introduct": [67, 80], "invers": 80, "known": 78, "kown": 78, "learn": [66, 69, 70, 72, 81], "level": [70, 72, 74, 81], "librari": 65, "likely_cluster_propos": 55, "linear": 76, "list_branch": 63, "load": 77, "logp": 6, "manipul": 68, "math": [0, 7, 8, 9, 10, 11, 12, 13, 14, 15], "mcmc": [70, 71, 72], "mean": 78, "miss": 68, "model": [0, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 65, 67, 70, 71, 72, 73, 74, 77, 80, 81], "modifi": 68, "multi": 79, "multivari": 68, "multivariatenorm": 7, "network": [17, 65, 67, 68, 71, 74], "neural": [65, 74], "new": 73, "next": 81, "node": [0, 67, 68, 71, 76, 80], "non": [69, 76], "normal": [8, 69], "nu": 69, "observ": [73, 75], "one": 75, "optim": 81, "paramet": [70, 72, 73, 75, 79, 81], "particip": 79, "physiolog": 77, "plot": [0, 26, 27, 28, 29, 70, 72, 74, 77], "plot_correl": 26, "plot_network": 27, "plot_nod": 28, "plot_trajectori": 29, "posterior": [0, 35, 36, 37, 38, 39, 74, 81], "posterior_update_mean_continuous_nod": 38, "posterior_update_precision_continuous_nod": 39, "practic": 80, "precis": 78, "predict": [0, 40, 41, 42, 43, 44, 65, 67, 76, 81], "predict_mean": 42, "predict_precis": 43, "prediction_error": [45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57], "prediction_error_update_exponential_famili": 57, "preprocess": 77, "probabilist": [68, 71, 74, 80], "process": [0, 67], "propag": 67, "punish": 79, "pyhgf": [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65], "random": [67, 80, 81], "rate": 77, "real": 79, "record": 77, "recov": [73, 75], "recoveri": [75, 79], "rectifi": 76, "refer": [65, 82], "reinforc": [69, 81], "relu": 76, "rescorla": 81, "respons": [0, 30, 31, 32, 33, 34, 73, 79], "reward": 79, "rl": 81, "rule": [73, 79], "sampl": [70, 71, 72, 74, 81], "sequenc": 68, "sigmoid": 15, "signal": 77, "simul": [71, 74, 75, 79], "solut": [80, 81], "start": 65, "state": [71, 76], "static": 68, "stationari": 69, "statist": 69, "step": 0, "structur": 79, "suffici": 69, "surpris": [70, 72, 73], "system": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "tabl": 0, "task": [75, 79], "theori": [66, 68], "three": [70, 72, 81], "through": 69, "time": [68, 78, 79], "to_panda": 64, "total_gaussian_surpris": 34, "track": 76, "trajectori": [70, 72, 81], "transit": 71, "tutori": 66, "two": [70, 72, 81], "unit": 76, "univari": 69, "unknown": 78, "unkown": 78, "unobserv": 68, "updat": [0, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 67, 68, 79], "update_clust": 56, "update_paramet": 25, "us": [66, 69, 70, 71, 72, 73], "util": [0, 58, 59, 60, 61, 62, 63, 64], "valu": [67, 68, 76, 80], "vari": [68, 78], "visual": [68, 70, 72, 74, 75], "volatil": [67, 68, 77, 80], "wagner": 81, "walk": [67, 80], "weather": 80, "where": 81, "work": [65, 68], "world": 80, "zurich": [80, 81]}}) \ No newline at end of file +Search.setIndex({"alltitles": {"": [[80, "exercise1.1"], [80, "exercise1.2"], [80, "exercise1.3"], [80, "exercise1.4"], [80, "exercise1.5"], [80, "exercise1.6"], [81, "exercise2.1"], [81, "exercise2.2"]], "API": [[0, "api"]], "Acknowledgments": [[65, "acknowledgments"]], "Add data": [[70, "add-data"], [70, "id4"], [72, "add-data"], [72, "id3"]], "Adding a drift to the random walk": [[67, "adding-a-drift-to-the-random-walk"]], "Autoregressive processes": [[67, "autoregressive-processes"]], "Bayesian inference": [[79, "bayesian-inference"]], "Beliefs trajectories": [[81, "beliefs-trajectories"]], "Biased random": [[81, "biased-random"]], "Binary nodes": [[0, "binary-nodes"]], "Bivariate normal distribution": [[69, "bivariate-normal-distribution"]], "Categorical nodes": [[0, "categorical-nodes"]], "Continuous nodes": [[0, "continuous-nodes"], [0, "id1"]], "Continuous value coupling": [[68, "continuous-value-coupling"]], "Continuous volatility coupling": [[68, "continuous-volatility-coupling"]], "Coupling with binary nodes": [[68, "coupling-with-binary-nodes"]], "Create the model": [[70, "create-the-model"], [70, "id3"], [72, "create-the-model"], [72, "id2"]], "Creating a new response function": [[73, "creating-a-new-response-function"]], "Creating a new response function: the binary surprise": [[73, "creating-a-new-response-function-the-binary-surprise"]], "Creating and manipulating networks of probabilistic nodes": [[68, null]], "Creating custom update functions": [[68, "creating-custom-update-functions"]], "Creating custom update sequences": [[68, "creating-custom-update-sequences"]], "Creating probabilistic nodes": [[68, "creating-probabilistic-nodes"]], "Creating the decision rule": [[73, "creating-the-decision-rule"]], "Creating the model": [[70, "creating-the-model"], [70, "id7"], [72, "creating-the-model"], [72, "id5"]], "Creating the probabilistic network": [[71, "creating-the-probabilistic-network"]], "Decision rule": [[79, "decision-rule"]], "Dirichlet processes": [[0, "dirichlet-processes"]], "Distribution": [[0, "distribution"]], "Dynamic assignation of update sequences": [[68, "dynamic-assignation-of-update-sequences"]], "Dynamic beliefs updating": [[67, "dynamic-beliefs-updating"]], "Example 1: Bayesian filtering of cardiac volatility": [[77, null]], "Example 2: Estimating the mean and precision of a time-varying Gaussian distributions": [[78, null]], "Example 3: A multi-armed bandit task with independent rewards and punishments": [[79, null]], "Exercises": [[66, "exercises"]], "Filtering the Sufficient Statistics of a Non-Stationary Distribution": [[69, "filtering-the-sufficient-statistics-of-a-non-stationary-distribution"]], "Filtering the Sufficient Statistics of a Stationary Distribution": [[69, "filtering-the-sufficient-statistics-of-a-stationary-distribution"]], "Fitting behaviours to different RL models": [[81, "fitting-behaviours-to-different-rl-models"]], "Fitting the binary HGF with fixed parameters": [[70, "fitting-the-binary-hgf-with-fixed-parameters"]], "Fitting the continuous HGF with fixed parameters": [[72, "fitting-the-continuous-hgf-with-fixed-parameters"]], "Fitting the model forwards": [[71, "fitting-the-model-forwards"]], "Frequency tracking": [[76, "frequency-tracking"]], "From Reinforcement Learning to Generalised Bayesian Filtering": [[69, null]], "Gaussian Random Walks": [[67, "gaussian-random-walks"], [80, "gaussian-random-walks"]], "Getting started": [[65, "getting-started"]], "Glossary": [[67, "glossary"], [73, "glossary"]], "Group-level inference": [[74, "group-level-inference"]], "Hierarchical Bayesian modelling with probabilistic neural networks": [[74, null]], "How does it work?": [[65, "how-does-it-work"]], "How to cite?": [[1, null]], "Imports": [[70, "imports"]], "Inference from the simulated behaviours": [[75, "inference-from-the-simulated-behaviours"]], "Inference using MCMC sampling": [[71, "inference-using-mcmc-sampling"]], "Installation": [[65, "installation"]], "Introduction to the Generalised Hierarchical Gaussian Filter": [[67, null]], "Kown mean, unknown precision": [[78, "kown-mean-unknown-precision"]], "Learn": [[66, null]], "Learning parameters with MCMC sampling": [[70, "learning-parameters-with-mcmc-sampling"], [72, "learning-parameters-with-mcmc-sampling"]], "Loading and preprocessing physiological recording": [[77, "loading-and-preprocessing-physiological-recording"]], "Math": [[0, "math"]], "Model": [[0, "model"], [77, "model"]], "Model comparison": [[74, "model-comparison"], [81, "model-comparison"]], "Model fitting": [[65, "model-fitting"]], "Model inversion: the generalized Hierarchical Gaussian Filter": [[80, "model-inversion-the-generalized-hierarchical-gaussian-filter"]], "Modifying the attributes": [[68, "modifying-the-attributes"]], "Modifying the edges": [[68, "modifying-the-edges"]], "Multivariate coupling": [[68, "multivariate-coupling"]], "Non-linear predictions": [[76, "non-linear-predictions"]], "Non-linear value coupling between continuous state nodes": [[76, null]], "Parameter recovery": [[79, "parameter-recovery"]], "Parameters optimization": [[81, "parameters-optimization"]], "Plot correlation": [[72, "plot-correlation"]], "Plot the computational graph": [[74, "plot-the-computational-graph"]], "Plot the signal with instantaneous heart rate derivations": [[77, "plot-the-signal-with-instantaneous-heart-rate-derivations"]], "Plot trajectories": [[70, "plot-trajectories"], [70, "id5"], [72, "plot-trajectories"], [72, "id4"]], "Plots": [[0, "plots"]], "Posterior predictive sampling": [[81, "posterior-predictive-sampling"]], "Posterior updates": [[0, "posterior-updates"]], "Practice: Filtering the worlds weather": [[80, "practice-filtering-the-worlds-weather"]], "Prediction error steps": [[0, "prediction-error-steps"]], "Prediction steps": [[0, "prediction-steps"]], "Preprocessing": [[77, "preprocessing"]], "Probabilistic coupling between nodes": [[80, "probabilistic-coupling-between-nodes"]], "PyHGF: A Neural Network Library for Predictive Coding": [[65, null]], "ReLU (rectified linear unit) activation function": [[76, "relu-rectified-linear-unit-activation-function"]], "Real-time decision and belief updating": [[79, "real-time-decision-and-belief-updating"]], "Recovering HGF parameters from the observed behaviors": [[73, "recovering-hgf-parameters-from-the-observed-behaviors"]], "Recovering computational parameters from observed behaviours": [[75, null]], "References": [[65, "references"], [82, null]], "Rescorla-Wagner": [[81, "rescorla-wagner"]], "Response": [[0, "response"]], "Sampling": [[70, "sampling"], [70, "id9"], [72, "sampling"], [72, "id7"], [74, "sampling"]], "Simulate a dataset": [[74, "simulate-a-dataset"], [79, "simulate-a-dataset"]], "Simulate behaviours from a one-armed bandit task": [[75, "simulate-behaviours-from-a-one-armed-bandit-task"]], "Simulate responses from a participant": [[79, "simulate-responses-from-a-participant"]], "Simulating a dataset": [[71, "simulating-a-dataset"]], "Solution to Exercise 1": [[80, "solution-exercise1.1"]], "Solution to Exercise 2": [[80, "solution-exercise1.2"]], "Solution to Exercise 3": [[80, "solution-exercise1.3"]], "Solution to Exercise 4": [[80, "solution-exercise1.4"]], "Solution to Exercise 5": [[80, "solution-exercise1.5"]], "Solution to Exercise 7": [[81, "solution-exercise2.1"]], "Solution to Exercise 8": [[81, "solution-exercise2.2"]], "Solutions": [[80, "solutions"], [81, "solutions"]], "Static assignation of update sequences": [[68, "static-assignation-of-update-sequences"]], "Surprise": [[70, "surprise"], [70, "id6"], [72, "surprise"]], "System configuration": [[67, "system-configuration"], [68, "system-configuration"], [69, "system-configuration"], [70, "system-configuration"], [71, "system-configuration"], [72, "system-configuration"], [73, "system-configuration"], [74, "system-configuration"], [75, "system-configuration"], [76, "system-configuration"], [77, "system-configuration"], [78, "system-configuration"], [79, "system-configuration"], [80, "system-configuration"], [81, "system-configuration"]], "Table of Contents": [[0, null]], "Task structure": [[79, "task-structure"]], "The Generalized Hierarchical Gaussian Filter": [[65, "the-generalized-hierarchical-gaussian-filter"]], "The Hierarchical Gaussian Filter": [[66, "the-hierarchical-gaussian-filter"]], "The Hierarchical Gaussian Filter in a network of predictive nodes": [[67, "the-hierarchical-gaussian-filter-in-a-network-of-predictive-nodes"]], "The binary HGF": [[81, "the-binary-hgf"]], "The binary Hierarchical Gaussian Filter": [[70, null]], "The case of multivariate ascendency": [[68, "the-case-of-multivariate-ascendency"]], "The case of multivariate descendency": [[68, "the-case-of-multivariate-descendency"]], "The categorical Hierarchical Gaussian Filter": [[71, null]], "The categorical state node": [[71, "the-categorical-state-node"]], "The categorical state-transition node": [[71, "the-categorical-state-transition-node"]], "The continuous Hierarchical Gaussian Filter": [[72, null]], "The generative model": [[67, "the-generative-model"], [80, "the-generative-model"]], "The propagation of prediction and prediction errors": [[67, "the-propagation-of-prediction-and-prediction-errors"]], "The three-level binary Hierarchical Gaussian Filter": [[70, "the-three-level-binary-hierarchical-gaussian-filter"]], "The three-level continuous Hierarchical Gaussian Filter": [[72, "the-three-level-continuous-hierarchical-gaussian-filter"]], "The two-level binary Hierarchical Gaussian Filter": [[70, "the-two-level-binary-hierarchical-gaussian-filter"]], "The two-level continuous Hierarchical Gaussian Filter": [[72, "the-two-level-continuous-hierarchical-gaussian-filter"]], "Theory": [[66, "theory"]], "Theory and implementation details": [[68, "theory-and-implementation-details"]], "Three-level HGF": [[81, "three-level-hgf"]], "Three-level model": [[70, "three-level-model"], [72, "three-level-model"]], "Time-varying update sequences": [[68, "time-varying-update-sequences"]], "Tutorials": [[66, "tutorials"]], "Two-level HGF": [[81, "two-level-hgf"]], "Two-level model": [[70, "two-level-model"], [72, "two-level-model"]], "Univariate normal distribution": [[69, "univariate-normal-distribution"]], "Unkown mean, known precision": [[78, "unkown-mean-known-precision"]], "Unkown mean, unknown precision": [[78, "unkown-mean-unknown-precision"]], "Update functions": [[68, "update-functions"]], "Updates functions": [[0, "updates-functions"]], "Use cases": [[66, "use-cases"]], "Using a dynamically adapted \\nu through a collection of Hierarchical Gaussian Filters": [[69, "using-a-dynamically-adapted-nu-through-a-collection-of-hierarchical-gaussian-filters"]], "Using a fixed \\nu": [[69, "using-a-fixed-nu"]], "Using custom response models": [[73, null]], "Using the learned parameters": [[70, "using-the-learned-parameters"], [70, "id10"], [72, "using-the-learned-parameters"], [72, "id8"]], "Utils": [[0, "utils"]], "Value coupling": [[67, "value-coupling"], [68, "value-coupling"], [80, "value-coupling"]], "Visualization of the posterior distributions": [[74, "visualization-of-the-posterior-distributions"]], "Visualizing parameters recovery": [[75, "visualizing-parameters-recovery"]], "Visualizing probabilistic networks": [[68, "visualizing-probabilistic-networks"]], "Visualizing the model": [[70, "visualizing-the-model"], [70, "id8"], [72, "visualizing-the-model"], [72, "id6"]], "Volatility coupling": [[67, "volatility-coupling"], [68, "volatility-coupling"], [80, "volatility-coupling"]], "Where to go next?": [[81, "where-to-go-next"]], "Working with missing or unobserved input sequences": [[68, "working-with-missing-or-unobserved-input-sequences"]], "Zurich CPC I: Introduction to the Generalised Hierarchical Gaussian Filter": [[80, null]], "Zurich CPC II: Application to reinforcement