diff --git a/dev/.doctrees/environment.pickle b/dev/.doctrees/environment.pickle index 12cf1200b..b45f187d0 100644 Binary files a/dev/.doctrees/environment.pickle and b/dev/.doctrees/environment.pickle differ diff --git a/dev/.doctrees/learn.doctree b/dev/.doctrees/learn.doctree index 995dc2a5c..3a356c352 100644 Binary files a/dev/.doctrees/learn.doctree and b/dev/.doctrees/learn.doctree differ diff --git a/dev/.doctrees/notebooks/0.1-Theory.doctree b/dev/.doctrees/notebooks/0.1-Theory.doctree index 3befa2324..27a8df36d 100644 Binary files a/dev/.doctrees/notebooks/0.1-Theory.doctree and b/dev/.doctrees/notebooks/0.1-Theory.doctree differ diff --git a/dev/.doctrees/notebooks/0.2-Creating_networks.doctree b/dev/.doctrees/notebooks/0.2-Creating_networks.doctree index 878014736..d0a5abf24 100644 Binary files a/dev/.doctrees/notebooks/0.2-Creating_networks.doctree and b/dev/.doctrees/notebooks/0.2-Creating_networks.doctree differ diff --git a/dev/.doctrees/notebooks/0.3-Generalised_filtering.doctree b/dev/.doctrees/notebooks/0.3-Generalised_filtering.doctree index 4032b9437..a121093a5 100644 Binary files a/dev/.doctrees/notebooks/0.3-Generalised_filtering.doctree and b/dev/.doctrees/notebooks/0.3-Generalised_filtering.doctree differ diff --git a/dev/.doctrees/notebooks/1.1-Binary_HGF.doctree b/dev/.doctrees/notebooks/1.1-Binary_HGF.doctree index f41be11d5..2d394a465 100644 Binary files a/dev/.doctrees/notebooks/1.1-Binary_HGF.doctree and b/dev/.doctrees/notebooks/1.1-Binary_HGF.doctree differ diff --git a/dev/.doctrees/notebooks/1.2-Categorical_HGF.doctree b/dev/.doctrees/notebooks/1.2-Categorical_HGF.doctree index e65707fee..9e81e0cb5 100644 Binary files a/dev/.doctrees/notebooks/1.2-Categorical_HGF.doctree and b/dev/.doctrees/notebooks/1.2-Categorical_HGF.doctree differ diff --git a/dev/.doctrees/notebooks/1.3-Continuous_HGF.doctree b/dev/.doctrees/notebooks/1.3-Continuous_HGF.doctree index ec224f884..d4949ca3c 100644 Binary files a/dev/.doctrees/notebooks/1.3-Continuous_HGF.doctree and b/dev/.doctrees/notebooks/1.3-Continuous_HGF.doctree differ diff --git a/dev/.doctrees/notebooks/2-Using_custom_response_functions.doctree b/dev/.doctrees/notebooks/2-Using_custom_response_functions.doctree index 0ad521b00..a70172e0a 100644 Binary files a/dev/.doctrees/notebooks/2-Using_custom_response_functions.doctree and b/dev/.doctrees/notebooks/2-Using_custom_response_functions.doctree differ diff --git a/dev/.doctrees/notebooks/3-Multilevel_HGF.doctree b/dev/.doctrees/notebooks/3-Multilevel_HGF.doctree index a98c1e513..6600cfe52 100644 Binary files a/dev/.doctrees/notebooks/3-Multilevel_HGF.doctree and b/dev/.doctrees/notebooks/3-Multilevel_HGF.doctree differ diff --git a/dev/.doctrees/notebooks/4-Parameter_recovery.doctree b/dev/.doctrees/notebooks/4-Parameter_recovery.doctree index 472287c8a..9ad9ba1e7 100644 Binary files a/dev/.doctrees/notebooks/4-Parameter_recovery.doctree and b/dev/.doctrees/notebooks/4-Parameter_recovery.doctree differ diff --git a/dev/.doctrees/notebooks/5-Non_linear_value_coupling.doctree b/dev/.doctrees/notebooks/5-Non_linear_value_coupling.doctree index 0d0eecf51..c6cdfdce6 100644 Binary files a/dev/.doctrees/notebooks/5-Non_linear_value_coupling.doctree and