learning": [[81, null]], "pyhgf.distribution.HGFDistribution": [[2, null]], "pyhgf.distribution.HGFLogpGradOp": [[3, null]], "pyhgf.distribution.HGFPointwise": [[4, null]], "pyhgf.distribution.hgf_logp": [[5, null]], "pyhgf.distribution.logp": [[6, null]], "pyhgf.math.MultivariateNormal": [[7, null]], "pyhgf.math.Normal": [[8, null]], "pyhgf.math.binary_surprise": [[9, null]], "pyhgf.math.binary_surprise_finite_precision": [[10, null]], "pyhgf.math.dirichlet_kullback_leibler": [[11, null]], "pyhgf.math.gaussian_density": [[12, null]], "pyhgf.math.gaussian_predictive_distribution": [[13, null]], "pyhgf.math.gaussian_surprise": [[14, null]], "pyhgf.math.sigmoid": [[15, null]], "pyhgf.model.HGF": [[16, null]], "pyhgf.model.Network": [[17, null]], "pyhgf.model.add_binary_state": [[18, null]], "pyhgf.model.add_categorical_state": [[19, null]], "pyhgf.model.add_continuous_state": [[20, null]], "pyhgf.model.add_dp_state": [[21, null]], "pyhgf.model.add_ef_state": [[22, null]], "pyhgf.model.get_couplings": [[23, null]], "pyhgf.model.insert_nodes": [[24, null]], "pyhgf.model.update_parameters": [[25, null]], "pyhgf.plots.plot_correlations": [[26, null]], "pyhgf.plots.plot_network": [[27, null]], "pyhgf.plots.plot_nodes": [[28, null]], "pyhgf.plots.plot_trajectories": [[29, null]], "pyhgf.response.binary_softmax": [[30, null]], "pyhgf.response.binary_softmax_inverse_temperature": [[31, null]], "pyhgf.response.first_level_binary_surprise": [[32, null]], "pyhgf.response.first_level_gaussian_surprise": [[33, null]], "pyhgf.response.total_gaussian_surprise": [[34, null]], "pyhgf.updates.posterior.categorical.categorical_state_update": [[35, null]], "pyhgf.updates.posterior.continuous.continuous_node_posterior_update": [[36, null]], "pyhgf.updates.posterior.continuous.continuous_node_posterior_update_ehgf": [[37, null]], "pyhgf.updates.posterior.continuous.posterior_update_mean_continuous_node": [[38, null]], "pyhgf.updates.posterior.continuous.posterior_update_precision_continuous_node": [[39, null]], "pyhgf.updates.prediction.binary.binary_state_node_prediction": [[40, null]], "pyhgf.updates.prediction.continuous.continuous_node_prediction": [[41, null]], "pyhgf.updates.prediction.continuous.predict_mean": [[42, null]], "pyhgf.updates.prediction.continuous.predict_precision": [[43, null]], "pyhgf.updates.prediction.dirichlet.dirichlet_node_prediction": [[44, null]], "pyhgf.updates.prediction_error.binary.binary_finite_state_node_prediction_error": [[45, null]], "pyhgf.updates.prediction_error.binary.binary_state_node_prediction_error": [[46, null]], "pyhgf.updates.prediction_error.categorical.categorical_state_prediction_error": [[47, null]], "pyhgf.updates.prediction_error.continuous.continuous_node_prediction_error": [[48, null]], "pyhgf.updates.prediction_error.continuous.continuous_node_value_prediction_error": [[49, null]], "pyhgf.updates.prediction_error.continuous.continuous_node_volatility_prediction_error": [[50, null]], "pyhgf.updates.prediction_error.dirichlet.clusters_likelihood": [[51, null]], "pyhgf.updates.prediction_error.dirichlet.create_cluster": [[52, null]], "pyhgf.updates.prediction_error.dirichlet.dirichlet_node_prediction_error": [[53, null]], "pyhgf.updates.prediction_error.dirichlet.get_candidate": [[54, null]], "pyhgf.updates.prediction_error.dirichlet.likely_cluster_proposal": [[55, null]], "pyhgf.updates.prediction_error.dirichlet.update_cluster": [[56, null]], "pyhgf.updates.prediction_error.exponential.prediction_error_update_exponential_family": [[57, null]], "pyhgf.utils.add_edges": [[58, null]], "pyhgf.utils.beliefs_propagation": [[59, null]], "pyhgf.utils.fill_categorical_state_node": [[60, null]], "pyhgf.utils.get_input_idxs": [[61, null]], "pyhgf.utils.get_update_sequence": [[62, null]], "pyhgf.utils.list_branches": [[63, null]], "pyhgf.utils.to_pandas": [[64, null]]}, "docnames": ["api", "cite", "generated/pyhgf.distribution/pyhgf.distribution.HGFDistribution", "generated/pyhgf.distribution/pyhgf.distribution.HGFLogpGradOp", "generated/pyhgf.distribution/pyhgf.distribution.HGFPointwise", "generated/pyhgf.distribution/pyhgf.distribution.hgf_logp", "generated/pyhgf.distribution/pyhgf.distribution.logp", "generated/pyhgf.math/pyhgf.math.MultivariateNormal", "generated/pyhgf.math/pyhgf.math.Normal", "generated/pyhgf.math/pyhgf.math.binary_surprise", "generated/pyhgf.math/pyhgf.math.binary_surprise_finite_precision", "generated/pyhgf.math/pyhgf.math.dirichlet_kullback_leibler", "generated/pyhgf.math/pyhgf.math.gaussian_density", "generated/pyhgf.math/pyhgf.math.gaussian_predictive_distribution", "generated/pyhgf.math/pyhgf.math.gaussian_surprise", "generated/pyhgf.math/pyhgf.math.sigmoid", "generated/pyhgf.model/pyhgf.model.HGF", "generated/pyhgf.model/pyhgf.model.Network", "generated/pyhgf.model/pyhgf.model.add_binary_state", "generated/pyhgf.model/pyhgf.model.add_categorical_state", "generated/pyhgf.model/pyhgf.model.add_continuous_state", "generated/pyhgf.model/pyhgf.model.add_dp_state", "generated/pyhgf.model/pyhgf.model.add_ef_state", "generated/pyhgf.model/pyhgf.model.get_couplings", "generated/pyhgf.model/pyhgf.model.insert_nodes", "generated/pyhgf.model/pyhgf.model.update_parameters", "generated/pyhgf.plots/pyhgf.plots.plot_correlations", "generated/pyhgf.plots/pyhgf.plots.plot_network", "generated/pyhgf.plots/pyhgf.plots.plot_nodes", "generated/pyhgf.plots/pyhgf.plots.plot_trajectories", "generated/pyhgf.response/pyhgf.response.binary_softmax", "generated/pyhgf.response/pyhgf.response.binary_softmax_inverse_temperature", "generated/pyhgf.response/pyhgf.response.first_level_binary_surprise", "generated/pyhgf.response/pyhgf.response.first_level_gaussian_surprise", "generated/pyhgf.response/pyhgf.response.total_gaussian_surprise", "generated/pyhgf.updates.posterior.categorical/pyhgf.updates.posterior.categorical.categorical_state_update", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.continuous_node_posterior_update", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.continuous_node_posterior_update_ehgf", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.posterior_update_mean_continuous_node", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.posterior_update_precision_continuous_node", "generated/pyhgf.updates.prediction.binary/pyhgf.updates.prediction.binary.binary_state_node_prediction", "generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.continuous_node_prediction", "generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.predict_mean", "generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.predict_precision", "generated/pyhgf.updates.prediction.dirichlet/pyhgf.updates.prediction.dirichlet.dirichlet_node_prediction", "generated/pyhgf.updates.prediction_error.binary/pyhgf.updates.prediction_error.binary.binary_finite_state_node_prediction_error", "generated/pyhgf.updates.prediction_error.binary/pyhgf.updates.prediction_error.binary.binary_state_node_prediction_error", "generated/pyhgf.updates.prediction_error.categorical/pyhgf.updates.prediction_error.categorical.categorical_state_prediction_error", "generated/pyhgf.updates.prediction_error.continuous/pyhgf.updates.prediction_error.continuous.continuous_node_prediction_error", "generated/pyhgf.updates.prediction_error.continuous/pyhgf.updates.prediction_error.continuous.continuous_node_value_prediction_error", "generated/pyhgf.updates.prediction_error.continuous/pyhgf.updates.prediction_error.continuous.continuous_node_volatility_prediction_error", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.clusters_likelihood", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.create_cluster", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.dirichlet_node_prediction_error", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.get_candidate", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.likely_cluster_proposal", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.update_cluster", "generated/pyhgf.updates.prediction_error.exponential/pyhgf.updates.prediction_error.exponential.prediction_error_update_exponential_family", "generated/pyhgf.utils/pyhgf.utils.add_edges", "generated/pyhgf.utils/pyhgf.utils.beliefs_propagation", "generated/pyhgf.utils/pyhgf.utils.fill_categorical_state_node", "generated/pyhgf.utils/pyhgf.utils.get_input_idxs", "generated/pyhgf.utils/pyhgf.utils.get_update_sequence", "generated/pyhgf.utils/pyhgf.utils.list_branches", "generated/pyhgf.utils/pyhgf.utils.to_pandas", "index", "learn", "notebooks/0.1-Theory", "notebooks/0.2-Creating_networks", "notebooks/0.3-Generalised_filtering", "notebooks/1.1-Binary_HGF", "notebooks/1.2-Categorical_HGF", "notebooks/1.3-Continuous_HGF", "notebooks/2-Using_custom_response_functions", "notebooks/3-Multilevel_HGF", "notebooks/4-Parameter_recovery", "notebooks/5-Non_linear_value_coupling", "notebooks/Example_1_Heart_rate_variability", "notebooks/Example_2_Input_node_volatility_coupling", "notebooks/Example_3_Multi_armed_bandit", "notebooks/Exercise_1_Introduction_to_the_generalised_hierarchical_gaussian_filter", "notebooks/Exercise_2_Bayesian_reinforcement_learning", "references"], "envversion": {"sphinx": 64, "sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.viewcode": 1, "sphinxcontrib.bibtex": 9}, "filenames": ["api.rst", "cite.md", "generated/pyhgf.distribution/pyhgf.distribution.HGFDistribution.rst", "generated/pyhgf.distribution/pyhgf.distribution.HGFLogpGradOp.rst", "generated/pyhgf.distribution/pyhgf.distribution.HGFPointwise.rst", "generated/pyhgf.distribution/pyhgf.distribution.hgf_logp.rst", "generated/pyhgf.distribution/pyhgf.distribution.logp.rst", "generated/pyhgf.math/pyhgf.math.MultivariateNormal.rst", "generated/pyhgf.math/pyhgf.math.Normal.rst", "generated/pyhgf.math/pyhgf.math.binary_surprise.rst", "generated/pyhgf.math/pyhgf.math.binary_surprise_finite_precision.rst", "generated/pyhgf.math/pyhgf.math.dirichlet_kullback_leibler.rst", "generated/pyhgf.math/pyhgf.math.gaussian_density.rst", "generated/pyhgf.math/pyhgf.math.gaussian_predictive_distribution.rst", "generated/pyhgf.math/pyhgf.math.gaussian_surprise.rst", "generated/pyhgf.math/pyhgf.math.sigmoid.rst", "generated/pyhgf.model/pyhgf.model.HGF.rst", "generated/pyhgf.model/pyhgf.model.Network.rst", "generated/pyhgf.model/pyhgf.model.add_binary_state.rst", "generated/pyhgf.model/pyhgf.model.add_categorical_state.rst", "generated/pyhgf.model/pyhgf.model.add_continuous_state.rst", "generated/pyhgf.model/pyhgf.model.add_dp_state.rst", "generated/pyhgf.model/pyhgf.model.add_ef_state.rst", "generated/pyhgf.model/pyhgf.model.get_couplings.rst", "generated/pyhgf.model/pyhgf.model.insert_nodes.rst", "generated/pyhgf.model/pyhgf.model.update_parameters.rst", "generated/pyhgf.plots/pyhgf.plots.plot_correlations.rst", "generated/pyhgf.plots/pyhgf.plots.plot_network.rst", "generated/pyhgf.plots/pyhgf.plots.plot_nodes.rst", "generated/pyhgf.plots/pyhgf.plots.plot_trajectories.rst", "generated/pyhgf.response/pyhgf.response.binary_softmax.rst", "generated/pyhgf.response/pyhgf.response.binary_softmax_inverse_temperature.rst", "generated/pyhgf.response/pyhgf.response.first_level_binary_surprise.rst", "generated/pyhgf.response/pyhgf.response.first_level_gaussian_surprise.rst", "generated/pyhgf.response/pyhgf.response.total_gaussian_surprise.rst", "generated/pyhgf.updates.posterior.categorical/pyhgf.updates.posterior.categorical.categorical_state_update.rst", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.continuous_node_posterior_update.rst", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.continuous_node_posterior_update_ehgf.rst", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.posterior_update_mean_continuous_node.rst", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.posterior_update_precision_continuous_node.rst", "generated/pyhgf.updates.prediction.binary/pyhgf.updates.prediction.binary.binary_state_node_prediction.rst", "generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.continuous_node_prediction.rst", "generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.predict_mean.rst", "generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.predict_precision.rst", "generated/pyhgf.updates.prediction.dirichlet/pyhgf.updates.prediction.dirichlet.dirichlet_node_prediction.rst", "generated/pyhgf.updates.prediction_error.binary/pyhgf.updates.prediction_error.binary.binary_finite_state_node_prediction_error.rst", "generated/pyhgf.updates.prediction_error.binary/pyhgf.updates.prediction_error.binary.binary_state_node_prediction_error.rst", "generated/pyhgf.updates.prediction_error.categorical/pyhgf.updates.prediction_error.categorical.categorical_state_prediction_error.rst", "generated/pyhgf.updates.prediction_error.continuous/pyhgf.updates.prediction_error.continuous.continuous_node_prediction_error.rst", "generated/pyhgf.updates.prediction_error.continuous/pyhgf.updates.prediction_error.continuous.continuous_node_value_prediction_error.rst", "generated/pyhgf.updates.prediction_error.continuous/pyhgf.updates.prediction_error.continuous.continuous_node_volatility_prediction_error.rst", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.clusters_likelihood.rst", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.create_cluster.rst", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.dirichlet_node_prediction_error.rst", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.get_candidate.rst", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.likely_cluster_proposal.rst", "generated/pyhgf.updates.prediction_error.dirichlet/pyhgf.updates.prediction_error.dirichlet.update_cluster.rst", "generated/pyhgf.updates.prediction_error.exponential/pyhgf.updates.prediction_error.exponential.prediction_error_update_exponential_family.rst", "generated/pyhgf.utils/pyhgf.utils.add_edges.rst", "generated/pyhgf.utils/pyhgf.utils.beliefs_propagation.rst", "generated/pyhgf.utils/pyhgf.utils.fill_categorical_state_node.rst", "generated/pyhgf.utils/pyhgf.utils.get_input_idxs.rst", "generated/pyhgf.utils/pyhgf.utils.get_update_sequence.rst", "generated/pyhgf.utils/pyhgf.utils.list_branches.rst", "generated/pyhgf.utils/pyhgf.utils.to_pandas.rst", "index.md", "learn.md", "notebooks/0.1-Theory.ipynb", "notebooks/0.2-Creating_networks.ipynb", "notebooks/0.3-Generalised_filtering.ipynb", "notebooks/1.1-Binary_HGF.ipynb", "notebooks/1.2-Categorical_HGF.ipynb", "notebooks/1.3-Continuous_HGF.ipynb", "notebooks/2-Using_custom_response_functions.ipynb", "notebooks/3-Multilevel_HGF.ipynb", "notebooks/4-Parameter_recovery.ipynb", "notebooks/5-Non_linear_value_coupling.ipynb", "notebooks/Example_1_Heart_rate_variability.ipynb", "notebooks/Example_2_Input_node_volatility_coupling.ipynb", "notebooks/Example_3_Multi_armed_bandit.ipynb", "notebooks/Exercise_1_Introduction_to_the_generalised_hierarchical_gaussian_filter.ipynb", "notebooks/Exercise_2_Bayesian_reinforcement_learning.ipynb", "references.md"], "indexentries": {"__init__() (pyhgf.distribution.hgfdistribution method)": [[2, "pyhgf.distribution.HGFDistribution.__init__", false]], "__init__() (pyhgf.distribution.hgflogpgradop method)": [[3, "pyhgf.distribution.HGFLogpGradOp.__init__", false]], "__init__() (pyhgf.distribution.hgfpointwise method)": [[4, "pyhgf.distribution.HGFPointwise.__init__", false]], "__init__() (pyhgf.math.multivariatenormal method)": [[7, "pyhgf.math.MultivariateNormal.__init__", false]], "__init__() (pyhgf.math.normal method)": [[8, "pyhgf.math.Normal.__init__", false]], "__init__() (pyhgf.model.hgf method)": [[16, "pyhgf.model.HGF.__init__", false]], "__init__() (pyhgf.model.network method)": [[17, "pyhgf.model.Network.