b/dev/.doctrees/notebooks/5-Non_linear_value_coupling.doctree differ diff --git a/dev/.doctrees/notebooks/Example_1_Heart_rate_variability.doctree b/dev/.doctrees/notebooks/Example_1_Heart_rate_variability.doctree index 02fa16172..e785575f5 100644 Binary files a/dev/.doctrees/notebooks/Example_1_Heart_rate_variability.doctree and b/dev/.doctrees/notebooks/Example_1_Heart_rate_variability.doctree differ diff --git a/dev/.doctrees/notebooks/Example_2_Input_node_volatility_coupling.doctree b/dev/.doctrees/notebooks/Example_2_Input_node_volatility_coupling.doctree index eb910c480..0af47ec60 100644 Binary files a/dev/.doctrees/notebooks/Example_2_Input_node_volatility_coupling.doctree and b/dev/.doctrees/notebooks/Example_2_Input_node_volatility_coupling.doctree differ diff --git a/dev/.doctrees/notebooks/Example_3_Multi_armed_bandit.doctree b/dev/.doctrees/notebooks/Example_3_Multi_armed_bandit.doctree index e6e7d4507..a6c6af25a 100644 Binary files a/dev/.doctrees/notebooks/Example_3_Multi_armed_bandit.doctree and b/dev/.doctrees/notebooks/Example_3_Multi_armed_bandit.doctree differ diff --git a/dev/.doctrees/notebooks/Exercise_1_Introduction_to_the_generalised_hierarchical_gaussian_filter.doctree b/dev/.doctrees/notebooks/Exercise_1_Introduction_to_the_generalised_hierarchical_gaussian_filter.doctree index 0687dd7d2..936c70c24 100644 Binary files a/dev/.doctrees/notebooks/Exercise_1_Introduction_to_the_generalised_hierarchical_gaussian_filter.doctree and b/dev/.doctrees/notebooks/Exercise_1_Introduction_to_the_generalised_hierarchical_gaussian_filter.doctree differ diff --git a/dev/.doctrees/notebooks/Exercise_2_Bayesian_reinforcement_learning.doctree b/dev/.doctrees/notebooks/Exercise_2_Bayesian_reinforcement_learning.doctree index 89eebb171..0166add1f 100644 Binary files a/dev/.doctrees/notebooks/Exercise_2_Bayesian_reinforcement_learning.doctree and b/dev/.doctrees/notebooks/Exercise_2_Bayesian_reinforcement_learning.doctree differ diff --git a/dev/_images/02d50512b4ae418f5375837aa92775400b80e4e22eb845907dd7168dcd7b0fb2.png b/dev/_images/02d50512b4ae418f5375837aa92775400b80e4e22eb845907dd7168dcd7b0fb2.png deleted file mode 100644 index 6e1ab6d05..000000000 Binary files a/dev/_images/02d50512b4ae418f5375837aa92775400b80e4e22eb845907dd7168dcd7b0fb2.png and /dev/null differ diff --git a/dev/_images/04ba476165668d72a08c2a380fe6227dbbc0f7b1fb48247a858f2f14c37497d2.png b/dev/_images/04ba476165668d72a08c2a380fe6227dbbc0f7b1fb48247a858f2f14c37497d2.png new file mode 100644 index 000000000..85e71caf1 Binary files /dev/null and b/dev/_images/04ba476165668d72a08c2a380fe6227dbbc0f7b1fb48247a858f2f14c37497d2.png differ diff --git a/dev/_images/0564071d1880f558fc740741edd8ca2e61db996003f3f1edbcf0c91b0a39902e.png b/dev/_images/0564071d1880f558fc740741edd8ca2e61db996003f3f1edbcf0c91b0a39902e.png deleted file mode 100644 index 99ec508ae..000000000 Binary files a/dev/_images/0564071d1880f558fc740741edd8ca2e61db996003f3f1edbcf0c91b0a39902e.png and /dev/null differ diff --git a/dev/_images/05d12e103eb7b1600b7a878baf77195ef9499447795dcb592d04dddfe437ad9f.png b/dev/_images/05d12e103eb7b1600b7a878baf77195ef9499447795dcb592d04dddfe437ad9f.png new file mode 100644 index 000000000..bdbef24df Binary files /dev/null and