__init__", false]], "add_binary_state() (in module pyhgf.model)": [[18, "pyhgf.model.add_binary_state", false]], "add_categorical_state() (in module pyhgf.model)": [[19, "pyhgf.model.add_categorical_state", false]], "add_continuous_state() (in module pyhgf.model)": [[20, "pyhgf.model.add_continuous_state", false]], "add_dp_state() (in module pyhgf.model)": [[21, "pyhgf.model.add_dp_state", false]], "add_edges() (in module pyhgf.utils)": [[58, "pyhgf.utils.add_edges", false]], "add_ef_state() (in module pyhgf.model)": [[22, "pyhgf.model.add_ef_state", false]], "beliefs_propagation() (in module pyhgf.utils)": [[59, "pyhgf.utils.beliefs_propagation", false]], "binary_finite_state_node_prediction_error() (in module pyhgf.updates.prediction_error.binary)": [[45, "pyhgf.updates.prediction_error.binary.binary_finite_state_node_prediction_error", false]], "binary_softmax() (in module pyhgf.response)": [[30, "pyhgf.response.binary_softmax", false]], "binary_softmax_inverse_temperature() (in module pyhgf.response)": [[31, "pyhgf.response.binary_softmax_inverse_temperature", false]], "binary_state_node_prediction() (in module pyhgf.updates.prediction.binary)": [[40, "pyhgf.updates.prediction.binary.binary_state_node_prediction", false]], "binary_state_node_prediction_error() (in module pyhgf.updates.prediction_error.binary)": [[46, "pyhgf.updates.prediction_error.binary.binary_state_node_prediction_error", false]], "binary_surprise() (in module pyhgf.math)": [[9, "pyhgf.math.binary_surprise", false]], "binary_surprise_finite_precision() (in module pyhgf.math)": [[10, "pyhgf.math.binary_surprise_finite_precision", false]], "categorical_state_prediction_error() (in module pyhgf.updates.prediction_error.categorical)": [[47, "pyhgf.updates.prediction_error.categorical.categorical_state_prediction_error", false]], "categorical_state_update() (in module pyhgf.updates.posterior.categorical)": [[35, "pyhgf.updates.posterior.categorical.categorical_state_update", false]], "clusters_likelihood() (in module pyhgf.updates.prediction_error.dirichlet)": [[51, "pyhgf.updates.prediction_error.dirichlet.clusters_likelihood", false]], "continuous_node_posterior_update() (in module pyhgf.updates.posterior.continuous)": [[36, "pyhgf.updates.posterior.continuous.continuous_node_posterior_update", false]], "continuous_node_posterior_update_ehgf() (in module pyhgf.updates.posterior.continuous)": [[37, "pyhgf.updates.posterior.continuous.continuous_node_posterior_update_ehgf", false]], "continuous_node_prediction() (in module pyhgf.updates.prediction.continuous)": [[41, "pyhgf.updates.prediction.continuous.continuous_node_prediction", false]], "continuous_node_prediction_error() (in module pyhgf.updates.prediction_error.continuous)": [[48, "pyhgf.updates.prediction_error.continuous.continuous_node_prediction_error", false]], "continuous_node_value_prediction_error() (in module pyhgf.updates.prediction_error.continuous)": [[49, "pyhgf.updates.prediction_error.continuous.continuous_node_value_prediction_error", false]], "continuous_node_volatility_prediction_error() (in module pyhgf.updates.prediction_error.continuous)": [[50, "pyhgf.updates.prediction_error.continuous.continuous_node_volatility_prediction_error", false]], "create_cluster() (in module pyhgf.updates.prediction_error.dirichlet)": [[52, "pyhgf.updates.prediction_error.dirichlet.create_cluster", false]], "decision rule": [[73, "term-Decision-rule", true]], "dirichlet_kullback_leibler() (in module pyhgf.math)": [[11, "pyhgf.math.dirichlet_kullback_leibler", false]], "dirichlet_node_prediction() (in module pyhgf.updates.prediction.dirichlet)": [[44, "pyhgf.updates.prediction.dirichlet.dirichlet_node_prediction", false]], "dirichlet_node_prediction_error() (in module pyhgf.updates.prediction_error.dirichlet)": [[53, "pyhgf.updates.prediction_error.dirichlet.dirichlet_node_prediction_error", false]], "fill_categorical_state_node() (in module pyhgf.utils)": [[60, "pyhgf.utils.fill_categorical_state_node", false]], "first_level_binary_surprise() (in module pyhgf.response)": [[32, "pyhgf.response.first_level_binary_surprise", false]], "first_level_gaussian_surprise() (in module pyhgf.response)": [[33, "pyhgf.response.first_level_gaussian_surprise", false]], "gaussian random walk": [[67, "term-Gaussian-Random-Walk", true]], "gaussian_density() (in module pyhgf.math)": [[12, "pyhgf.math.gaussian_density", false]], "gaussian_predictive_distribution() (in module pyhgf.math)": [[13, "pyhgf.math.gaussian_predictive_distribution", false]], "gaussian_surprise() (in module pyhgf.math)": [[14, "pyhgf.math.gaussian_surprise", false]], "get_candidate() (in module pyhgf.updates.prediction_error.dirichlet)": [[54, "pyhgf.updates.prediction_error.dirichlet.get_candidate", false]], "get_couplings() (in module pyhgf.model)": [[23, "pyhgf.model.get_couplings", false]], "get_input_idxs() (in module pyhgf.utils)": [[61, "pyhgf.utils.get_input_idxs", false]], "get_update_sequence() (in module pyhgf.utils)": [[62, "pyhgf.utils.get_update_sequence", false]], "hgf (class in pyhgf.model)": [[16, "pyhgf.model.HGF", false]], "hgf_logp() (in module pyhgf.distribution)": [[5, "pyhgf.distribution.hgf_logp", false]], "hgfdistribution (class in pyhgf.distribution)": [[2, "pyhgf.distribution.HGFDistribution", false]], "hgflogpgradop (class in pyhgf.distribution)": [[3, "pyhgf.distribution.HGFLogpGradOp", false]], "hgfpointwise (class in pyhgf.distribution)": [[4, "pyhgf.distribution.HGFPointwise", false]], "insert_nodes() (in module pyhgf.model)": [[24, "pyhgf.model.insert_nodes", false]], "likely_cluster_proposal() (in module pyhgf.updates.prediction_error.dirichlet)": [[55, "pyhgf.updates.prediction_error.dirichlet.likely_cluster_proposal", false]], "list_branches() (in module pyhgf.utils)": [[63, "pyhgf.utils.list_branches", false]], "logp() (in module pyhgf.distribution)": [[6, "pyhgf.distribution.logp", false]], "multivariatenormal (class in pyhgf.math)": [[7, "pyhgf.math.MultivariateNormal", false]], "network (class in pyhgf.model)": [[17, "pyhgf.model.Network", false]], "node": [[67, "term-Node", true]], "normal (class in pyhgf.math)": [[8, "pyhgf.math.Normal", false]], "perceptual model": [[73, "term-Perceptual-model", true]], "plot_correlations() (in module pyhgf.plots)": [[26, "pyhgf.plots.plot_correlations", false]], "plot_network() (in module pyhgf.plots)": [[27, "pyhgf.plots.plot_network", false]], "plot_nodes() (in module pyhgf.plots)": [[28, "pyhgf.plots.plot_nodes", false]], "plot_trajectories() (in module pyhgf.plots)": [[29, "pyhgf.plots.plot_trajectories", false]], "posterior_update_mean_continuous_node() (in module pyhgf.updates.posterior.continuous)": [[38, "pyhgf.updates.posterior.continuous.posterior_update_mean_continuous_node", false]], "posterior_update_precision_continuous_node() (in module pyhgf.updates.posterior.continuous)": [[39, "pyhgf.updates.posterior.continuous.posterior_update_precision_continuous_node", false]], "predict_mean() (in module pyhgf.updates.prediction.continuous)": [[42, "pyhgf.updates.prediction.continuous.predict_mean", false]], "predict_precision() (in module pyhgf.updates.prediction.continuous)": [[43, "pyhgf.updates.prediction.continuous.predict_precision", false]], "prediction": [[67, "term-Prediction", true]], "prediction error": [[67, "term-Prediction-error", true]], "prediction_error_update_exponential_family() (in module pyhgf.updates.prediction_error.exponential)": [[57, "pyhgf.updates.prediction_error.exponential.prediction_error_update_exponential_family", false]], "response function": [[73, "term-Response-function", true]], "response model": [[73, "term-Response-model", true]], "sigmoid() (in module pyhgf.math)": [[15, "pyhgf.math.sigmoid", false]], "to_pandas() (in module pyhgf.utils)": [[64, "pyhgf.utils.to_pandas", false]], "total_gaussian_surprise() (in module pyhgf.response)": [[34, "pyhgf.response.total_gaussian_surprise", false]], "update": [[67, "term-Update", true]], "update_cluster() (in module pyhgf.updates.prediction_error.dirichlet)": [[56, "pyhgf.updates.prediction_error.dirichlet.update_cluster", false]], "update_parameters() (in module pyhgf.model)": [[25, "pyhgf.model.update_parameters", false]], "vape": [[67, "term-VAPE", true]], "vope": [[67, "term-VOPE", true]]}, "objects": {"pyhgf.distribution": [[2, 0, 1, "", "HGFDistribution"], [3, 0, 1, "", "HGFLogpGradOp"], [4, 0, 1, "", "HGFPointwise"], [5, 2, 1, "", "hgf_logp"], [6, 2, 1, "", "logp"]], "pyhgf.distribution.HGFDistribution": [[2, 1, 1, "", "__init__"]], "pyhgf.distribution.HGFLogpGradOp": [[3, 1, 1, "", "__init__"]], "pyhgf.distribution.HGFPointwise": [[4, 1, 1, "", "__init__"]], "pyhgf.math": [[7, 0, 1, "", "MultivariateNormal"], [8, 0, 1, "", "Normal"], [9, 2, 1, "", "binary_surprise"], [10, 2, 1, "", "binary_surprise_finite_precision"], [11, 2, 1, "", "dirichlet_kullback_leibler"], [12, 2, 1, "", "gaussian_density"], [13, 2, 1, "", "gaussian_predictive_distribution"], [14, 2, 1, "", "gaussian_surprise"], [15, 2, 1, "", "sigmoid"]], "pyhgf.math.MultivariateNormal": [[7, 1, 1, "", "__init__"]], "pyhgf.math.Normal": [[8, 1, 1, "", "__init__"]], "pyhgf.model": [[16, 0, 1, "", "HGF"], [17, 0, 1, "", "Network"], [18, 2, 1, "", "add_binary_state"], [19, 2, 1, "", "add_categorical_state"], [20, 2, 1, "", "add_continuous_state"], [21, 2, 1, "", "add_dp_state"], [22, 2, 1, "", "add_ef_state"], [23, 2, 1, "", "get_couplings"], [24, 2, 1, "", "insert_nodes"], [25, 2, 1, "", "update_parameters"]], "pyhgf.model.HGF": [[16, 1, 1, "", "__init__"]], "pyhgf.model.Network": [[17, 1, 1, "", "__init__"]], "pyhgf.plots": [[26, 2, 1, "", "plot_correlations"], [27, 2, 1, "", "plot_network"], [28, 2, 1, "", "plot_nodes"], [29, 2, 1, "", "plot_trajectories"]], "pyhgf.response": [[30, 2, 1, "", "binary_softmax"], [31, 2, 1, "", "binary_softmax_inverse_temperature"], [32, 2, 1, "", "first_level_binary_surprise"], [33, 2, 1, "", "first_level_gaussian_surprise"], [34, 2, 1, "", "total_gaussian_surprise"]], "pyhgf.updates.posterior.categorical": [[35, 2, 1, "", "categorical_state_update"]], "pyhgf.updates.posterior.continuous": [[36, 2, 1, "", "continuous_node_posterior_update"], [37, 2, 1, "", "continuous_node_posterior_update_ehgf"], [38, 2, 1, "", "posterior_update_mean_continuous_node"], [39, 2, 1, "", "posterior_update_precision_continuous_node"]], "pyhgf.updates.prediction.binary": [[40, 2, 1, "", "binary_state_node_prediction"]], "pyhgf.updates.prediction.continuous": [[41, 2, 1, "", "continuous_node_prediction"], [42, 2, 1, "", "predict_mean"], [43, 2, 1, "", "predict_precision"]], "pyhgf.updates.prediction.dirichlet": [[44, 2, 1, "", "dirichlet_node_prediction"]], "pyhgf.updates.prediction_error.binary": [[45, 2, 1, "", "binary_finite_state_node_prediction_error"], [46, 2, 1, "", "binary_state_node_prediction_error"]], "pyhgf.updates.prediction_error.categorical": [[47, 2, 1, "", "categorical_state_prediction_error"]], "pyhgf.updates.prediction_error.continuous": [[48, 2, 1, "", "continuous_node_prediction_error"], [49, 2, 1, "", "continuous_node_value_prediction_error"], [50, 2, 1, "", "continuous_node_volatility_prediction_error"]], "pyhgf.updates.prediction_error.dirichlet": [[51, 2, 1, "", "clusters_likelihood"], [52, 2, 1, "", "create_cluster"], [53, 2, 1, "", "dirichlet_node_prediction_error"], [54, 2, 1, "", "get_candidate"], [55, 2, 1, "", "likely_cluster_proposal"], [56, 2, 1, "", "update_cluster"]], "pyhgf.updates.prediction_error.exponential": [[57, 2, 1, "", "prediction_error_update_exponential_family"]], "pyhgf.utils": [[58, 2, 1, "", "add_edges"], [59, 2, 1, "", "beliefs_propagation"], [60, 2, 1, "", "fill_categorical_state_node"], [61, 2, 1, "", "get_input_idxs"], [62, 2, 1, "", "get_update_sequence"], [63, 2, 1, "", "list_branches"], [64, 2, 1, "", "to_pandas"]]}, "objnames": {"0": ["py", "class", "Python class"], "1": ["py", "method", "Python method"], "2": ["py", "function", "Python function"]}, "objtypes": {"0": "py:class", "1": "py:method", "2": "py:function"}, "terms": {"": [1, 2, 17, 18, 19, 20, 22, 28, 29, 32, 33, 34, 42, 58, 59, 62, 65, 67, 68, 69, 70, 72, 73, 75, 76, 77, 79, 80, 81], "0": [0, 1, 2, 3, 4, 5, 6, 9, 10, 14, 15, 16, 28, 29, 30, 31, 42, 55, 58, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "00": [77, 80, 81], "000000": 81, "000000e": 81, "00039": [1, 65, 82], "00825": [1, 65, 82], "01": [69, 74, 75, 76, 77, 80], "011": 73, "012": 81, "01329": 70, "016": [73, 81, 82], "016216": 73, "017125": 81, "018": 80, "0183": 72, "02": [69, 80], "027": 2, "03": [76, 80], "030": [13, 57], "038": 2, "04": [28, 29, 72, 80], "0409": 72, "045885": 81, "05": [68, 76, 79, 81], "059653": 81, "06": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "060": 82, "060690": 81, "061": 80, "064361": 73, "065": 2, "067450": 73, "068": 82, "068983": 73, "077038": 73, "08": 82, "08008": [74, 75], "09045": 70, "09206": [1, 65], "09it": 77, "1": [1, 2, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 28, 29, 30, 31, 36, 37, 38, 39, 40, 41, 42, 43, 45, 48, 49, 50, 53, 57, 58, 59, 62, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 78, 79, 81, 82], "10": [1, 13, 36, 37, 38, 39, 41, 42, 43, 45, 48, 49, 50, 57, 65, 67, 68, 69, 71, 72, 74, 76, 77, 78, 79, 81, 82], "100": [69, 74, 75, 77], "1000": [2, 67, 68, 69, 76, 77, 78, 80], "10000": [16, 67], "1001": 74, "1007": [13, 57, 82], "1016": [65, 82], "1017": 82, "107211": 81, "1087": 73, "109": 81, "10937": [1, 36, 37, 38, 39, 41, 42, 43, 45, 48, 49, 50, 65, 82], "11": [2, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82], "1106": 72, "1118": 72, "112": 81, "113": 81, "114": 82, "1162": 74, "117590": [65, 82], "12": [2, 28, 29, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "1224": 82, "123": [67, 68, 69, 74, 75, 78, 79, 80, 81], "1239": 82, "124": 80, "125": [67, 80], "1251": 82, "1265": 82, "128": [69, 80], "13": [28, 29, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81], "138": 65, "14": [2, 73], "1413": 82, "1432": 82, "147": 80, "149": 72, "150": 71, "1500": 68, "16": [2, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "1662": 1, "16625161": 1, "17": [70, 71, 72, 73, 74, 75, 77, 79, 81], "171379": 81, "18": [28, 29, 73], "185465": 73, "19": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "1903": [74, 75], "1910": 72, "1938": 74, "196": 80, "1996": 75, "1_000": [70, 72, 73, 74, 75, 77, 79, 81], "1d": [2, 4], "1e1": [28, 29, 70, 72, 77], "1e2": 80, "1e4": [16, 28, 29, 68, 70, 72, 73, 77, 78, 80], "1i": [11, 71], "1rst": 70, "2": [1, 2, 3, 4, 5, 6, 11, 13, 14, 16, 17, 28, 29, 36, 37, 38, 39, 50, 53, 59, 62, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 81, 82], "20": [1, 70, 71, 72, 73, 74, 75, 76, 77, 79, 81, 82], "200": [67, 68, 69, 80], "2000": [68, 74], "20000": [54, 55], "2001": 11, "2010": 72, "2011": [1, 65, 67, 68, 72, 82], "2013": 65, "2014": [1, 65, 67, 68, 74, 80, 82], "2016": [74, 80, 82], "2017": [79, 82], "2019": [75, 80, 82], "202": 70, "2020": [13, 57, 65, 69, 82], "2021": [65, 70, 73, 81, 82], "2023": [0, 1, 36, 37, 38, 39, 41, 42, 43, 45, 48, 49, 50, 65, 67, 68, 80, 82], "2024": [1, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "203": 70, "2037": 74, "205": 73, "206": 70, "21": 71, "21596": 70, "21629826": 1, "22": 81, "222": 81, "224": 80, "226": [65, 82], "2305": [1, 36, 37, 38, 39, 41, 42, 43, 45, 48, 49, 50, 65, 82], "230946": 73, "232583": 73, "233799": 73, "2346": 74, "234603": 73, "235004": 73, "237921": 81, "24": 80, "2410": [1, 65], "244": 80, "245": 80, "247": 80, "249": 80, "249803": 81, "25": [69, 71, 74, 78, 79, 81], "250": [67, 68, 71, 76, 78, 80], "2516081684": 72, "256": 69, "26": [67, 68, 69, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81], "260191": 73, "2633": 70, "2679": 72, "27": [73, 82], "270900": 73, "27879": 82, "283697": 73, "29": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "296556": 73, "2_000": [70, 72, 73, 74, 75, 77, 79, 81], "2_i": 74, "2a2a2a": 71, "2i": [11, 71], "2nd": 70, "3": [2, 3, 4, 5, 13, 16, 17, 28, 29, 57, 59, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 81, 82], "30": [67, 68, 69, 80, 82], "301674": 73, "308": 80, "30963": 72, "31": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "32": 69, "3200": 74, "3389": [1, 65, 82], "345082": 81, "345825": 81, "35": 69, "350": 76, "35667497": 9, "36": 74, "387": 80, "388": 81, "389923": 73, "394": 81, "4": [1, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 81, 82], "40": 79, "400": [68, 69, 76], "4093": 72, "416410": 73, "42": [55, 76], "43": 76, "435": 81, "43it": 77, "449350": 81, "45": 68, "458906": 73, "466356": 73, "467982": 81, "469652e": 81, "47": 74, "471469": 73, "472": 80, "474077": 73, "475": 73, "48550": [1, 36, 37, 38, 39, 41, 42, 43, 45, 48, 49, 50, 65], "49547": 82, "4c72b0": [67, 68, 73, 80, 81], "5": [0, 1, 2, 28, 29, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 81, 82], "50": [77, 78], "500": [74, 78], "500000": 73, "506923": 73, "50it": 77, "510971": 73, "512": 69, "5161": 1, "518301": 73, "52": [13, 57, 82], "520583": 73, "521617": 81, "52956": 70, "530355": 73, "530717": 73, "53662109": 74, "536678": 73, "5377": 80, "54": 73, "540697": 73, "55": 74, "550": 76, "551": 70, "55585": 70, "55a868": [67, 75, 81], "566859": 73, "574": 74, "58": [13, 57, 82], "582766": [69, 78], "587": 81, "59": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "5d1e51": 81, "6": [29, 67, 68, 69, 74, 75, 78, 79, 80, 81, 82], "60": [75, 77], "600": [68, 69, 76], "601940": 81, "602961": 73, "606": 81, "610303": 81, "6174": 72, "622459": 73, "624085": 73, "627284": 73, "63": 74, "631975": 73, "635": 80, "638038": 73, "64": [69, 74, 75], "64919": [13, 57], "650": 76, "66": 81, "680811": 65, "693578": 81, "698": 72, "7": [9, 69, 72, 74, 75, 79, 80, 82], "70": 74, "701": 80, "71": 81, "731660": 73, "733": 73, "745316": 73, "750": 68, "7554": 82, "766": 2, "776": 2, "7_7": [13, 57], "7f7f7f": 71, "8": [1, 11, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 82], "80": 79, "800": [68, 69], "806": 2, "828": 72, "834867": 73, "850": 76, "857679": 81, "865": 80, "87": 74, "87854": 73, "886": 72, "886097": 81, "894": 73, "8992462158203": 65, "9": [11, 28, 29, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82], "90": 68, "900": 68, "903": 72, "910": 72, "9189386": 14, "923": 81, "927278": 81, "929": 73, "9297": 72, "931": 80, "938": 2, "944": 2, "950": 76, "953": 73, "964": 72, "965": 72, "9696": 82, "978": [13, 57], "991637": 81, "999": 69, "A": [0, 1, 2, 3, 4, 5, 16, 17, 28, 29, 31, 36, 37, 38, 39, 41, 42, 43, 45, 48, 49, 50, 55, 59, 62, 63, 66, 67, 68, 70, 72, 73, 74, 75, 76, 80, 81, 82], "And": 73, "As": [68, 74, 79], "At": [66, 67, 80], "Being": 73, "But": [68, 72, 73, 74, 80], "By": [2, 3, 4, 37, 42, 65, 72, 73], "For": [1, 6, 17, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 52, 53, 56, 57, 61, 67, 68, 69, 73, 75, 76, 80, 81], "If": [1, 2, 3, 4, 16, 28, 29, 38, 42, 58, 63, 67, 71, 73, 74, 76, 79, 81], "In": [1, 13, 57, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82], "It": [1, 16, 35, 47, 58, 67, 68, 69, 72, 73, 75, 76, 78, 79, 81], "NOT": 81, "OR": 80, "On": 73, "One": [68, 70, 72, 81], "Or": 80, "Such": [67, 69, 81], "That": 81, "The": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 16, 17, 26, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 69, 73, 74, 75, 76, 77, 78, 79, 82], "Then": [76, 80], "There": [73, 74, 75, 77, 80, 81], "These": [1, 65, 67, 70], "To": [67, 70, 72, 73, 74, 76, 80, 81], "With": [67, 76], "_": [29, 31, 38, 39, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 79, 80, 81], "_1": [73, 74], "__init__": [2, 3, 4, 7, 8, 16, 17], "_a": [40, 42, 43], "_b": [38, 39, 40], "_i": 67, "_j": [38, 39, 49, 50], "a_custom_hgf": 68, "aarhu": [76, 80], "aarhus_weather_df": 80, "ab": [1, 74, 75], "aberr": 72, "abil": 75, "abl": [70, 73, 74, 76], "about": [1, 66, 67, 68, 69, 70, 71, 72, 73, 79, 80, 81], "abov": [63, 67, 68, 69, 72, 73, 76, 79, 80, 81], "absenc": [75, 79], "abstract": [1, 69, 82], "ac": 11, "acceler": 72, "accept": [70, 72, 76], "access": [2, 3, 4, 68, 73], "accommod": 1, "accord": [0, 73, 76], "accordingli": [5, 67, 70, 72, 79, 80], "account": [1, 67, 68, 79], "accumul": 59, "accur": [75, 81], "acetylcholin": 1, "achiev": 69, "across": [29, 34, 67, 69, 70, 72, 79], "act": [70, 72, 73, 74], "action": [65, 73, 74, 81], "actionmodel": 73, "activ": [13, 57, 65, 73, 81, 82], "actual": [65, 68, 71, 79, 81], "acycl": 68, "ad": [70, 71, 72, 76, 78, 79, 80], "adapt": [1, 65, 66, 67, 72, 73, 81], "adapt_diag": [70, 72, 73, 74, 75, 77, 79, 81], "add": [18, 19, 20, 21, 22, 58, 65, 67, 76, 79, 80, 81], "add_group": [74, 81], "add_nod": [2, 3, 4, 65, 68, 69, 71, 72, 76, 78, 79, 80, 81], "addit": [2, 3, 4, 5, 6, 68, 69, 72, 73], "addition": [65, 75, 81], "additional_paramet": [18, 19, 20, 21, 22, 25], "additionn": [30, 31, 32, 33, 34], "adjac": 68, "adjacencylist": [17, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 52, 53, 56, 57, 58, 59, 61, 68], "adjust": [65, 81], "adopt": [70, 72], "advanc": 66, "advantag": [67, 68, 81], "aesara": [70, 72], "affect": [5, 6, 16, 72, 79, 82], "after": [0, 17, 28, 35, 36, 37, 45, 59, 69, 70, 74, 75, 77, 80, 81], "afterward": [2, 3, 4, 16], "again": [71, 72], "against": 72, "agent": [1, 65, 66, 68, 69, 70, 72, 73, 74, 75, 77, 79, 80, 81], "agnost": 1, "ai": 1, "aim": 72, "air": 80, "aki": 82, "al": [0, 65, 67, 68, 70, 73, 74, 80, 81], "algorithm": [1, 65, 67, 70, 77, 80], "align": [67, 69, 73], "alin": [1, 82], "all": [0, 1, 2, 5, 16, 29, 32, 58, 61, 62, 63, 70, 72, 73, 74, 75, 76, 77, 79, 80, 81], "alloc": 53, "allow": [1, 65, 68, 70, 72, 73, 76, 79, 80], "alon": 80, "along": [5, 81], "alpha": [68, 69, 71, 73, 75, 76, 78, 79, 80, 81], "alpha_": [11, 71, 76], "alpha_1": 11, "alpha_2": 11, "alreadi": [63, 68, 73, 74], "also": [1, 16, 28, 41, 43, 48, 63, 65, 67, 68, 70, 72, 73, 74, 76, 78, 79, 80, 81], "altern": [59, 62, 68, 72, 73, 79, 81], "alternative\u00e6li": 74, "alwai": [53, 71, 74, 75, 79, 80, 81], "among": 73, "amount": 72, "an": [1, 2, 3, 4, 5, 6, 7, 8, 14, 17, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 48, 54, 56, 57, 59, 61, 62, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "analys": [1, 81], "analyt": 1, "andrew": 82, "ani": [0, 1, 36, 37, 45, 61, 63, 66, 67, 69, 70, 71, 72, 73, 74, 76], "anim": 69, "ann": 82, "anna": [1, 82], "anoth": [67, 71, 72, 76, 78, 80, 81], "another_custom_hgf": 68, "answer": 75, "anymor": [42, 67, 69], "anyth": [67, 71], "api": [65, 70, 71, 72, 73, 74, 75, 77, 79, 81], "apont": 65, "appar": 67, "appear": [68, 76], "append": [28, 67, 69, 74, 75, 79, 80, 81], "appli": [17, 59, 62, 66, 68, 69, 71, 73, 74, 75, 79, 80, 81], "applic": [1, 6, 65, 66, 68, 69, 72, 73, 75], "apply_along_axi": 69, "approach": [67, 69, 70, 71, 74, 75], "appropri": 78, "approxim": [1, 37, 65, 67, 68, 80], "april": [72, 82], "ar": [0, 1, 2, 4, 5, 16, 17, 28, 35, 58, 59, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "ar1": [67, 79], "arang": [68, 69, 71, 73, 76, 79, 81], "arbitrari": [2, 68, 73, 76, 80], "area": [28, 80], "arg": [7, 8, 25, 35, 36, 37, 40, 41, 44, 45, 46, 47, 48, 53, 57], "argument": [2, 3, 4, 68, 70, 72, 73, 76], "arm": [66, 73, 74, 81], "around": [28, 29, 66, 67, 68, 72, 73, 81], "arrai": [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 30, 31, 35, 42, 43, 46, 49, 51, 54, 55, 59, 68, 69, 70, 71, 72, 73, 74, 75, 76, 79, 80, 81], "arrang": 80, "arriv": 67, "articl": [1, 82], "artifici": [1, 76], "arviz": [2, 70, 72, 73, 74, 75, 77, 79, 81], "arxiv": [1, 36, 37, 38, 39, 41, 42, 43, 45, 48, 49, 50, 65, 74, 75, 82], "as_tensor_vari": [71, 79, 81], "asarrai": [71, 79], "ask": [1, 72], "aspect": 71, "assert": [68, 70, 72], "assess": [53, 70, 72, 81], "assign": [59, 70, 71, 72, 73, 74, 75, 77, 79, 81], "associ": [2, 3, 4, 5, 6, 62, 65, 71, 73, 74, 75, 76, 79, 81, 82], "assum": [1, 36, 37, 57, 58, 67, 68, 70, 72, 73, 74, 75, 76, 78, 79, 80, 81], "assumpt": [78, 81], "astyp": [76, 79], "atmospher": 80, "attribut": [1, 2, 3, 4, 16, 17, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 56, 57, 58, 59, 65, 69, 71, 74, 75, 78, 79], "au": 76, "august": [72, 82], "author": [1, 76], "auto": [70, 71, 72, 73, 74, 75, 77, 79, 81], "autoconnect": [42, 67, 76], "autoconnection_strength": [76, 78], "autocorrel": 76, "autom": 80, "automat": [68, 70, 72, 74], "autoregress": 42, "avail": [0, 65, 80], "averag": [70, 80, 81], "avoid": 75, "awai": 69, "ax": [26, 28, 29, 67, 68, 69, 71, 75, 76, 78, 79, 81], "axi": [5, 67, 69, 74], "axvlin": 79, "az": [2, 70, 71, 72, 73, 74, 75, 77, 79, 81], "b": [38, 39, 40, 42, 65, 69, 76, 79], "back": [42, 67, 74], "backgroud": 28, "backslash": 1, "backward": 68, "bad": 74, "badg": 66, "bandit": [66, 73, 74, 81], "bank": 72, "base": [1, 55, 67, 70, 71, 72, 73, 74, 75, 77, 79, 81], "batch": [5, 79], "bay": 1, "bayesian": [1, 65, 66, 67, 70, 71, 72, 73, 81, 82], "becaus": [67, 68, 70, 71, 72, 76, 79, 80], "becom": 67, "been": [62, 67, 68, 69, 71, 72, 73, 74, 80, 81], "befor": [0, 28, 39, 62, 67, 68, 69, 72, 73, 74, 75, 79, 80], "beforehand": [38, 72, 81], "begin": [9, 13, 66, 67, 69, 73, 76, 81], "behav": [1, 70, 72, 76, 80], "behavior": [1, 81, 82], "behaviour": [5, 6, 65, 66, 67, 70, 72, 73, 74, 76, 77, 79], "behind": [66, 67, 80], "being": [67, 68, 70, 74, 76, 77, 81], "belief": [0, 6, 17, 28, 55, 59, 65, 66, 68, 69, 72, 73, 74, 75, 76, 80], "beliefs_propag": [17, 69, 79], "belong": [63, 69], "below": [0, 67, 70, 71, 73, 76, 79, 80, 81], "bernoulli": [9, 81], "best": [1, 54, 72, 76, 77, 81], "beta": [79, 81], "better": [37, 72, 73, 74, 75, 80, 81], "between": [0, 1, 5, 6, 11, 16, 38, 39, 40, 58, 59, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 77, 79, 81], "beyond": 67, "bia": [74, 81, 82], "biased_random": 81, "biased_random_idata": 81, "biased_random_model": 81, "big": 67, "binari": [2, 3, 4, 5, 6, 9, 10, 16, 18, 29, 30, 31, 32, 35, 47, 60, 65, 66, 67, 69, 71, 72, 74, 75, 79], "binary_hgf": 81, "binary_input_upd": [35, 47], "binary_paramet": [60, 71], "binary_precis": [16, 29, 70], "binary_softmax": [73, 81], "binary_softmax_inverse_temperatur": [65, 74, 75], "binary_states_idx": 60, "binary_surpris": [73, 79], "bind": [65, 68], "binomi": [68, 73, 74, 75, 79], "bio": 1, "biolog": [1, 65], "bit": [72, 74], "bivariate_hgf": 69, "bla": [70, 71, 72, 73, 74, 75, 77, 79, 81], "blackjax": 73, "blank": 71, "block": [67, 70, 72, 79], "blog": 71, "blue": [73, 76], "bollmann": 65, "bool": [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 28, 29, 30, 31, 51, 54, 55, 59], "bool_": [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 30, 31, 51, 54, 55, 59], "boolean": [35, 59, 71, 72, 81], "boom": 82, "both": [1, 42, 66, 67, 68, 71, 73, 74, 76, 78, 79, 80, 81], "bottom": [29, 65, 67, 80], "brain": 1, "branch": [53, 63, 65, 73, 79], "branch_list": 63, "break": 80, "briefli": 81, "broad": 71, "broadcast": [5, 74], "broader": 69, "brodersen": [1, 65, 82], "broken": 72, "brown": [79, 82], "bucklei": 82, "build": [66, 67, 70, 72, 76, 80], "built": [65, 68, 70, 72, 80, 81], "burst": 68, "bv": 65, "c": [1, 13, 36, 37, 38, 39, 41, 42, 43, 45, 48, 49, 50, 57, 65, 70, 71, 72, 73, 74, 75, 77, 79, 81, 82], "c44e52": [67, 69, 73, 75, 81], "ca": 76, "calcul": [74, 76], "call": [0, 35, 67, 69, 70, 72, 73, 74, 79, 80, 81], "callabl": [0, 2, 3, 4, 5, 6, 20, 24, 57, 58, 59, 62, 73], "cambridg": 82, "can": [0, 1, 2, 3, 4, 5, 6, 16, 38, 58, 59, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "candid": [51, 53, 54, 55, 79], "cannot": [16, 68, 69, 79], "capabl": [67, 76], "capitalis": 67, "captur": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "capture_output": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "cardiac": [66, 72], "carlo": [1, 70, 72, 81], "carri": 81, "carryov": 59, "case": [9, 13, 67, 69, 71, 72, 73, 74, 76, 77, 79, 81], "categor": [16, 19, 60, 66, 69, 74, 79], "categori": [10, 69, 71, 79], "categorical_hgf": 71, "categorical_idata": 71, "categorical_surpris": 71, "caus": 37, "cbo9781139087759": 82, "cdot": 76, "cedric": 82, "cell": [67, 72, 80], "censor": 75, "censored_volatil": 75, "centr": [71, 72], "central": [67, 68, 72, 76, 81], "certain": [1, 67, 68], "chain": [1, 2, 70, 71, 72, 73, 74, 75, 77, 79, 80, 81], "cham": 82, "chanc": 79, "chance_conting": 79, "chang": [67, 68, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81], "channel": 77, "chaotic": 79, "check": [72, 74], "chf": [28, 29], "child": [0, 38, 39, 53, 61, 67, 68, 69, 76, 80], "children": [0, 16, 17, 28, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 52, 53, 56, 57, 58, 61, 62, 63, 65, 67, 68, 76], "children_idx": 58, "children_input": 28, "choic": 68, "cholinerg": [65, 82], "choos": [69, 72, 79], "chose": [31, 53, 69, 73, 79], "chosen": 79, "chri": 1, "christoph": [1, 82], "chunck": 76, "ci": [28, 29], "circl": 73, "circumst": 37, "citi": 80, "clarifi": 74, "clariti": [72, 81], "class": [0, 2, 3, 4, 7, 8, 16, 17, 27, 28, 29, 57, 68, 69, 70, 71, 72, 73, 74, 79, 81], "classic": [72, 81], "cldtot": 80, "clear": [73, 80], "clearli": [68, 73], "clock": 76, "close": [73, 75], "closer": 76, "cloud": 80, "cloudi": 80, "cluster": [51, 52, 53, 54, 55, 56], "cm": 78, "cmap": [71, 75], "co": 69, "code": [1, 17, 66, 67, 68, 69, 73, 74, 76, 80, 81], "coeffici": [67, 75], "cognit": [1, 65, 77, 82], "colab": [66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "collect": [0, 71], "colleg": 11, "collin": [75, 82], "color": [28, 67, 68, 69, 71, 73, 75, 76, 78, 79, 80, 81], "column": 59, "column_stack": [69, 79], "com": [65, 80], "combin": [1, 42, 67, 68], "come": [1, 67, 69, 73, 74, 76, 80], "command": 81, "common": [1, 68, 71], "commonli": [73, 76, 80], "commun": [13, 67], "compar": [1, 65, 72, 74, 81], "compare_df": 81, "comparison": [4, 66, 75], "compat": [2, 68, 70, 71, 72, 73, 74], "compil": 65, "complet": [67, 80, 81], "complex": [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 30, 31, 51, 54, 55, 59, 66, 67, 68, 73, 80], "complexifi": 67, "compli": 73, "complic": 1, "compon": [67, 68, 72, 74, 79], "compromis": 68, "comput": [0, 1, 2, 3, 4, 5, 6, 10, 11, 13, 32, 33, 38, 39, 42, 43, 46, 49, 50, 57, 62, 65, 66, 67, 68, 69, 70, 71, 72, 73, 77, 79, 80, 81, 82], "computation": 1, "computationalpsychiatri": 65, "concaten": 79, "concentr": 11, "concept": [67, 74, 80], "concern": 67, "concis": 80, "cond": 76, "condit": 81, "connect": [1, 6, 16, 67, 68, 73, 76, 80], "consequ": [67, 68], "consid": [62, 67, 68, 70, 72, 73, 76, 79, 80, 81], "consider": 1, "consist": [17, 59, 67, 68, 69, 71, 73, 75, 76, 79, 81], "constand": 76, "constant": [14, 67, 69, 76], "constitud": 67, "constitut": [76, 80], "constrained_layout": [67, 68, 69, 70, 72, 73, 74, 76, 77, 79, 81], "contain": [0, 1, 2, 3, 4, 16, 26, 30, 31, 42, 43, 53, 59, 65, 67, 68, 74, 77, 80], "context": [2, 4, 59, 69, 70, 72, 73, 79, 80, 81], "contextu": 1, "contin": 3, "conting": [68, 71, 73, 79, 81], "contingencylist": 68, "continu": [1, 2, 3, 4, 5, 6, 16, 20, 28, 29, 33, 45, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 80, 81], "continuous_input_upd": [35, 47], "continuous_node_prediction_error": [49, 50], "continuous_node_value_prediction_error": [38, 39, 48, 50], "continuous_node_volatility_prediction_error": [38, 48, 49], "continuous_precis": 16, "contrari": 68, "control": [1, 67, 68, 74, 80, 81], "conveni": [67, 73], "converg": [70, 72, 73, 74, 75, 77, 79, 81], "convert": [28, 29, 67, 70, 71, 77, 79, 81], "copyright": 1, "core": [2, 17, 65, 68, 70, 72, 73, 74, 75, 77, 79, 81], "correct": [69, 82], "correctli": [27, 75], "correl": [0, 26, 75], "correspond": [16, 28, 29, 69, 70, 73, 74, 75, 76, 79, 80], "cost": 79, "could": [32, 33, 34, 68, 71, 72, 73, 76, 79, 81], "count": [13, 69, 74], "counterpart": [68, 70], "coupl": [0, 1, 5, 6, 16, 23, 28, 35, 38, 39, 41, 42, 43, 47, 48, 58, 62, 65, 66, 70, 78, 79, 81], "coupling_fn": [20, 24, 58, 68, 76], "coupling_strength": 58, "cours": [66, 80], "covari": 69, "cover": [67, 80, 81], "cpc": 66, "cpython": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "creat": [0, 2, 3, 4, 16, 28, 29, 52, 53, 65, 66, 69, 74, 75, 76, 77, 79, 80, 81], "create_belief_propagation_fn": 79, "creation": [68, 73, 80, 81], "creativ": 1, "crisi": 72, "critic": [1, 68, 73], "cross": [4, 74, 81, 82], "crucial": 74, "csv": 80, "cumsum": [67, 76, 80], "currenc": 72, "current": [0, 1, 40, 58, 65, 67, 68, 69, 73, 80, 82], "current_belief": 81, "curv": 28, "custom": [16, 66, 70, 71, 74, 79, 80, 81], "custom_op": [71, 79], "customdist": [74, 81], "customis": 66, "customop": [71, 79], "d": [1, 11, 65, 69, 82], "dai": 80, "dark": 80, "dash": 67, "data": [0, 1, 2, 3, 4, 5, 6, 28, 29, 32, 33, 34, 59, 64, 65, 67, 69, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82], "data2": 69, "databas": 80, "datafram": 64, "dataset": [73, 77, 80, 81], "daugaard": [1, 65], "daunizeau": [1, 65, 82], "de": 82, "deadlock": 81, "deal": [1, 79], "debug": 