b/dev/_images/05d12e103eb7b1600b7a878baf77195ef9499447795dcb592d04dddfe437ad9f.png differ diff --git a/dev/_images/06334d74dea62d03736ed5ff69b1cbd6e5df290d314b5cbaf9bf5e3eae24452d.png b/dev/_images/06334d74dea62d03736ed5ff69b1cbd6e5df290d314b5cbaf9bf5e3eae24452d.png new file mode 100644 index 000000000..5e985cd40 Binary files /dev/null and b/dev/_images/06334d74dea62d03736ed5ff69b1cbd6e5df290d314b5cbaf9bf5e3eae24452d.png differ diff --git a/dev/_images/0ba65546358df322c0e9a37419861fdb72ea8464d7bce7f2793a2fd31f425acb.png b/dev/_images/0ba65546358df322c0e9a37419861fdb72ea8464d7bce7f2793a2fd31f425acb.png deleted file mode 100644 index f7bbc66c0..000000000 Binary files a/dev/_images/0ba65546358df322c0e9a37419861fdb72ea8464d7bce7f2793a2fd31f425acb.png and /dev/null differ diff --git a/dev/_images/128d2d731899b9ac31c46042c08ac6493e2a74b7ec747afff2f129b4d49ba93c.png b/dev/_images/128d2d731899b9ac31c46042c08ac6493e2a74b7ec747afff2f129b4d49ba93c.png deleted file mode 100644 index 6211f84e5..000000000 Binary files a/dev/_images/128d2d731899b9ac31c46042c08ac6493e2a74b7ec747afff2f129b4d49ba93c.png and /dev/null differ diff --git a/dev/_images/14ce0fe48b4c42282a1f1418a319a9ecba80ec384cdb55da28354e40beca4ddf.svg b/dev/_images/14ce0fe48b4c42282a1f1418a319a9ecba80ec384cdb55da28354e40beca4ddf.svg deleted file mode 100644 index 9b7087682..000000000 --- a/dev/_images/14ce0fe48b4c42282a1f1418a319a9ecba80ec384cdb55da28354e40beca4ddf.svg +++ /dev/null @@ -1,135 +0,0 @@ - - - - - - -%3 - - -cluster10 - -10 - - -cluster10 x 320 - -10 x 320 - - - -sigma_volatility - -sigma_volatility -~ -HalfNormal - - - -volatility - -volatility -~ -Normal - - - -sigma_volatility->volatility - - - - - -mu_temperature - -mu_temperature -~ -Normal - - - -inverse_temperature - -inverse_temperature -~ -LogNormal - - - -mu_temperature->inverse_temperature - - - - - -sigma_temperature - -sigma_temperature -~ -HalfNormal - - - -sigma_temperature->inverse_temperature - - - - - -mu_volatility - -mu_volatility -~ -Normal - - - -mu_volatility->volatility - - - - - -pointwise_loglikelihood - -pointwise_loglikelihood -~ -Deterministic - - - -volatility->pointwise_loglikelihood - - - - - -log_likelihood - -log_likelihood -~ -CustomDist_log_likelihood - - - -volatility->log_likelihood - - - - - -inverse_temperature->pointwise_loglikelihood - - - - - -inverse_temperature->log_likelihood - - - - - \ No newline at end of file diff --git a/dev/_images/1e061dc0dd11f04e68a20b0f57a3087c2ad5d719eba4e38c5196874dbab3010e.png b/dev/_images/1e061dc0dd11f04e68a20b0f57a3087c2ad5d719eba4e38c5196874dbab3010e.png deleted file mode 100644 index f75adaa26..000000000 Binary files a/dev/_images/1e061dc0dd11f04e68a20b0f57a3087c2ad5d719eba4e38c5196874dbab3010e.png and /dev/null differ diff --git a/dev/_images/22d404d3312dc67a4b50a6cd3767370913f0e81621739a6f7254902e6c5febfa.png b/dev/_images/22d404d3312dc67a4b50a6cd3767370913f0e81621739a6f7254902e6c5febfa.png new file mode 100644 index 000000000..5f26ef9dd Binary files /dev/null and b/dev/_images/22d404d3312dc67a4b50a6cd3767370913f0e81621739a6f7254902e6c5febfa.png differ diff --git a/dev/_images/25432f6d75602060a4bad305d793aca90494098794032fb1d2d1f394a706397c.png b/dev/_images/25432f6d75602060a4bad305d793aca90494098794032fb1d2d1f394a706397c.png