80, "dec": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "decid": [67, 72, 73, 81], "decis": [1, 6, 30, 31, 65, 70, 71, 74, 75, 81], "declar": [68, 74, 76], "decreas": 79, "dedic": 72, "deeper": 65, "def": [68, 69, 71, 73, 74, 76, 79, 81], "default": [2, 3, 4, 5, 6, 16, 25, 28, 29, 32, 33, 39, 59, 61, 62, 65, 67, 68, 69, 70, 72, 73, 74, 75, 76, 77, 79, 81], "default_paramet": 25, "defin": [12, 16, 17, 28, 65, 67, 68, 69, 70, 71, 72, 73, 74, 76, 80, 81], "definit": [62, 73], "degre": [69, 70, 72, 76], "deliv": 80, "delta": [69, 76], "delta_j": [38, 39, 49, 50], "demonstr": [1, 65, 69, 70, 73, 75, 77, 78], "denmark": 76, "denot": 67, "densiti": [0, 2, 11, 12, 13, 70, 72, 74, 78, 80], "depend": [5, 38, 40, 67, 70, 72, 73, 74, 76, 80], "depict": [29, 67, 81], "deriv": [1, 67, 69, 76], "describ": [0, 65, 66, 67, 68, 69, 70, 73, 80], "descript": [1, 67, 80], "design": [65, 66, 68, 71, 73, 74, 79, 80, 81], "despin": [67, 68, 69, 71, 74, 75, 76, 78, 79, 80, 81], "detail": [67, 74, 75, 79, 80], "detect": 77, "determin": 1, "determinist": [1, 74, 81], "dev0": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "develop": [65, 68, 81], "deviat": [28, 29, 51, 54, 55, 74, 77], "df": [69, 70, 72], "diagnos": 81, "diagnost": [70, 72, 73, 74, 75, 77, 79, 81], "dict": [16, 18, 19, 20, 21, 22, 24, 25, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 56, 57, 58, 59, 60], "dictionari": [16, 59, 65, 68, 70, 72, 80], "dictonari": 25, "did": [72, 74], "differ": [1, 2, 3, 4, 5, 16, 36, 37, 45, 58, 67, 68, 69, 70, 72, 73, 74, 76, 79, 80], "differenti": [65, 69, 70, 72, 76], "difficult": [1, 69, 80], "diffus": [65, 68], "dimens": [3, 5, 6, 67, 68, 74], "dimension": [69, 79], "dir": 11, "direct": [67, 68], "directli": [35, 68, 70, 72, 73, 74, 76, 79], "dirichlet": [11, 21, 35, 69, 71], "dirichlet_nod": 44, "disambigu": 68, "disappear": 76, "discrep": [70, 72], "discret": [1, 71, 81], "discuss": [1, 67, 79, 81], "displai": [69, 74, 76, 81], "dissoci": [0, 68], "dist": 75, "dist_mean": 78, "dist_std": 78, "distanc": 69, "distant": 69, "distinguish": [74, 80], "distribut": [7, 8, 9, 10, 11, 13, 14, 35, 55, 57, 65, 66, 67, 68, 70, 71, 72, 73, 75, 77, 80, 81], "dive": [67, 68], "diverg": [0, 11, 71, 74, 75, 77, 81], "dk": 76, "do": [65, 68, 70, 71, 72, 73, 74, 76, 80, 81], "documatt": 68, "document": [65, 71, 80, 81], "doe": [69, 71, 73, 80, 81], "doesn": 76, "doi": [1, 13, 36, 37, 38, 39, 41, 42, 43, 45, 48, 49, 50, 57, 65, 82], "dollar": 72, "domain": [72, 81], "don": [67, 80], "done": 68, "dopamin": 1, "dopaminerg": [65, 82], "dot": 72, "down": [0, 65, 67, 69, 80], "download": [65, 77, 80], "drag": 72, "drai": 70, "draw": [1, 28, 29, 70, 72, 73, 74, 75, 77, 79, 81], "drift": [5, 6, 16, 42, 68, 76, 80], "dse": 81, "dtype": [9, 14, 55, 69, 70, 71, 72, 73, 79, 80, 81], "due": 68, "duplic": [74, 75], "dure": [0, 17, 43, 55, 65, 68, 72, 74, 75, 76, 82], "dx": 82, "dynam": [17, 65, 66, 73, 76, 77, 80, 81], "e": [1, 2, 5, 6, 16, 28, 31, 36, 37, 38, 39, 40, 41, 42, 43, 45, 48, 49, 50, 58, 59, 63, 65, 66, 67, 68, 70, 72, 73, 74, 75, 77, 79, 80, 81, 82], "e49547": 82, "each": [2, 3, 4, 17, 28, 29, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 51, 52, 53, 55, 56, 57, 59, 61, 64, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81], "eas": 65, "easili": [68, 71, 73, 80, 81], "ecg": 77, "ecg_peak": 77, "ecosystem": 65, "edg": [17, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 52, 53, 56, 57, 58, 59, 61, 62, 63, 65, 69, 79], "edgecolor": [68, 69, 73, 75, 79, 81], "editor": 82, "ef": 69, "effect": [38, 39, 43, 65, 72, 74, 75, 82], "effective_precis": 43, "effici": [1, 65, 67], "ehgf": [37, 38, 62], "either": [53, 68, 73, 74, 76, 80], "ekaterina": [1, 82], "elaps": [39, 67, 79], "electrocardiographi": 77, "electron": 1, "element": 76, "elicit": 14, "elif": 82, "ellicit": 9, "elpd": 74, "elpd_diff": 81, "elpd_loo": [74, 81], "els": [75, 79], "elsevi": 65, "emb": [70, 72], "embed": [0, 66, 70, 72, 74], "empir": 1, "empti": 17, "en": [7, 8], "enabl": 1, "encapsul": [71, 79], "encod": [1, 65, 67, 71, 73, 75, 80, 81], "end": [9, 13, 67, 69, 73, 76], "endogen": 43, "energi": [1, 82], "enhanc": 65, "enlarg": 69, "enno": [1, 82], "ensur": [62, 70, 72, 74, 75, 79, 80], "enter": 67, "entir": 68, "entri": 16, "enumer": [67, 69, 81], "environ": [1, 67, 68, 73, 74, 80, 81], "environment": [1, 68, 75], "eq": 11, "equal": [1, 3, 37, 59, 76], "equat": [1, 11, 67, 70, 71, 72, 73, 76, 79, 80], "equival": [69, 73], "erdem": 82, "eric": 82, "error": [1, 38, 39, 46, 47, 48, 49, 50, 53, 59, 62, 65, 68, 69, 72, 76, 77, 80, 81, 82], "especi": [67, 74, 79, 81], "ess": [74, 75], "ess_bulk": [2, 73, 81], "ess_tail": [2, 73, 81], "estim": [0, 1, 2, 28, 29, 66, 67, 69, 73, 74, 75, 79, 80, 81], "et": [0, 65, 67, 68, 70, 73, 74, 80, 81], "eta": 69, "eta0": [10, 16, 29, 70], "eta1": [10, 16, 29, 70], "etc": 68, "euro": 72, "european": 82, "eval": 74, "evalu": [13, 67, 71, 73, 79, 82], "even": [1, 67, 76], "event": [1, 72, 78], "everi": [66, 67, 68, 71, 74, 79, 80, 81], "everyth": 73, "evid": [6, 69, 81], "evidenc": 69, "evolut": [67, 70, 72, 73, 80, 81], "evolutionari": 1, "evolv": [66, 67, 79], "exact": [67, 73, 80], "exactli": [67, 71, 73, 74], "exampl": [1, 2, 9, 14, 28, 29, 65, 66, 67, 68, 70, 71, 72, 73, 74, 76, 80, 81], "excel": 73, "except": [38, 39, 70, 72, 73, 81], "exchang": 72, "exclud": [63, 79], "exclus": 63, "execut": [0, 68], "exert": [67, 68], "exhibit": [70, 72], "exist": [51, 53, 54, 55, 56, 68], "exogen": 43, "exot": 71, "exp": [43, 67, 69, 74, 79, 80], "expect": [0, 5, 6, 9, 10, 14, 16, 28, 29, 31, 35, 37, 38, 39, 40, 41, 42, 43, 54, 67, 68, 69, 70, 72, 73, 74, 76, 77, 78, 79, 80, 81], "expected_mean": [9, 10, 14, 42, 51, 54, 55, 67, 68, 69, 73, 74, 75, 78, 79, 81], "expected_precis": [10, 14, 43, 68, 78], "expected_sigma": [51, 54, 55], "experi": [73, 81], "experiment": [1, 66, 73, 74, 75, 79, 81], "explain": [74, 80, 81], "explan": 81, "explicit": 73, "explicitli": [1, 68, 74, 77], "explor": 81, "exponenti": [7, 8, 13, 22, 66, 67, 69, 80], "exponential_famili": [7, 8], "export": [64, 73], "express": [1, 68, 69, 71, 72, 76, 79, 80], "extend": [68, 69, 70, 72, 74], "extens": [1, 66, 81], "extract": [70, 72, 77, 78, 81], "extrem": [1, 72, 79], "f": [42, 65, 67, 68, 76, 80], "f6c21f5": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "f_1": 68, "f_i": 68, "f_n": 68, "f_x": 69, "facilit": 68, "fact": [76, 79], "fail": 37, "fairli": 75, "fall": 72, "fals": [28, 29, 76, 81], "famili": [7, 8, 13, 22, 57, 66, 67, 69, 80], "familiar": 73, "far": [68, 72, 73, 80, 81], "fashion": 1, "fast": [76, 79, 81], "featur": [68, 74, 77, 80], "februari": 82, "fed": 74, "feed": [28, 29, 79], "fewer": 78, "field": [1, 68, 73, 81], "fig": [69, 71, 75, 76, 78], "figsiz": [28, 29, 67, 68, 69, 71, 73, 75, 76, 78, 79, 80, 81], "figur": [28, 29, 67, 68, 69, 70, 71, 72, 73, 74, 76, 77, 79, 80, 81], "fil": 11, "file": 1, "filer": 1, "fill": 75, "fill_between": [71, 78, 79], "filter": [0, 1, 5, 6, 13, 16, 36, 37, 38, 39, 41, 42, 43, 45, 48, 49, 50, 57, 68, 73, 74, 75, 78, 79, 81, 82], "final": [1, 80, 81], "find": [54, 65, 66, 68, 72, 73, 80], "finit": [10, 45], "fir": 77, "firebrick": 79, "first": [0, 1, 3, 5, 6, 10, 16, 33, 36, 37, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 77, 79, 80, 81], "first_level_binary_surpris": [70, 81], "first_level_gaussian_surpris": [72, 77, 80], "firt": 31, "fit": [2, 3, 4, 5, 6, 32, 33, 34, 73, 74, 75, 76, 79, 80], "fix": [2, 57, 67, 73, 74, 76, 80, 81], "flatten": 74, "flexibl": [1, 65, 71, 80, 81], "flexibli": 69, "flight": 72, "float": [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 30, 31, 32, 33, 34, 38, 39, 51, 54, 55, 58, 59, 74, 79], "float32": [9, 14, 70, 72, 73, 80, 81], "float64": [71, 79], "floor": 72, "fluctuat": 67, "flux": 80, "fn": 81, "fnhum": [1, 65, 82], "fo": 1, "focus": [68, 79], "folder": 65, "follow": [1, 11, 62, 65, 67, 68, 69, 70, 71, 72, 76, 79, 80, 81], "forc": 79, "fork": [70, 81], "form": [1, 67, 68, 69, 74, 76, 80], "formal": 67, "formul": 1, "forward": [65, 67, 70, 72, 74, 75, 79, 80, 81], "found": [1, 67, 68, 70, 72, 80], "foundat": [1, 65, 80, 82], "four": [1, 68, 79, 81], "fpsyt": 65, "frac": [11, 13, 14, 28, 31, 38, 39, 40, 42, 43, 50, 57, 67, 69, 71, 74, 79], "fraction": 80, "frame": [64, 67, 69, 77, 80], "framework": [1, 65, 66, 67, 68, 69], "franc": 72, "free": [1, 65, 70, 73, 75], "freedom": 69, "friston": [1, 65, 82], "from": [0, 1, 2, 5, 6, 9, 11, 13, 14, 28, 29, 30, 31, 38, 39, 47, 59, 62, 63, 65, 66, 67, 68, 70, 71, 72, 74, 76, 77, 78, 80, 81], "frontier": [1, 65, 82], "frontiersin": [1, 82], "fry": 55, "fr\u00e4ssle": 65, "full": [1, 6, 69], "fulli": [67, 80], "func": 69, "funcanim": 69, "function": [1, 2, 3, 4, 5, 6, 15, 17, 27, 28, 29, 30, 31, 32, 33, 34, 35, 58, 59, 62, 63, 65, 66, 67, 69, 70, 71, 72, 74, 75, 77, 79, 80, 81], "fundament": 67, "fundat": 1, "further": [65, 67, 68, 74, 78, 79], "fusion": 73, "futur": [0, 67, 82], "g": [1, 5, 6, 38, 39, 65, 67, 73, 75, 76, 81], "g_": [69, 76], "gabri": 82, "gamma": [11, 13, 69, 71], "gamma_a": 43, "gamma_j": [38, 39], "gaussian": [0, 1, 2, 5, 6, 12, 13, 14, 16, 28, 33, 34, 36, 37, 38, 39, 41, 42, 43, 45, 48, 49, 50, 57, 68, 73, 74, 75, 76, 77, 79, 81, 82], "gaussian_predictive_distribut": 69, "gcc": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "ge": 82, "gelman": 82, "gener": [1, 36, 37, 38, 39, 41, 42, 43, 45, 48, 49, 50, 60, 62, 66, 68, 69, 70, 71, 73, 74, 75, 76, 79, 81, 82], "generalis": [1, 66, 71, 73], "generalised_filt": 69, "get": [40, 68, 69, 72, 73, 74, 75, 78, 79, 80, 81], "get_legend_handles_label": [67, 81], "get_network": [69, 79], "get_update_sequ": 68, "ghgf": [65, 80, 81], "gif": 69, "git": 65, "github": [11, 65], "githubusercont": 80, "give": [70, 72, 73, 76, 79, 81], "given": [0, 6, 9, 11, 14, 28, 31, 32, 33, 34, 35, 38, 39, 42, 43, 45, 49, 50, 54, 55, 57, 63, 65, 67, 68, 69, 70, 71, 72, 73, 75, 76, 79, 80, 81], "global": [1, 72], "go": [67, 70, 72, 73, 74, 79, 80], "goe": 71, "good": [73, 74, 75, 79], "googl": [66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "grad": [71, 79], "gradient": [3, 71, 79], "grai": 79, "grandpar": 68, "graph": [59, 66, 68, 71, 79], "graphviz": [27, 70, 72], "greater": 68, "greatli": 69, "greec": 72, "green": [75, 76], "grei": [28, 67, 69, 72, 75, 78], "grid": [67, 69, 75, 76, 78, 80, 81], "ground": 80, "group": [66, 67, 75, 81], "grow": 71, "grw": [67, 80], "grw_1": 80, "grw_2": 80, "guid": 67, "gz": [71, 79], "h": [1, 36, 37, 38, 39, 41, 42, 43, 45, 48, 49, 50, 65, 67, 69, 81, 82], "ha": [1, 17, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 52, 53, 56, 57, 58, 61, 67, 68, 69, 70, 71, 72, 73, 74, 79, 80, 81], "had": [73, 74, 81], "halfnorm": 74, "hamiltonian": [70, 72, 81], "hand": [39, 66, 73], "handi": 76, "handl": [66, 67, 69, 71, 73, 74, 81], "happen": [67, 73, 76, 80], "harrison": [65, 82], "hat": [9, 14, 28, 31, 38, 39, 40, 42, 43, 49, 50, 67, 73, 74, 76], "have": [1, 35, 47, 62, 67, 68, 70, 71, 72, 73, 74, 76, 79, 80, 81], "hdi_3": [2, 73, 81], "hdi_97": [2, 73, 81], "he": 73, "head": [73, 80], "heart": [0, 67, 68], "heartbeat": 77, "heatmap": 26, "heavi": 68, "hedvig": [1, 82], "height": [28, 29, 80], "heinzl": 65, "help": [72, 74, 80], "her": 73, "here": [1, 2, 30, 31, 32, 33, 34, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 77, 79, 80, 81], "hgf": [0, 1, 2, 3, 4, 5, 6, 26, 28, 29, 30, 31, 32, 33, 34, 35, 36, 60, 65, 66, 67, 68, 69, 71, 74, 75, 76, 77, 78, 79, 80], "hgf_loglik": [70, 72, 73, 75, 77, 81], "hgf_logp_op": [2, 70, 72, 73, 74, 75, 77, 81], "hgf_logp_op_pointwis": [74, 81], "hgf_mcmc": [70, 72], "hgfdistribut": [70, 71, 72, 73, 74, 75, 77, 81], "hgfpointwis": [74, 81], "hhgf_loglik": 2, "hidden": [1, 67, 79, 80, 81], "hide": 79, "hierarch": [0, 1, 5, 6, 13, 16, 36, 37, 38, 39, 41, 42, 43, 45, 48, 49, 50, 57, 68, 73, 75, 77, 78, 79, 81, 82], "hierarchi": [0, 1, 2, 3, 4, 16, 65, 67, 68, 70, 72, 80], "hierarchicalgaussianfilt": 73, "high": [78, 79], "high_nois": 76, "high_prob": 79, "higher": [67, 70, 72, 74, 75, 76, 80, 81], "highest": 1, "highli": [1, 72, 81], "hist": 79, "hold": [67, 73], "home": 1, "hood": 69, "hostedtoolcach": 81, "hour": [66, 80], "hourli": [80, 82], "how": [66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "howev": [1, 67, 68, 69, 71, 72, 73, 74, 76, 77, 81], "html": 11, "http": [1, 7, 8, 11, 36, 37, 38, 39, 41, 42, 43, 45, 48, 49, 50, 57, 65, 74, 75, 80, 82], "human": [1, 65, 82], "hyper": 74, "hyperparamet": [13, 57, 69], "hyperprior": [74, 75], "i": [0, 1, 2, 3, 4, 5, 6, 9, 11, 13, 14, 16, 17, 28, 29, 31, 32, 33, 35, 36, 37, 38, 39, 41, 42, 43, 47, 48, 49, 50, 53, 57, 58, 59, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 81, 82], "iain": 82, "idata": [2, 77, 79, 81], "idata_kwarg": 81, "idea": [67, 68, 72, 73, 75], "ident": 76, "identifi": 75, "idx": [71, 75], "iglesia": [1, 65, 70, 73, 81, 82], "ignor": [5, 6], "ii": [1, 66], "iii": 1, "ilabcod": 80, "illustr": [1, 67, 68, 71, 72, 73, 76, 77, 79, 80, 81], "imagin": 76, "impact": 79, "implement": [0, 16, 42, 57, 65, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "impli": [35, 60, 67, 69, 71, 72, 79, 80], "implicitli": 73, "import": [1, 2, 9, 14, 28, 29, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "import_dataset1": 77, "importantli": [67, 68], "imposs": 62, "improv": [62, 81], "imshow": 71, "includ": [5, 6, 16, 67, 68, 69, 70, 72, 73, 74, 76, 77, 81], "incom": [67, 80], "incompat": 81, "incorpor": [16, 41, 48, 69, 73, 74], "incorrect": 76, "increas": [69, 70, 72, 74, 75, 76, 77, 79, 80, 81], "increment": [59, 67], "inde": 74, "independ": [66, 69, 75], "index": [17, 23, 28, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 52, 53, 56, 57, 58, 59, 60, 61, 63, 65, 68], "indic": [58, 67, 72, 73, 74, 75, 76, 77, 79, 81], "individu": [1, 65, 75, 82], "inf": [5, 16, 29, 32, 33, 34, 70, 71, 74, 79], "infer": [0, 1, 5, 6, 13, 57, 59, 65, 66, 67, 68, 72, 73, 78, 81, 82], "inferred_paramet": 75, "infin": 80, "infinit": [71, 79], "influenc": [0, 1, 42, 67, 68, 69, 70, 72, 74, 76, 79, 80, 81], "inform": [1, 13, 17, 59, 68, 69, 70, 71, 72, 74, 76, 79, 80, 81], "infti": 72, "ingredi": 73, "inherit": [5, 6, 65, 67, 80], "initi": [2, 3, 4, 16, 17, 68, 69, 70, 72, 73, 74, 75, 77, 79, 80, 81], "initial_belief": 81, "initial_mean": [16, 28, 29, 70, 72, 73, 74, 75, 77, 81], "initial_precis": [16, 28, 29, 70, 72, 73, 77, 81], "initv": 75, "inplac": 71, "input": [0, 1, 2, 3, 4, 5, 6, 16, 17, 28, 29, 30, 31, 32, 33, 34, 35, 38, 39, 44, 45, 47, 48, 52, 53, 54, 56, 59, 61, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "input_convers": 77, "input_data": [2, 3, 4, 5, 6, 28, 29, 65, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "input_idx": [59, 69, 79], "input_nodes_idx": 44, "input_precis": [5, 6], "input_typ": 77, "insert": [24, 67], "insid": [73, 76, 79, 81], "inspir": [65, 67, 68], "instal": [27, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "instanc": [0, 6, 26, 27, 28, 29, 30, 31, 32, 33, 34, 60, 62, 65, 68, 70, 72, 73, 74, 80], "instanti": [71, 79], "instead": [2, 3, 4, 38, 39, 72, 79, 80, 81], "instruct": 68, "instrument": 76, "int": [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 24, 28, 29, 30, 31, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 69, 71, 76, 79], "int32": 81, "integ": [2, 3, 4, 68], "integr": [1, 65, 69, 81], "intellig": 1, "inter": 1, "interact": [66, 67, 81], "intercept": 67, "interest": [67, 74, 75, 79, 80], "interestingli": 69, "interfac": 73, "interleav": [0, 69, 79], "intern": [1, 57, 66, 71, 73, 74, 76, 80, 82], "interocept": 66, "interpol": 71, "interpret": 1, "intersect": 66, "interv": [40, 69, 76, 77], "interven": 72, "intervent": 72, "introduc": [1, 66, 67, 71, 80, 81], "introduct": [65, 66], "introductori": 80, "intuit": [1, 66, 73], "invers": [1, 5, 6, 31, 65, 66, 67, 73, 74, 75, 79], "inverse_temperatur": [74, 75], "invert": [1, 80, 81], "involv": 1, "io": [11, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "ion": 11, "ipykernel_2733": 72, "ipython": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "irrespect": 55, "isbn": 1, "isclos": [70, 72], "isnan": [71, 79], "issn": 1, "item": [2, 3, 4], "iter": [67, 70, 72, 73, 74, 75, 77, 78, 79, 81], "its": [1, 40, 42, 53, 58, 65, 66, 67, 68, 70, 72, 73, 74, 76, 77, 80, 81], "itself": [67, 68, 70, 76, 80], "iv": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "j": [1, 38, 39, 43, 50, 65, 82], "jacobian": [71, 79], "jan": 82, "jax": [0, 5, 17, 29, 30, 31, 55, 59, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "jaxlib": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "jean": [1, 82], "jit": [65, 71, 79], "jitted_custom_op_jax": [71, 79], "jitted_vjp_custom_op_jax": [71, 79], "jitter": [70, 72, 73, 74, 75, 77, 79, 81], "jl": 73, "jnp": [16, 29, 32, 33, 34, 69, 70, 71, 72, 73, 75, 76, 79], "job": [70, 72, 73, 74, 75, 77, 79, 81], "joint": [68, 69], "jonah": 82, "journal": [1, 82], "julia": [65, 68, 73], "jump": 67, "just": [73, 74, 75, 76, 80, 81], "k": [1, 11, 30, 31, 36, 37, 38, 39, 40, 41, 42, 43, 45, 48, 49, 50, 65, 67, 68, 69, 71, 73, 74, 75, 76, 79, 80, 81], "kai": [1, 82], "kalman": [67, 73], "kappa": 67, "kappa_1": 67, "kappa_j": [38, 39, 43], "karl": [1, 82], "kasper": [65, 82], "kdeplot": 75, "keep": [76, 80], "kei": [1, 55, 67, 68, 81], "keyword": [1, 25, 68, 73], "kg": 80, "khodadadi": [1, 65], "kind": [38, 58, 65, 67, 68, 69, 71, 72, 74, 76, 79, 80, 81], "kl": [11, 71], "kl_diverg": 71, "klaa": [1, 82], "knew": [70, 72], "know": [67, 73, 76, 81], "knowledg": 80, "known": 76, "kora": 76, "kullback": [11, 71], "kwarg": [7, 8], "l": [1, 13, 36, 37, 38, 39, 41, 42, 43, 45, 48, 49, 50, 57, 65, 67, 81, 82], "l_a": 79, "l_b": 79, "label": [67, 68, 69, 71, 73, 74, 78, 79, 80, 81], "laew": 1, "lambda": [67, 74, 76], "lambda_1": 67, "lambda_2": [67, 76], "lambda_2x_2": 76, "lambda_3": [67, 76], "lambda_a": [42, 67, 76], "land": 80, "lanillo": 82, "lar": 82, "larg": [68, 69, 80], "larger": [68, 69, 74, 75, 80], "last": [59, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "latent": 67, "later": [43, 65, 67, 74, 81], "latter": 79, "lax": [17, 59, 76, 79], "layer": [5, 67, 72, 80, 81], "layout": 72, "lead": [67, 72, 81], "learn": [1, 65, 67, 71, 75, 76, 78, 80, 82], "learning_r": 81, "learnt": 76, "least": [0, 70, 72, 73, 74, 75, 77, 79, 81], "leav": [0, 59, 67, 74, 80, 81, 82], "lee": [74, 82], "left": [11, 13, 38, 39, 42, 43, 50, 67, 69, 71, 73, 80], "leftarrow": [57, 69], "legend": [67, 68, 69, 73, 74, 76, 78, 79, 80, 81], "legrand": [1, 36, 37, 38, 39, 41, 42, 43, 45, 48, 49, 50, 65, 76, 82], "leibler": [11, 71], "len": [71, 73, 79, 81], "length": [2, 3, 4, 17, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 52, 53, 56, 57, 59, 61, 73, 74], "leq": 76, "less": [16, 68, 73], "let": [67, 68, 69, 71, 73, 76, 80, 81], "level": [0, 1, 2, 5, 6, 16, 28, 29, 31, 33, 65, 66, 67, 68, 69, 73, 75, 76, 77, 78, 79, 80], "leverag": 74, "lg": 1, "li": 67, "lib": 81, "librari": [0, 1, 68, 70, 72, 81], "like": [55, 70, 71, 72, 73, 74, 76, 80, 81], "likelihood": [51, 53, 72, 73, 74, 81], "lilian": [1, 82], "limit": [1, 37, 67, 69, 73, 76, 79, 81], "line": [67, 68, 72, 73, 76], "linear": [38, 39, 58, 66], "linear_hgf": 76, "linearli": 69, "linestyl": [67, 68, 69, 73, 75, 76, 78, 81], "linewidth": [67, 69, 71, 80, 81], "link": [1, 58, 65, 68, 74], "linspac": [74, 75, 78], "list": [2, 3, 4, 5, 17, 28, 29, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 52, 53, 56, 57, 58, 59, 60, 61, 63, 65, 68, 71, 73, 74, 79, 80], "lit": 1, "ln": [11, 71], "load": [65, 80, 81], "load_data": [2, 28, 29, 65, 70, 72, 73, 74, 75, 80, 81], "load_ext": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "loc": [67, 69, 71, 78, 79, 80], "log": [2, 4, 5, 6, 9, 14, 28, 65, 70, 72, 73, 74, 79, 80, 81], "log_likelihoo": 81, "log_likelihood": [74, 81], "log_prob": 5, "logist": 15, "logit": [70, 81], "lognorm": 74, "logp": [5, 74, 81], "logp_fn": 79, "logp_pointwis": [74, 81], "lomakina": [1, 65, 82], "london": 11, "long": [76, 82], "loo": 74, "loo_hgf": 74, "look": [70, 71, 72, 76, 81], "loop": [67, 79, 80, 81], "loos": 79, "loss": 79, "loss_arm1": 79, "loss_arm2": 79, "lot": 70, "low": [78, 79], "low_nois": 76, "low_prob": 79, "lower": [67, 68, 69, 70, 71, 75], "lower_bound": 15, "lowest": 65, "luckili": 74, "m": [1, 65, 67, 68], "m2": 80, "m3": 80, "m_1": 67, "m_a": 42, "machin": 1, "made": [16, 68, 73, 74, 79, 80, 81], "magic": 80, "mai": [1, 71, 82], "main": [0, 27, 28, 29, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "major": 1, "make": [1, 65, 67, 68, 70, 71, 73, 74, 78, 79, 80, 81], "make_nod": [71, 79], "manag": 76, "mani": [1, 2, 67, 68, 71, 73, 74], "manipul": [0, 17, 65, 66, 70, 73, 74, 79, 80], "manka": [65, 82], "manual": [68, 69, 74, 76, 81], "many_binary_children_hgf": 68, "many_value_children_hgf": 68, "many_value_parents_hgf": 68, "many_volatility_children_hgf": 68, "many_volatility_parents_hgf": 68, "map": 74, "marker": 76, "market": 72, "markov": 1, "mask": [59, 69, 79], "master": 65, "match": [5, 68, 76, 81], "math": [2, 42, 57, 69, 75, 79], "mathcal": [2, 13, 67, 68, 69, 73, 74, 80], "mathemat": [1, 14, 67, 80], "mathi": [1, 13, 36, 37, 38, 39, 41, 42, 43, 45, 48, 49, 50, 57, 65, 67, 68, 69, 80, 82], "matlab": [65, 67, 72], "matplotlib": [26, 28, 29, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "matrix": [74, 79], "matter": [73, 81], "maxim": 72, "mayb": 74, "mcmc": [2, 66, 81], "mcse_mean": [2, 73, 81], "mcse_sd": [2, 73, 81], "mead": 1, "mean": [1, 2, 5, 6, 9, 12, 14, 16, 28, 29, 36, 37, 38, 39, 40, 41, 42, 51, 54, 55, 62, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81], "mean_1": [2, 5, 6, 72], "mean_2": [5, 6], "mean_3": [5, 6], "mean_hgf": 78, "mean_mu_g0": 55, "mean_precision_hgf": 78, "measur": [71, 73, 75, 76, 77, 80], "mechan": 1, "media": 65, "mention": 67, "mere": 73, "messag": [65, 68], "meta": [68, 72], "meter": 80, "method": [1, 2, 3, 4, 7, 8, 16, 17, 32, 33, 57, 65, 68, 70, 72, 73, 74, 77, 80], "metric": 73, "michael": 82, "might": [2, 3, 4, 16, 73, 81], "miku\u0161": [1, 65], "min": 71, "mind": 81, "minim": [1, 68, 70, 72, 80, 81], "minimis": 77, "misc": 1, "miss": [76, 79], "missing_inputs_u": 79, "mix": 80, "mm": 80, "modal": 77, "model": [1, 2, 3, 4, 5, 6, 26, 28, 29, 30, 31, 32, 33, 34, 37, 60, 62, 66, 68, 69, 75, 76, 78, 79, 82], "model_to_graphviz": [70, 72, 74, 77, 81], "model_typ": [2, 3, 4, 16, 28, 29, 32, 68, 70, 72, 73, 74, 75, 77, 81], "modifi": 73, "modul": [0, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "modular": [65, 67, 68, 81], "mojtaba": 1, "mon": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "mont": [1, 70, 72, 81], "montemagno": 76, "month": 80, "more": [66, 67, 68, 69, 70, 71, 72, 73, 75, 76, 80, 81], "moreov": 74, "most": [16, 67, 68, 69, 70, 71, 72, 73, 79, 80], "mostli": 79, "move": [67, 74, 81], "mu": [9, 14, 31, 38, 39, 40, 42, 49, 67, 70, 72, 73, 74, 80], "mu_1": [67, 72, 76, 80], "mu_2": [67, 76], "mu_3": 76, "mu_a": [42, 43, 76], "mu_b": [38, 39, 76], "mu_i": 67, "mu_j": [38, 39, 49], "mu_temperatur": 74, "mu_volatil": 74, "much": [68, 69, 72, 80, 81], "multi": [66, 74, 75], "multiarm": 66, "multilevel": [66, 74, 81], "multinomi": 71, "multipl": [1, 5, 28, 58, 68, 71, 73, 74, 76, 77, 79], "multipleloc": 69, "multipli": 68, "multiprocess": 81, "multithread": 81, "multivari": [7, 69], "multivariatenorm": 69, "must": [58, 76], "m\u00f8ller": [1, 36, 37, 38, 39, 41, 42, 43, 45, 48, 49, 50, 65, 82], "m\u00fcller": 65, "n": [1, 2, 4, 36, 37, 38, 39, 41, 42, 43, 45, 48, 49, 50, 59, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "n1662": 1, "n_": [38, 39, 43], "n_1": 68, "n_categori": 71, "n_j": 68, "n_level": [2, 3, 4, 5, 6, 16, 28, 29, 68, 70, 72, 73, 74, 75, 77, 81], "n_node": [18, 19, 20, 21, 22, 24, 68, 69, 76, 79], "n_sampl": [54, 55], "nace": 1, "name": 67, "nan": [2, 3, 4, 5, 81], "nativ": [70, 72, 74, 76], "natur": [1, 67, 69], "nc": 1, "ncol": [67, 75], "ndarrai": [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 30, 31, 51, 54, 55, 59], "ne": 1, "necessarili": 1, "need": [35, 36, 37, 45, 47, 68, 69, 71, 73, 74, 75, 76, 79, 80, 81], "neg": [5, 6, 28, 37, 70, 72, 73, 76, 79, 80], "nelder": 1, "nest": [71, 73, 79, 80], "network": [0, 1, 5, 6, 18, 19, 20, 21, 22, 24, 26, 27, 28, 29, 33, 34, 42, 43, 44, 52, 53, 56, 58, 59, 60, 61, 62, 63, 64, 66, 69, 70, 72, 73, 75, 76, 77, 78, 79, 80, 81], "neural": [0, 1, 17, 44, 52, 53, 56, 58, 62, 66, 67, 68, 76, 81], "neuroimag": [65, 82], "neuromodel": 65, "neuromodul": 1, "neuromodulatori": 1, "neuron": 1, "neurosci": [1, 65, 70, 72, 74, 82], "new": [0, 28, 29, 38, 39, 40, 42, 43, 51, 52, 53, 54, 55, 59, 65, 67, 68, 69, 70, 71, 72, 74, 75, 76, 79, 80, 81], "new_attribut": 68, "new_belief": 81, "new_input_precision_1": 68, "new_input_precision_2": 68, "new_mean": 69, "new_mu": 55, "new_observ": 81, "new_sigma": 55, "newaxi": [2, 70, 72, 73, 74, 77, 81], "next": [1, 67, 70, 72, 73, 80], "nicola": [1, 76, 82], "nodal": 77, "nodalis": 80, "node": [2, 3, 4, 5, 6, 16, 17, 18, 19, 20, 21, 22, 24, 25, 27, 28, 29, 32, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 69, 70, 72, 73, 74, 77, 78, 79, 81], "node_idx": [28, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 56, 57, 60, 63, 68, 71, 79], "node_paramet": [18, 19, 20, 21, 22, 24, 25, 68, 69], "node_precis": 38, "node_trajectori": [17, 69, 71, 73, 74, 75, 78, 79, 81], "node_typ": [24, 68], "nois": [1, 68, 76], "noisi": [68, 69, 76], "noisier": [76, 81], "non": [38, 39, 52, 56, 66], "non_sequ": 81, "none": [2, 3, 4, 6, 16, 17, 20, 22, 23, 24, 28, 29, 32, 33, 34, 35, 58, 67, 68, 70, 71, 73, 74, 76], "nonlinear_hgf": 76, "noon": 80, "norm": [69, 78], "normal": [1, 2, 7, 10, 11, 57, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "note": [16, 27, 35, 38, 39, 41, 47, 48, 58, 67, 70, 72, 73, 74, 76, 79, 80, 81], "notebook": [66, 67, 68, 70, 72, 73, 74, 76, 78, 79, 81], "notic": 76, "notion": [67, 68], "nov": 82, "novel": 1, "novemb": 82, "now": [67, 68, 70, 72, 73, 74, 76, 79, 80, 81], "np": [2, 5, 13, 67, 68, 69, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81], "nrow": [67, 69, 71, 79], "nu": [13, 57], "nu_": 69, "num": 75, "num_sampl": 81, "number": [1, 2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 17, 28, 29, 30, 31, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 51, 52, 53, 54, 55, 56, 57, 59, 61, 68, 69, 70, 71, 72, 73, 74, 75, 76, 79, 81], "numer": [1, 71, 79], "numpi": [2, 4, 5, 29, 30, 31, 55, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "nut": [70, 72, 73, 74, 75, 77, 79, 81], "nutshel": 73, "o": [65, 80, 81], "o_": 73, "object": [75, 81], "observ": [0, 9, 10, 13, 14, 28, 35, 38, 39, 47, 51, 53, 54, 55, 59, 65, 66, 67, 68, 69, 70, 71, 72, 74, 76, 77, 79, 80, 81], "obtain": 73, "occur": [37, 71, 74], "octob": 82, "offer": [1, 67], "offici": [65, 71], "often": [37, 67, 68, 73, 74, 75], "omega": [70, 71, 72, 74, 77, 79, 80], "omega_": [70, 72, 74], "omega_1": [67, 72, 80], "omega_2": [2, 67, 70, 71, 72, 73, 77, 81], "omega_3": [70, 72], "omega_a": 43, "omega_j": [38, 39], "onc": [67, 68, 81], "one": [1, 2, 3, 4, 28, 38, 39, 42, 57, 67, 68, 69, 73, 74, 79, 80, 81, 82], "ones": [69, 71, 75, 76, 79], "onli": [0, 6, 16, 29, 32, 67, 68, 70, 71, 73, 74, 76, 77, 79, 80], "onlin": 1, "oop": 80, "op": [3, 71, 79], "open": [65, 77], "oper": [65, 69, 71, 73, 79, 80], "operand": [52, 56], "opt": 81, "optim": [1, 62, 65, 67, 68, 70, 72, 79], "optimis": [70, 72, 73], "option": [31, 42, 72, 73], "orang": 72, "order": [58, 65, 67, 68, 69, 70, 72, 73, 76, 81], "org": [1, 7, 8, 36, 37, 38, 39, 41, 42, 43, 45, 48, 49, 50, 57, 65, 74, 75, 82], "organ": 0, "origin": [62, 65, 76], "orphan": 67, "oscil": 76, "oscillatori": 76, "other": [1, 38, 39, 63, 65, 67, 68, 70, 72, 73, 76, 79, 80, 81], "otherwis": 79, "our": [1, 67, 69, 70, 72, 73, 74, 76, 77, 79, 81], "ourselv": [70, 72], "out": [67, 74, 81, 82], "outcom": [9, 14, 65, 66, 68, 70, 73, 74, 79, 81], "outcome_1": 81, "outcome_2": 81, "output": [71, 73, 79, 82], "output_gradi": [71, 79], "output_typ": 77, "outputs_info": 81, "outsid": 76, "over": [2, 5, 6, 13, 65, 66, 67, 68, 69, 70, 72, 73, 74, 76, 77, 79, 80, 81], "overal": [1, 72, 73], "overcom": 76, "overfit": [72, 79], "overlai": 55, "overtim": 78, "overview": 67, "own": [42, 67, 80], "p": [1, 11, 31, 36, 37, 38, 39, 41, 42, 43, 45, 48, 49, 50, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "p1": 71, "p2": 71, "p3": 71, "p_a": [42, 76, 79], "p_loo": [74, 81], "pablo": 82, "packag": [1, 65, 68, 73], "page": 1, "pair": 67, "pan": 77, "panda": [64, 73, 77, 80], "panel": [29, 68, 72, 73], "paper": [1, 65, 67], "paralel": 69, "parallel": [3, 5, 6, 74], "paramet": [0, 1, 2, 3, 4, 5, 6, 9, 10, 11, 13, 14, 16, 23, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 74, 76, 77, 80], "parameter": [16, 67], "parameter_structur": 59, "parametr": [11, 13, 17, 31, 51, 53, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 81], "parametris": [24, 79, 80, 81], "paraticip": [30, 31], "parent": [0, 5, 6, 16, 17, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 49, 52, 53, 56, 57, 58, 61, 62, 63, 65, 67, 68, 69, 70, 72, 76, 77, 78, 79, 80], "parent_idx": 58, "pareto": 74, "part": [5, 6, 16, 65, 67, 68, 71, 72, 73, 74, 76, 80, 81], "partial": [71, 75, 79], "particip": [73, 74, 75, 77, 81], "particular": [67, 80], "pass": [2, 3, 4, 5, 6, 17, 35, 47, 65, 67, 68, 69, 70, 72, 73, 76, 79, 80], "past": [69, 73], "patholog": 1, "pattern": 82, "pct": 74, "pd": 80, "pdf": [1, 69, 78], "peak": 77, "penni": 11, "per": [74, 75], "percept": [1, 65, 82], "perceptu": [1, 2, 3, 4, 16, 73, 74, 75], "pereira": 65, "perform": [1, 5, 6, 37, 42, 59, 62, 66, 67, 68, 70, 71, 72, 73, 76, 77, 79, 80, 81], "perspect": [70, 72], "peter": [1, 82], "petzschner": 65, "pfenning": [80, 82], "phasic": [5, 6, 16, 42, 43, 67, 80], "phenomena": 68, "phenomenon": 76, "phi": 67, "physio_df": 77, "physiolog": [66, 72], "pi": [13, 14, 28, 38, 39, 40, 43, 50, 67, 69, 70, 72, 76], "pi_1": 67, "pi_a": 43, "pi_b": [38, 39], "pi_i": 67, "pi_j": [38, 39, 50], "pid": 81, "piec": 81, "pip": [65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "pjitfunct": 5, "place": [67, 68, 74, 79], "plai": [1, 72], "plausibl": 65, "pleas": [1, 74], "plot": [67, 68, 69, 71, 73, 75, 76, 78, 79, 80, 81], "plot_compar": 81, "plot_correl": 72, "plot_network": [68, 69, 70, 71, 72, 76, 78, 79, 80, 81], "plot_nod": [68, 71, 76, 79], "plot_posterior": [74, 79], "plot_raw": 77, "plot_trac": [70, 71, 72, 73, 77, 81], "plot_trajectori": [65, 68, 70, 72, 76, 77, 80, 81], "plt": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "plu": 79, "pm": [2, 70, 71, 72, 73, 74, 75, 77, 79, 81], "pmid": 1, "point": [13, 32, 33, 34, 40, 59, 67, 68, 69, 70, 71, 72, 73, 74, 79, 80], "pointer": [35, 36, 37, 38, 39, 40, 41, 44, 45, 46, 47, 48, 49, 50, 52, 53, 56, 57], "pointwis": [4, 74, 81], "pointwise_loglikelihood": [74, 81], "pool": 75, "poor": 80, "popen_fork": 81, "popul": 74, "popular": 81, "posit": [68, 73, 74, 80], "possess": 76, "possibl": [10, 42, 61, 66, 68, 69, 71, 73, 74, 76, 77, 80, 81], "post": 71, "post1": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "posterior": [1, 2, 28, 29, 45, 59, 62, 65, 66, 67, 69, 80], "posterior_mean": 38, "posterior_precis": 39, "posterior_update_mean_continuous_nod": [36, 37, 39], "posterior_update_precision_continuous_nod": [36, 37, 38], "posteriori": 74, "potenti": [2, 70, 71, 72, 73, 75, 77, 79, 81], "power": [81, 82], "pp": [13, 57], "ppg": 77, "pr": [70, 73], "practic": [66, 68, 69, 73, 82], "pre": [16, 17, 51, 53, 55, 70, 71, 72, 81], "precipit": 80, "precis": [1, 5, 6, 10, 12, 14, 16, 28, 29, 36, 37, 38, 39, 40, 41, 43, 45, 46, 54, 62, 65, 66, 67, 68, 69, 70, 71, 72, 76, 79, 