new file mode 100644 index 000000000..bc2c7231b Binary files /dev/null and b/dev/_images/25432f6d75602060a4bad305d793aca90494098794032fb1d2d1f394a706397c.png differ diff --git a/dev/_images/25564f805e32fc7c22e4f64804c95fef19978c0e8b2a1c02e403155b1fa80863.png b/dev/_images/25564f805e32fc7c22e4f64804c95fef19978c0e8b2a1c02e403155b1fa80863.png new file mode 100644 index 000000000..97c9cbdc9 Binary files /dev/null and b/dev/_images/25564f805e32fc7c22e4f64804c95fef19978c0e8b2a1c02e403155b1fa80863.png differ diff --git a/dev/_images/264883212d2563ab55e75af7697da9c922e4b5dbb4320c8edfe374a088736b43.png b/dev/_images/264883212d2563ab55e75af7697da9c922e4b5dbb4320c8edfe374a088736b43.png new file mode 100644 index 000000000..8056fc5f3 Binary files /dev/null and b/dev/_images/264883212d2563ab55e75af7697da9c922e4b5dbb4320c8edfe374a088736b43.png differ diff --git a/dev/_images/3137124c3697d7d29702d87fef09593aaa269e8e7ad34ca6d6de35c76e712db2.png b/dev/_images/3137124c3697d7d29702d87fef09593aaa269e8e7ad34ca6d6de35c76e712db2.png new file mode 100644 index 000000000..21be923a1 Binary files /dev/null and b/dev/_images/3137124c3697d7d29702d87fef09593aaa269e8e7ad34ca6d6de35c76e712db2.png differ diff --git a/dev/_images/317c1c9786c818b7cd919671434f1449433afde1071f92cbdffd78499b4d457f.png b/dev/_images/317c1c9786c818b7cd919671434f1449433afde1071f92cbdffd78499b4d457f.png deleted file mode 100644 index fff2ee024..000000000 Binary files a/dev/_images/317c1c9786c818b7cd919671434f1449433afde1071f92cbdffd78499b4d457f.png and /dev/null differ diff --git a/dev/_images/3a0f76b6c4d871ca3fcc32a44a7a239e493649653bc8f7be5749ae0e5a7f3edc.png b/dev/_images/3a0f76b6c4d871ca3fcc32a44a7a239e493649653bc8f7be5749ae0e5a7f3edc.png new file mode 100644 index 000000000..01dc1aa31 Binary files /dev/null and b/dev/_images/3a0f76b6c4d871ca3fcc32a44a7a239e493649653bc8f7be5749ae0e5a7f3edc.png differ diff --git a/dev/_images/3ac2ac56a5061c4dfe402ef793c1fa39ff840b69973563bb8e554a65772ed8e7.png b/dev/_images/3ac2ac56a5061c4dfe402ef793c1fa39ff840b69973563bb8e554a65772ed8e7.png new file mode 100644 index 000000000..c70d12067 Binary files /dev/null and b/dev/_images/3ac2ac56a5061c4dfe402ef793c1fa39ff840b69973563bb8e554a65772ed8e7.png differ diff --git a/dev/_images/4c4191b135346e26bfcee042f87e00916247057410c58490d37a3636fd237359.png b/dev/_images/4c4191b135346e26bfcee042f87e00916247057410c58490d37a3636fd237359.png deleted file mode 100644 index 594f88895..000000000 Binary files a/dev/_images/4c4191b135346e26bfcee042f87e00916247057410c58490d37a3636fd237359.png and /dev/null differ diff --git a/dev/_images/4d7a8096e2f2372f704d28fc9e9b92e1c6c4ff9535432e9d14542bb869ccd5ee.png b/dev/_images/4d7a8096e2f2372f704d28fc9e9b92e1c6c4ff9535432e9d14542bb869ccd5ee.png new file mode 100644 index 000000000..104b9fe88 Binary files /dev/null and b/dev/_images/4d7a8096e2f2372f704d28fc9e9b92e1c6c4ff9535432e9d14542bb869ccd5ee.png differ diff --git a/dev/_images/50863c50e8795cfc47856eebdc1f084072f8b46179f15a85128799dbc80ace09.png b/dev/_images/50863c50e8795cfc47856eebdc1f084072f8b46179f15a85128799dbc80ace09.png deleted file mode 100644 index 7720e4791..000000000 Binary files a/dev/_images/50863c50e8795cfc47856eebdc1f084072f8b46179f15a85128799dbc80ace09.png