80], "precision_1": [2, 5, 6], "precision_2": [2, 5, 6], "precision_3": [5, 6], "precsnoland": 80, "prectotland": 80, "predict": [1, 13, 14, 17, 38, 39, 46, 47, 48, 49, 50, 53, 59, 62, 66, 68, 69, 72, 73, 74, 77, 79, 80, 82], "predict_precis": 38, "prediction_error": [38, 39], "prediction_sequ": 62, "presenc": 75, "present": [65, 66, 67, 68, 70, 72, 73, 74, 79, 80], "press": 82, "previou": [0, 1, 39, 40, 53, 54, 67, 68, 70, 71, 72, 73, 74, 76, 80, 81], "previous": [67, 73, 80], "principl": [1, 62, 67, 68, 69, 73, 80, 81], "print": [2, 65], "prior": [2, 66, 68, 69, 70, 72, 73, 74, 77, 80, 81], "probabilist": [0, 1, 2, 17, 28, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 56, 57, 61, 65, 66, 67, 69, 72, 73, 77, 79, 81], "probabl": [0, 1, 2, 4, 5, 6, 9, 10, 13, 28, 31, 35, 51, 57, 66, 67, 69, 70, 72, 73, 74, 75, 79, 80, 81], "problem": [66, 74, 75], "procedur": [68, 74, 81], "proceed": 74, "process": [1, 21, 36, 37, 42, 44, 52, 53, 56, 66, 68, 69, 76, 79, 80, 81], "produc": [74, 79, 81], "product": [71, 79], "programmat": 73, "progress": [68, 71, 76], "propag": [0, 17, 59, 68, 69, 73, 80, 81], "propens": [67, 74], "properti": [1, 68], "proport": 69, "propos": 62, "provid": [1, 2, 3, 4, 5, 16, 28, 31, 58, 67, 68, 70, 71, 72, 73, 74, 76, 79, 80, 81], "proxim": 68, "pseudo": [13, 69, 74], "psi": [11, 35, 47, 71], "psychiatri": [65, 66, 73, 74, 80], "psycholog": 73, "pt": [71, 74, 79, 81], "public": [1, 11, 71], "publish": [1, 57, 82], "pulcu": [79, 82], "punish": [66, 82], "purpos": [67, 73, 78], "put": 72, "pv": 82, "pval": 71, "py": [72, 81], "pyhgf": [1, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "pymc": [0, 2, 5, 6, 70, 71, 72, 73, 74, 75, 77, 79, 81], "pyplot": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "pytensor": [70, 71, 72, 73, 74, 75, 77, 79, 81], "python": [65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "python3": 81, "pytre": 68, "pytress": 68, "q": [1, 11, 71], "qualiti": 74, "quantiti": [74, 78, 79, 80, 81], "question": 69, "quickli": [72, 81], "quit": 72, "r": [65, 67, 69, 76, 77, 79], "r_a": 69, "r_hat": [2, 73, 81], "rain": 80, "raman": 65, "rand": 69, "randn": 69, "random": [1, 5, 6, 16, 42, 55, 68, 69, 71, 73, 74, 75, 76, 78, 79], "randomli": [67, 75, 81], "rang": [67, 68, 69, 71, 73, 74, 75, 78, 79, 80], "rank": 81, "rate": [42, 65, 67, 69, 70, 72, 73, 78, 79, 80, 81], "rather": 81, "ratio": 69, "ration": 82, "ravel": [69, 79], "raw": 80, "rcparam": [67, 68, 69, 70, 72, 73, 74, 76, 77, 79, 81], "reach": 68, "react": 72, "read": [28, 29, 80, 81], "read_csv": 80, "reader": 67, "readi": [79, 81], "real": [1, 68, 69, 70, 72, 73, 76, 77, 80, 81], "reanalysi": 82, "reason": [68, 70, 72, 73, 74], "recap": 81, "receiv": [0, 35, 42, 53, 59, 65, 67, 68, 69, 71, 73, 74, 76, 79, 81], "recent": 1, "recommend": [70, 72, 73, 74, 75, 77, 79, 81], "reconstruct": 81, "record": [66, 79, 80], "recov": [0, 66, 79], "recoveri": [66, 73, 81], "recurs": [63, 65], "red": 75, "reduc": 62, "ref": 75, "ref_val": 74, "refer": [1, 7, 8, 11, 13, 36, 37, 38, 39, 41, 42, 43, 45, 48, 49, 50, 57, 67, 68, 69, 71, 73, 74, 75, 79, 80], "reflect": [68, 80], "regist": [68, 76, 81], "regular": [37, 67, 70, 81], "reinforc": [1, 66, 67, 70, 71], "relat": [1, 73, 77], "relationship": 58, "relax": 78, "releas": 65, "relev": [16, 70, 72, 76], "reli": [67, 69, 74], "reliabl": [74, 75], "remain": [65, 79], "rememb": 81, "remot": 67, "remov": 80, "reparameter": [74, 75, 77, 81], "repeat": [67, 74, 79, 80], "replac": [71, 79], "report": [1, 75], "repres": [1, 5, 6, 16, 42, 67, 68, 69, 71, 73, 74, 76, 80], "requier": [71, 79], "requir": [4, 27, 30, 32, 33, 34, 42, 68, 69, 73, 74, 79, 80, 81], "rescorla": [67, 70, 75], "research": [1, 73], "resembl": 73, "resolut": 1, "respect": [11, 67, 68, 72, 81], "respir": 77, "respond": 81, "respons": [2, 3, 4, 5, 6, 65, 66, 70, 72, 74, 75, 77, 80, 81, 82], "response_funct": [2, 3, 4, 6, 65, 70, 72, 73, 74, 75, 77, 80, 81], "response_function_input": [2, 3, 4, 5, 6, 30, 31, 32, 33, 34, 65, 73, 74, 75, 81], "response_function_paramet": [5, 6, 30, 31, 32, 33, 34, 65, 70, 73, 74, 75], "rest": 1, "restrict": [68, 72], "result": [1, 2, 65, 68, 70, 71, 72, 73, 74, 77, 79, 80, 81], "retriev": [68, 72, 77, 81], "return": [0, 4, 5, 6, 9, 10, 11, 13, 14, 26, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 59, 60, 62, 63, 64, 65, 68, 69, 70, 71, 72, 73, 74, 76, 77, 79, 80, 81], "revert": [42, 67], "review": [67, 80], "reward": [66, 73, 81, 82], "rf": [69, 74], "rhat": [74, 75], "rho": [67, 76], "rho_1": 67, "rho_2": 76, "rho_3": 76, "rho_a": [42, 76], "rhoa": 80, "right": [11, 13, 38, 39, 42, 43, 50, 67, 69, 71, 73, 79], "rise": 72, "rl": 1, "robert": 82, "robust": [70, 72, 73, 74, 75, 77, 79, 81], "rocket": 74, "role": [0, 1, 72], "root": [0, 59, 63, 67, 68, 80], "row": 28, "rr": 77, "rr_": 77, "rule": [81, 82], "run": [66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81], "runtimewarn": 81, "rust": 65, "rw": 81, "rw_idata": 81, "rw_model": 81, "rw_updat": 81, "s11222": 82, "s_0": 73, "s_1": 73, "sa": [65, 81], "sake": 73, "salient": 72, "same": [1, 2, 3, 4, 17, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 52, 53, 56, 57, 58, 61, 67, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81], "sampl": [1, 2, 54, 55, 62, 66, 67, 68, 69, 73, 75, 77, 78, 79, 80], "sampler": [70, 72, 73, 74, 75, 77, 79, 81], "samuel": 82, "sandra": [1, 82], "satellit": 82, "save": [43, 69, 74, 75, 81], "scalar": 69, "scale": [67, 69, 78, 80, 81], "scall": 67, "scan": [17, 59, 79, 81], "scan_fn": 17, "scat": 69, "scat2": 69, "scatter": [68, 69, 73, 75, 79, 81], "scatterplot": 75, "scheme": [1, 68], "schrader": 65, "sch\u00f6bi": 65, "scienc": [1, 13], "scipi": [69, 78], "scope": 67, "scratch": 65, "sd": [2, 73, 81], "se": [74, 81], "seaborn": [67, 68, 69, 71, 74, 75, 76, 78, 79, 80, 81], "seagreen": 79, "seamless": 65, "search": 63, "second": [0, 1, 2, 5, 6, 10, 16, 66, 67, 68, 70, 72, 73, 74, 75, 76, 77, 79, 80, 81], "section": [66, 67, 70, 71, 72, 74, 80, 81], "see": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 79, 80, 81], "seed": [67, 68, 69, 73, 74, 75, 76, 78, 79, 80], "seen": [67, 80, 81], "select": [73, 79, 80], "self": [71, 79, 81], "send": [67, 68, 72], "sens": [1, 67, 71, 73], "sensori": [1, 65, 67, 80, 81, 82], "sensory_precis": 54, "separ": [69, 74, 75, 81], "septemb": 72, "sequenc": [17, 59, 62, 65, 67, 69, 71, 73, 74, 79, 81], "sequenti": [70, 71, 72, 73, 74, 75, 77, 79, 81], "seri": [1, 2, 3, 4, 5, 6, 13, 32, 57, 64, 65, 67, 68, 69, 70, 71, 72, 74, 77, 80, 81, 82], "serotonin": 1, "session": 66, "set": [16, 24, 28, 29, 58, 60, 63, 65, 67, 68, 69, 70, 72, 73, 74, 75, 76, 78, 79, 81], "set_minor_loc": 69, "set_offset": 69, "set_palett": 74, "set_titl": [69, 71, 75], "set_xdata": 69, "set_xlabel": [69, 75, 78], "set_ydata": 69, "set_ylabel": [69, 71, 75, 78, 79], "sever": [1, 72, 81], "sfreq": 77, "shad": 28, "shape": [0, 1, 3, 68, 69, 71, 74, 75, 76, 79, 80], "share": [68, 70], "sharei": 79, "sharex": [67, 71, 79], "she": 73, "shoot": 72, "shortwav": 80, "should": [0, 2, 4, 5, 28, 29, 35, 42, 43, 47, 54, 57, 58, 68, 69, 71, 73, 74, 79, 81], "show": [28, 29, 68, 72, 81], "show_heart_r": 77, "show_posterior": [28, 29, 76], "show_surpris": [28, 29, 76], "show_total_surpris": [29, 70, 72], "shown": [67, 69, 76], "side": [68, 73, 74], "sidecar": 81, "sigma": [54, 67, 68, 74, 80], "sigma_1": [67, 80], "sigma_2": [67, 80], "sigma_mu_g0": 55, "sigma_pi_g0": 55, "sigma_temperatur": 74, "sigma_volatil": 74, "sigmoid": [67, 74, 75, 79, 81], "sigmoid_hgf": 73, "sigmoid_hgf_idata": 73, "sigmoid_inverse_temperatur": 75, "signal": [0, 66, 76], "sim": [2, 67, 74, 76, 80], "similar": [38, 39, 70, 72, 77, 79, 81], "similarli": [68, 72], "simpl": [2, 67, 68, 69, 73, 75, 79, 80, 81, 82], "simpler": [67, 68, 81], "simplest": [67, 73], "simplex": 1, "simpli": [0, 68, 69, 74, 75, 80, 81], "simplifi": [76, 80], "simpul": 67, "simul": [1, 54, 55, 67, 68, 69, 73, 76, 80, 81, 82], "simultan": 74, "sin": [68, 69, 76], "sinc": [67, 76], "singl": [6, 68, 79, 81], "sinusoid": [68, 76], "sinusoid_linear_hgf": 76, "sinusoid_nonlinear_hgf": 76, "situat": [1, 67, 68, 71, 73, 74, 79], "size": [1, 5, 67, 68, 70, 72, 74, 75, 78, 80], "skew": 71, "slightli": [72, 73, 81], "slope": [67, 76], "slow": [79, 81], "smaller": [74, 75], "smooth": 66, "smoother": 69, "sn": [67, 68, 69, 71, 74, 75, 76, 78, 79, 80, 81], "snoma": 80, "snow": 80, "so": [68, 70, 72, 73, 76, 80, 81], "sofmax": [30, 31], "softmax": [5, 6, 65, 73, 79], "softwar": 65, "solar": 80, "sole": 79, "solid": 81, "solut": 69, "some": [37, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 79, 80], "someth": [67, 68, 73, 76, 78, 81], "sometim": [68, 72, 73, 80, 81], "sort": 69, "sourc": [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65], "space": [62, 72, 74, 76], "sparsiti": 73, "special": 79, "specif": [1, 42, 65, 66, 67, 68, 69, 70, 71, 73, 74, 76, 79], "specifi": [2, 58, 67, 71, 76, 77, 79], "spike": 72, "spiral": 69, "split": [68, 73], "springer": [57, 82], "sqrt": [13, 28, 69, 78], "squar": 74, "stabil": 1, "stabl": 72, "stable_conting": 79, "stack": 69, "staffel": [80, 82], "standard": [0, 28, 29, 36, 38, 51, 54, 55, 62, 66, 67, 68, 70, 71, 72, 73, 74, 78, 80, 81], "start": [2, 3, 4, 59, 62, 67, 69, 71, 73, 74, 79, 80, 81], "stat": [69, 78], "state": [0, 1, 6, 18, 19, 20, 22, 32, 38, 39, 40, 42, 43, 46, 47, 49, 50, 55, 58, 60, 61, 65, 66, 67, 68, 69, 70, 72, 73, 74, 79, 80, 81], "static": [44, 52, 56], "statist": [0, 13, 26, 28, 29, 57, 64, 67, 68, 73, 74, 75, 78, 82], "statproofbook": 11, "std": [76, 78], "steep": 76, "steeper": 76, "stefan": 82, "step": [1, 5, 6, 17, 36, 37, 38, 39, 43, 59, 62, 65, 66, 67, 68, 69, 70, 73, 74, 75, 76, 79, 80, 81], "stephan": [1, 36, 37, 38, 39, 41, 42, 43, 45, 48, 49, 50, 65, 82], "still": [71, 79], "stim_1": 81, "stim_2": 81, "stimuli": [73, 74, 81], "stimulu": [73, 74, 81], "stochast": [67, 69, 71, 76, 80], "storag": 80, "store": [43, 48, 65, 68, 73, 74], "str": [2, 3, 4, 16, 28, 44, 52, 53, 56, 57, 59, 62], "straight": 67, "straightforward": [67, 69, 79], "straigthforwar": 80, "strenght": 23, "strength": [16, 35, 38, 39, 41, 42, 43, 47, 48, 58, 67, 70, 76], "string": 68, "structur": [0, 16, 17, 28, 29, 35, 41, 47, 48, 59, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 80, 81], "student": 69, "studi": [1, 66, 72, 74], "sub": [0, 68, 70], "subject": [1, 81], "subplot": [67, 69, 71, 75, 76, 78, 79, 81], "subtl": 81, "success": 75, "suffici": [0, 13, 26, 28, 29, 57, 64, 67, 68, 73, 78, 82], "sufficient_statist": 69, "sufficient_stats_fn": 57, "suggest": [69, 81], "suitabl": 79, "sum": [5, 29, 34, 42, 43, 65, 70, 71, 72, 73, 74, 77, 79, 80, 81], "sum_": [11, 38, 39, 43, 71, 73], "summari": [2, 70, 72, 73, 75, 77, 81], "summer": 80, "support": [5, 65, 67, 68], "suppos": 76, "sure": [71, 73, 79, 81], "surfac": 80, "surpris": [0, 2, 3, 4, 5, 6, 9, 10, 14, 28, 29, 30, 31, 32, 33, 34, 64, 65, 68, 71, 77, 79, 80, 81], "surprise_fn": 71, "suspect": 72, "swgdn": 80, "swiss": 72, "switch": [69, 70, 81], "swtdn": 80, "sy": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "systol": 77, "t": [1, 31, 36, 37, 38, 39, 41, 42, 43, 45, 48, 49, 50, 57, 65, 67, 68, 69, 70, 71, 73, 74, 76, 79, 80, 81], "t2m": 80, "tailor": [70, 71], "take": [0, 1, 67, 70, 73, 74, 80, 81], "tapa": 65, "target": [59, 65, 69, 80], "target_accept": [74, 75, 77, 81], "task": [65, 66, 68, 70, 73, 74, 77, 81], "techniqu": 75, "tediou": 72, "tem": 80, "temp": 74, "temperatur": [5, 6, 31, 65, 73, 74, 75, 79, 80], "temporari": 53, "ten": 82, "tensor": [70, 71, 72, 73, 74, 75, 77, 79, 81], "term": [1, 43, 67, 68, 73, 76, 82], "terminologi": [71, 74], "test": [74, 75], "text": [9, 73, 76], "th": 74, "than": [16, 37, 67, 69, 71, 72, 74, 75, 76], "thank": [74, 81], "thecomput": 66, "thei": [0, 65, 68, 69, 70, 71, 72, 73, 74, 75, 81], "them": [67, 73, 79, 80], "theoret": [66, 80], "theori": [1, 67, 81], "therefor": [32, 67, 68, 69, 71, 72, 73, 74, 76, 79, 80, 81], "thestrup": [1, 82], "theta": [68, 69, 76], "theta_": 68, "theta_1": [68, 76], "theta_2": 76, "thi": [0, 1, 2, 4, 5, 6, 13, 16, 17, 27, 28, 29, 32, 35, 37, 38, 39, 43, 53, 57, 59, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "thing": [71, 74, 80], "think": [67, 73], "third": [1, 5, 6, 68, 70, 72], "those": [65, 68, 69, 70, 73, 74], "three": [0, 5, 6, 16, 28, 29, 67, 68, 71, 78, 79], "three_level_hgf": [72, 77], "three_level_hgf_idata": [70, 72], "three_level_trajectori": 81, "three_levels_binary_hgf": [70, 81], "three_levels_continuous_hgf": 72, "three_levels_continuous_hgf_bi": 72, "three_levels_hgf": [29, 70], "three_levels_idata": 81, "threshold": 76, "through": [0, 65, 66, 67, 68, 73, 74, 76, 80, 81], "thu": [1, 80], "ticker": 69, "tight": 72, "tight_layout": [69, 72], "tile": [67, 79, 80], "tim": 82, "time": [1, 2, 3, 4, 5, 6, 13, 30, 31, 32, 33, 34, 38, 39, 40, 42, 43, 57, 59, 64, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 80, 81, 82], "time_step": [2, 3, 4, 5, 6, 39, 40, 73, 79], "timeseri": [2, 28, 29, 72, 80], "timestep": 76, "titl": [1, 67, 69, 71, 74, 76, 78, 81], "tmp": 72, "to_numpi": [80, 81], "to_panda": [69, 70, 72, 73], "toa": 80, "togeth": [29, 70, 72, 73, 81], "tolist": 75, "tomkin": 77, "tonaic_volatil": 69, "tonic": [2, 5, 6, 16, 42, 43, 67, 72, 74, 75, 76, 78, 79, 80, 81], "tonic_drift": [16, 28, 29, 70, 76, 77], "tonic_drift_1": [5, 6], "tonic_drift_2": [5, 6], "tonic_drift_3": [5, 6], "tonic_volatil": [16, 28, 29, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "tonic_volatility_1": [5, 6, 72, 77], "tonic_volatility_2": [2, 5, 6, 70, 71, 72, 73, 74, 75, 77, 81], "tonic_volatility_3": [5, 6, 70, 72], "too": 79, "took": [70, 72, 73, 74, 75, 77, 79, 81], "tool": 74, "toolbox": [65, 67, 72, 73], "top": [0, 28, 29, 65, 67, 70, 72, 73, 78, 80], "total": [42, 43, 67, 70, 72, 73, 74, 75, 76, 77, 79, 80, 81], "total_gaussian_surpris": [2, 77], "total_surpris": 73, "toussaint": 65, "toward": [79, 81], "trace": 76, "track": [67, 68, 69, 70, 73, 78, 80, 81], "tradition": 73, "trajectori": [0, 6, 26, 28, 29, 64, 65, 69, 73, 74, 75, 77, 78, 79, 80], "trajectories_df": 64, "transform": [23, 67, 68, 70, 73, 74, 76, 81], "transit": [60, 66, 69], "translat": 65, "transmiss": 80, "transpar": 68, "treat": 74, "tree": 68, "tree_util": [71, 79], "tri": [68, 70, 73, 81], "trial": [1, 67, 72, 73, 79, 81], "trigger": [0, 65, 67, 80], "tristan": 76, "trivial": 73, "true": [9, 14, 28, 29, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 81], "try": [72, 73, 76, 78, 79, 80, 81], "tune": [2, 70, 72, 73, 74, 75, 77, 79, 81], "tupl": [2, 3, 4, 17, 20, 22, 23, 24, 28, 29, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 65, 68, 69, 73, 76, 79], "turn": [66, 67, 80], "tutori": [65, 67, 70, 73, 74, 75, 76, 79, 80, 81], "two": [0, 1, 5, 6, 11, 16, 28, 29, 36, 37, 59, 65, 67, 68, 69, 71, 73, 74, 75, 76, 77, 78, 79, 80], "two_armed_bandit_hgf": 79, "two_armed_bandit_missing_inputs_hgf": 79, "two_bandits_logp": 79, "two_level_hgf": 72, "two_level_hgf_idata": [70, 72, 74, 75, 81], "two_level_trajectori": 81, "two_levels_binary_hgf": [70, 74, 75, 81], "two_levels_continuous_hgf": [72, 80], "two_levels_hgf": [70, 81], "two_levels_idata": 81, "type": [2, 3, 4, 5, 16, 17, 30, 31, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 52, 53, 55, 56, 57, 58, 61, 62, 68, 69, 71, 73, 74, 79, 81], "typic": 68, "u": [29, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "u1": 76, "u2": 76, "u_0": 68, "u_0_prob": 68, "u_1": [67, 68, 76], "u_1_prob": 68, "u_2": [67, 76], "u_loss_arm1": 79, "u_loss_arm2": 79, "u_win_arm1": 79, "u_win_arm2": 79, "ucl": 11, "uk": 11, "uncertain": [1, 68], "uncertainti": [1, 28, 29, 65, 66, 67, 79, 80, 81, 82], "under": [1, 6, 9, 10, 14, 30, 31, 37, 51, 53, 55, 65, 67, 69, 70, 72, 73, 74, 81, 82], "undergo": [73, 74], "underli": [10, 68, 70, 71, 72, 73, 75, 76], "underpin": [67, 69], "understand": [1, 67, 76, 81], "underw": 73, "unexpect": [69, 70, 72], "uniform": [70, 75, 81], "union": [30, 31, 55, 58], "uniqu": [67, 68, 81], "unit": [2, 3, 4, 59, 74], "univari": [8, 57], "univariate_hgf": 69, "univers": [11, 76, 82], "unlik": [67, 72], "unobserv": 79, "until": [71, 76], "up": [28, 29, 65, 67, 72, 80], "updat": [1, 13, 17, 25, 59, 60, 62, 65, 66, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81], "update_binary_input_par": 41, "update_continuous_input_par": 41, "update_fn": 68, "update_fn1": 68, "update_fn2": 68, "update_sequ": [17, 59, 62, 68, 69, 79], "update_typ": 62, "upon": 67, "upper": [67, 68, 75, 79], "upper_bound": 15, "url": [1, 11, 82], "us": [0, 1, 2, 3, 4, 5, 6, 16, 25, 27, 28, 35, 36, 37, 38, 39, 42, 43, 55, 65, 67, 68, 74, 75, 76, 77, 78, 79, 80, 81, 82], "usd": [28, 29], "user": [67, 73], "userwarn": 72, "usual": [0, 59, 67, 68, 75, 78], "util": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "v": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "valid": [4, 13, 32, 68, 70, 72, 74, 81, 82], "valu": [0, 2, 5, 6, 10, 16, 17, 28, 29, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 56, 57, 58, 59, 61, 65, 66, 69, 70, 72, 73, 74, 75, 77, 78, 79, 81], "valuat": 72, "value_children": [18, 20, 22, 23, 24, 65, 68, 69, 72, 76, 78, 79, 80, 81], "value_coupling_children": [16, 41, 48], "value_coupling_par": [16, 41, 48], "value_par": [18, 20, 23, 24, 68], "vape": 67, "var_nam": [2, 70, 73, 74, 75, 81], "vari": [66, 67, 69, 73, 74, 76], "variabl": [1, 13, 42, 59, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81], "varianc": [5, 6, 16, 65, 66, 67, 68, 72, 80], "variat": [0, 1, 68, 69], "varieti": 68, "variou": [1, 68, 80], "vartheta": 69, "vector": [2, 3, 4, 5, 16, 55, 69, 71, 73, 74, 75, 79, 81], "vectorized_logp": 5, "vehtari": [74, 82], "verbelen": 82, "veri": [1, 67, 72, 74, 77, 80], "versatil": 80, "version": [1, 17, 36, 37, 38, 39, 41, 42, 43, 45, 48, 49, 50, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "via": [67, 68], "view": 79, "visibl": 72, "visual": [0, 27, 28, 29, 65, 69, 78, 80, 81], "vizualis": 69, "vjp": [71, 79], "vjp_custom_op": [71, 79], "vjp_custom_op_jax": [71, 79], "vjp_fn": [71, 79], "vjpcustomop": [71, 79], "vol": 65, "volatil": [0, 1, 2, 5, 6, 16, 17, 28, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 50, 52, 53, 56, 57, 58, 61, 62, 65, 66, 69, 70, 72, 73, 74, 75, 76, 78, 79, 81], "volatile_conting": 79, "volatility_children": [18, 20, 23, 24, 68, 69, 72, 78, 80], "volatility_coupl": [16, 28, 29, 35, 47, 70, 77], "volatility_coupling_1": [5, 6], "volatility_coupling_2": [5, 6], "volatility_coupling_children": [16, 41, 48], "volatility_coupling_par": [16, 41, 48], "volatility_par": [18, 20, 23, 24, 68], "volum": 1, "vopa": 43, "vope": 67, "vstack": 71, "w": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "w_a": 79, "w_b": 79, "wa": [38, 39, 62, 65, 68, 70, 71, 72, 73, 76, 79, 81], "waad": [1, 36, 37, 38, 39, 41, 42, 43, 45, 48, 49, 50, 65, 82], "wagenmak": [74, 82], "wagner": [67, 70, 75], "wai": [1, 67, 68, 69, 70, 71, 72, 73, 74, 76, 79, 80, 81], "waic": 82, "walk": [1, 5, 6, 16, 42, 76, 79], "want": [1, 2, 68, 70, 72, 73, 74, 76, 77, 78, 79, 80, 81], "warmup": 2, "warn": [70, 71, 72, 73, 74, 75, 77, 79, 81], "watermark": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "wave": [68, 76], "we": [0, 1, 2, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "weak_typ": [9, 14], "weber": [0, 1, 13, 36, 37, 38, 39, 41, 42, 43, 45, 48, 49, 50, 57, 65, 67, 68, 69, 80, 82], "weigh": [69, 80], "weight": [1, 55, 65, 67, 68, 69, 81], "weigth": 55, "well": [1, 59, 68, 75, 80, 81], "were": [67, 70, 73, 74, 75, 77, 79, 81], "what": [68, 71, 72, 73, 76, 79, 80, 81], "when": [2, 4, 5, 6, 32, 42, 53, 67, 68, 69, 70, 71, 72, 73, 74, 76, 79, 80, 81], "where": [0, 3, 4, 5, 6, 14, 28, 29, 31, 38, 39, 42, 43, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 78, 79, 80], "wherea": 77, "whether": 28, "which": [1, 5, 6, 13, 42, 62, 65, 67, 68, 69, 70, 71, 72, 73, 74, 76, 79, 80, 81], "while": [67, 68, 69, 73, 74, 76, 77, 79, 80, 81], "whole": [67, 69, 79], "wide": [16, 70], "width": [28, 29], "wiki": [7, 8], "wikipedia": [7, 8], "william": 11, "wilson": [75, 82], "win": 79, "win_arm1": 79, "win_arm2": 79, "wind": 82, "wine": 79, "wishart": 11, "within": 1, "without": [1, 42, 61, 66, 68, 69, 73, 74, 76], "won": 70, "word": [68, 70, 72, 81], "work": [27, 66, 71, 73, 74, 79, 81], "workflow": [74, 81], "workshop": 80, "world": [67, 69, 73, 81], "worri": [70, 72], "worth": 74, "would": [70, 72, 74, 76, 79, 80], "wpenni": 11, "wrap": [0, 70, 71, 72, 79], "write": [71, 73, 76, 80, 81], "written": 69, "www": [1, 11, 82], "x": [9, 12, 13, 14, 15, 57, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80], "x1": [67, 76], "x2": [67, 76], "x3": 76, "x64": 81, "x_": [67, 70, 80], "x_0": [6, 72], "x_0_expected_mean": 73, "x_0_expected_precis": 73, "x_0_mean": 73, "x_0_precis": 73, "x_0_surpris": [70, 72, 73], "x_0_xis_0": 69, "x_1": [6, 67, 69, 76, 80], "x_1_1": 67, "x_1_2": 67, "x_1_3": 67, "x_1_expected_mean": 73, "x_1_expected_precis": 73, "x_1_mean": 73, "x_1_precis": 73, "x_1_surpris": [70, 72, 73], "x_2": [6, 67, 69, 76, 80], "x_2_1": 67, "x_2_2": 67, "x_2_3": 67, "x_2_surpris": [70, 72], "x_3": [6, 76], "x_b": 42, "x_i": 69, "xaxi": 69, "xflr6": 27, "xi": [13, 57, 68, 69, 71], "xi_": [13, 68, 69], "xi_1": 68, "xi_k": 68, "xi_x": [13, 69], "xlabel": [67, 69, 71, 73, 76, 80, 81], "xlim": 69, "y": [13, 65, 69, 73, 75, 79, 81], "y1": 71, "y2": 71, "yaxi": 69, "ye": 76, "year": [1, 80, 82], "yet": 79, "ylabel": [67, 69, 71, 76, 80, 81], "ylim": 69, "you": [1, 65, 66, 68, 71, 73, 76, 79, 80, 81], "your": [1, 80, 81], "z": [69, 74], "z_": 74, "zero": 76, "zip": [67, 69, 75, 78, 79, 81], "zoom": 76, "zorder": [68, 71, 75], "zurich": 66, "\u03c9_2": 2}, "titles": ["API", "How to cite?", "pyhgf.distribution.HGFDistribution", "pyhgf.distribution.HGFLogpGradOp", "pyhgf.distribution.HGFPointwise", "pyhgf.distribution.hgf_logp", "pyhgf.distribution.logp", "pyhgf.math.MultivariateNormal", "pyhgf.math.Normal", "pyhgf.math.binary_surprise", "pyhgf.math.binary_surprise_finite_precision", "pyhgf.math.dirichlet_kullback_leibler", "pyhgf.math.gaussian_density", "pyhgf.math.gaussian_predictive_distribution", "pyhgf.math.gaussian_surprise", "pyhgf.math.sigmoid", "pyhgf.model.HGF", "pyhgf.model.Network", "pyhgf.model.add_binary_state", "pyhgf.model.add_categorical_state", "pyhgf.model.add_continuous_state", "pyhgf.model.add_dp_state", "pyhgf.model.add_ef_state", "pyhgf.model.get_couplings", "pyhgf.model.insert_nodes", "pyhgf.model.update_parameters", "pyhgf.plots.plot_correlations", "pyhgf.plots.plot_network", "pyhgf.plots.plot_nodes", "pyhgf.plots.plot_trajectories", "pyhgf.response.binary_softmax", "pyhgf.response.binary_softmax_inverse_temperature", "pyhgf.response.first_level_binary_surprise", "pyhgf.response.first_level_gaussian_surprise", "pyhgf.response.total_gaussian_surprise", "pyhgf.updates.posterior.categorical.categorical_state_update", "pyhgf.updates.posterior.continuous.continuous_node_posterior_update", "pyhgf.updates.posterior.continuous.continuous_node_posterior_update_ehgf", "pyhgf.updates.posterior.continuous.posterior_update_mean_continuous_node", "pyhgf.updates.posterior.continuous.posterior_update_precision_continuous_node", "pyhgf.updates.prediction.binary.binary_state_node_prediction", "pyhgf.updates.prediction.continuous.continuous_node_prediction", "pyhgf.updates.prediction.continuous.predict_mean", "pyhgf.updates.prediction.continuous.predict_precision", "pyhgf.updates.prediction.dirichlet.dirichlet_node_prediction", "pyhgf.updates.prediction_error.binary.binary_finite_state_node_prediction_error", "pyhgf.updates.prediction_error.binary.binary_state_node_prediction_error", "pyhgf.updates.prediction_error.categorical.categorical_state_prediction_error", "pyhgf.updates.prediction_error.continuous.continuous_node_prediction_error", "pyhgf.updates.prediction_error.continuous.continuous_node_value_prediction_error", "pyhgf.updates.prediction_error.continuous.continuous_node_volatility_prediction_error", "pyhgf.updates.prediction_error.dirichlet.clusters_likelihood", "pyhgf.updates.prediction_error.dirichlet.create_cluster", "pyhgf.updates.prediction_error.dirichlet.dirichlet_node_prediction_error", "pyhgf.updates.prediction_error.dirichlet.get_candidate", "pyhgf.updates.prediction_error.dirichlet.likely_cluster_proposal", "pyhgf.updates.prediction_error.dirichlet.update_cluster", "pyhgf.updates.prediction_error.exponential.prediction_error_update_exponential_family", "pyhgf.utils.add_edges", "pyhgf.utils.beliefs_propagation", "pyhgf.utils.fill_categorical_state_node", "pyhgf.utils.get_input_idxs", "pyhgf.utils.get_update_sequence", "pyhgf.utils.list_branches", "pyhgf.utils.to_pandas", "PyHGF: A Neural Network Library for Predictive Coding", "Learn", "Introduction to the Generalised Hierarchical Gaussian Filter", "Creating and manipulating networks of probabilistic nodes", "From Reinforcement Learning to Generalised Bayesian Filtering", "The binary Hierarchical Gaussian Filter", "The categorical Hierarchical Gaussian Filter", "The continuous Hierarchical Gaussian Filter", "Using custom response models", "Hierarchical Bayesian modelling with probabilistic neural networks", "Recovering computational parameters from observed behaviours", "Non-linear value coupling between continuous state nodes", "Example 1: Bayesian filtering of cardiac volatility", "Example 2: Estimating the mean and precision of a time-varying Gaussian distributions", "Example 3: A multi-armed bandit task with independent rewards and punishments", "Zurich CPC I: Introduction to the Generalised Hierarchical Gaussian Filter", "Zurich CPC II: Application to reinforcement learning", "References"], "titleterms": {"1": [77, 80], "2": [78, 80], "3": [79, 80], "4": 80, "5": 80, "7": 81, "8": 81, "A": [65, 79], "The": [65, 66, 67, 68, 70, 71, 72, 80, 81], "acknowledg": 65, "activ": 76, "ad": 67, "adapt": 69, "add": [70, 72], "add_binary_st": 18, "add_categorical_st": 19, "add_continuous_st": 20, "add_dp_stat": 21, "add_edg": 58, "add_ef_st": 22, "api": 0, "applic": 81, "arm": [75, 79], "ascend": 68, "assign": 68, "attribut": 68, "autoregress": 67, "bandit": [75, 79], "bayesian": [69, 74, 77, 79], "behavior": 73, "behaviour": [75, 81], "belief": [67, 79, 81], "beliefs_propag": 59, "between": [76, 80], "bias": 81, "binari": [0, 40, 45, 46, 68, 70, 73, 81], "binary_finite_state_node_prediction_error": 45, "binary_softmax": 30, "binary_softmax_inverse_temperatur": 31, "binary_state_node_predict": 40, "binary_state_node_prediction_error": 46, "binary_surpris": 9, "binary_surprise_finite_precis": 10, "bivari": 69, "cardiac": 77, "case": [66, 68], "categor": [0, 35, 47, 71], "categorical_state_prediction_error": 47, "categorical_state_upd": 35, "cite": 1, "clusters_likelihood": 51, "code": 65, "collect": 69, "comparison": [74, 81], "comput": [74, 75], "configur": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "content": 0, "continu": [0, 36, 37, 38, 39, 41, 42, 43, 48, 49, 50, 68, 72, 76], "continuous_node_posterior_upd": 36, "continuous_node_posterior_update_ehgf": 37, "continuous_node_predict": 41, "continuous_node_prediction_error": 48, "continuous_node_value_prediction_error": 49, "continuous_node_volatility_prediction_error": 50, "correl": 72, "coupl": [67, 68, 76, 80], "cpc": [80, 81], "creat": [68, 70, 71, 72, 73], "create_clust": 52, "custom": [68, 73], "data": [70, 72], "dataset": [71, 74, 79], "decis": [73, 79], "deriv": 77, "descend": 68, "detail": 68, "differ": 81, "dirichlet": [0, 44, 51, 52, 53, 54, 55, 56], "dirichlet_kullback_leibl": 11, "dirichlet_node_predict": 44, "dirichlet_node_prediction_error": 53, "distribut": [0, 2, 3, 4, 5, 6, 69, 74, 78], "doe": 65, "drift": 67, "dynam": [67, 68, 69], "edg": 68, "error": [0, 67], "estim": 78, "exampl": [77, 78, 79], "exercis": [66, 80, 81], "exponenti": 57, "fill_categorical_state_nod": 60, "filter": [65, 66, 67, 69, 70, 71, 72, 77, 80], "first_level_binary_surpris": 32, "first_level_gaussian_surpris": 33, "fit": [65, 70, 71, 72, 81], "fix": [69, 70, 72], "forward": 71, "frequenc": 76, "from": [69, 73, 75, 79], "function": [0, 68, 73, 76], "gaussian": [65, 66, 67, 69, 70, 71, 72, 78, 80], "gaussian_dens": 12, "gaussian_predictive_distribut": 13, "gaussian_surpris": 14, "gener": [65, 67, 80], "generalis": [67, 69, 80], "get": 65, "get_candid": 54, "get_coupl": 23, "get_input_idx": 61, "get_update_sequ": 62, "glossari": [67, 73], "go": 81, "graph": 74, "group": 74, "heart": 77, "hgf": [16, 70, 72, 73, 81], "hgf_logp": 5, "hgfdistribut": 2, "hgflogpgradop": 3, "hgfpointwis": 4, "hierarch": [65, 66, 67, 69, 70, 71, 72, 74, 80], "how": [1, 65], "i": 80, "ii": 81, "implement": 68, "import": 70, "independ": 79, "infer": [71, 74, 75, 79], "input": 68, "insert_nod": 24, "instal": 65, "instantan": 77, "introduct": [67, 80], "invers": 80, "known": 78, "kown": 78, "learn": [66, 69, 70, 72, 81], "level": [70, 72, 74, 81], "librari": 65, "likely_cluster_propos": 55, "linear": 76, "list_branch": 63, "load": 77, "logp": 6, "manipul": 68, "math": [0, 7, 8, 9, 10, 11, 12, 13, 14, 15], "mcmc": [70, 71, 72], "mean": 78, "miss": 68, "model": [0, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 65, 67, 70, 71, 72, 73, 74, 77, 80, 81], "modifi": 68, "multi": 79, "multivari": 68, "multivariatenorm": 7, "network": [17, 65, 67, 68, 71, 74], "neural": [65, 74], "new": 73, "next": 81, "node": [0, 67, 68, 71, 76, 80], "non": [69, 76], "normal": [8, 69], "nu": 69, "observ": [73, 75], "one": 75, "optim": 81, "paramet": [70, 72, 73, 75, 79, 81], "particip": 79, "physiolog": 77, "plot": [0, 26, 27, 28, 29, 70, 72, 74, 77], "plot_correl": 26, "plot_network": 27, "plot_nod": 28, "plot_trajectori": 29, "posterior": [0, 35, 36, 37, 38, 39, 74, 81], "posterior_update_mean_continuous_nod": 38, "posterior_update_precision_continuous_nod": 39, "practic": 80, "precis": 78, "predict": [0, 40, 41, 42, 43, 44, 65, 67, 76, 81], "predict_mean": 42, "predict_precis": 43, "prediction_error": [45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57], "prediction_error_update_exponential_famili": 57, "preprocess": 77, "probabilist": [68, 71, 74, 80], "process": [0, 67], "propag": 67, "punish": 79, "pyhgf": [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65], "random": [67, 80, 81], "rate": 77, "real": 79, "record": 77, "recov": [73, 75], "recoveri": [75, 79], "rectifi": 76, "refer": [65, 82], "reinforc": [69, 81], "relu": 76, "rescorla": 81, "respons": [0, 30, 31, 32, 33, 34, 73, 79], "reward": 79, "rl": 81, "rule": [73, 79], "sampl": [70, 71, 72, 74, 81], "sequenc": 68, "sigmoid": 15, "signal": 77, "simul": [71, 74, 75, 79], "solut": [80, 81], "start": 65, "state": [71, 76], "static": 68, "stationari": 69, "statist": 69, "step": 0, "structur": 79, "suffici": 69, "surpris": [70, 72, 73], "system": [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], "tabl": 0, "task": [75, 79], "theori": [66, 68], "three": [70, 72, 81], "through": 69, "time": [68, 78, 79], "to_panda": 64, "total_gaussian_surpris": 34, "track": 76, "trajectori": [70, 72, 81], "transit": 71, "tutori": 66, "two": [70, 72, 81], "unit": 76, "univari": 69, "unknown": 78, "unkown": 78, "unobserv": 68, "updat": [0, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 67, 68, 79], "update_clust": 56, "update_paramet": 25, "us": [66, 69, 70, 71, 72, 73], "util": [0, 58, 59, 60, 61, 62, 63, 64], "valu": [67, 68, 76, 80], "vari": [68, 78], "visual": [68, 70, 72, 74, 75], "volatil": [67, 68, 77, 80], "wagner": 81, "walk": [67, 80], "weather": 80, "where": 81, "work": [65, 68], "world": 80, "zurich": [80, 81]}}) \ No newline at end of file