and /dev/null differ diff --git a/dev/_images/51fda25b894f0eb9eab71d96d34d29d6af97801ce92b643e2c41fc605d59313b.png b/dev/_images/51fda25b894f0eb9eab71d96d34d29d6af97801ce92b643e2c41fc605d59313b.png new file mode 100644 index 000000000..7311353b8 Binary files /dev/null and b/dev/_images/51fda25b894f0eb9eab71d96d34d29d6af97801ce92b643e2c41fc605d59313b.png differ diff --git a/dev/_images/5601fc7000039a546a1148d8c43f5b57a8d0d2fa35dd6ce0aaa642757224dfa9.png b/dev/_images/5601fc7000039a546a1148d8c43f5b57a8d0d2fa35dd6ce0aaa642757224dfa9.png new file mode 100644 index 000000000..0655c8a57 Binary files /dev/null and b/dev/_images/5601fc7000039a546a1148d8c43f5b57a8d0d2fa35dd6ce0aaa642757224dfa9.png differ diff --git a/dev/_images/e3093df40c606a365fce51328bb90c832e9b204e89fed0d0688e3e2fdb1677dd.svg b/dev/_images/69539e2739458d7218e514133841304a4e4b0eb711fc8054497123f2e226d095.svg similarity index 100% rename from dev/_images/e3093df40c606a365fce51328bb90c832e9b204e89fed0d0688e3e2fdb1677dd.svg rename to dev/_images/69539e2739458d7218e514133841304a4e4b0eb711fc8054497123f2e226d095.svg index 6acc91819..02b4163cb 100644 --- a/dev/_images/e3093df40c606a365fce51328bb90c832e9b204e89fed0d0688e3e2fdb1677dd.svg +++ b/dev/_images/69539e2739458d7218e514133841304a4e4b0eb711fc8054497123f2e226d095.svg @@ -9,22 +9,22 @@ %3 - - -tonic_volatility_3 - -tonic_volatility_3 -~ -Normal - - + hgf_loglike hgf_loglike ~ Potential + + +tonic_volatility_3 + +tonic_volatility_3 +~ +Normal + tonic_volatility_3->hgf_loglike @@ -32,7 +32,7 @@ - + tonic_volatility_2 tonic_volatility_2 diff --git a/dev/_images/b1c82bad5094f37ec32f6bddc01e212b07e88918256b787d213c4dc95c141476.png b/dev/_images/6a052e5f57f7ac6392ce614fb501095ae203a299bcc6e463d726f8366b226b23.png similarity index 58% rename from dev/_images/b1c82bad5094f37ec32f6bddc01e212b07e88918256b787d213c4dc95c141476.png rename to dev/_images/6a052e5f57f7ac6392ce614fb501095ae203a299bcc6e463d726f8366b226b23.png index 582dbc8bc..fcc826c1b 100644 Binary files a/dev/_images/b1c82bad5094f37ec32f6bddc01e212b07e88918256b787d213c4dc95c141476.png and b/dev/_images/6a052e5f57f7ac6392ce614fb501095ae203a299bcc6e463d726f8366b226b23.png differ diff --git a/dev/_images/6ba51a89685df9218b30371921a00dac7688f5de6f9d278eb874564b67c5136a.png b/dev/_images/6ba51a89685df9218b30371921a00dac7688f5de6f9d278eb874564b67c5136a.png deleted file mode 100644 index f5e3d09f1..000000000 Binary files a/dev/_images/6ba51a89685df9218b30371921a00dac7688f5de6f9d278eb874564b67c5136a.png and /dev/null differ diff --git a/dev/_images/6c124353a22e3c8858a204cbb7ffe905b0b3cbd8c2fc72cbbcfe7e1b29bacd71.png b/dev/_images/6c124353a22e3c8858a204cbb7ffe905b0b3cbd8c2fc72cbbcfe7e1b29bacd71.png new file mode 100644 index 000000000..1b8b8705a Binary files /dev/null and b/dev/_images/6c124353a22e3c8858a204cbb7ffe905b0b3cbd8c2fc72cbbcfe7e1b29bacd71.png differ diff --git a/dev/_images/766c9c1aca9edee0423e0175ef3997ee291e635c554f32931b03ade6df835a35.png b/dev/_images/766c9c1aca9edee0423e0175ef3997ee291e635c554f32931b03ade6df835a35.png new file mode 100644 index 000000000..b6fcf3491 Binary files /dev/null and b/dev/_images/766c9c1aca9edee0423e0175ef3997ee291e635c554f32931b03ade6df835a35.png differ diff --git a/dev/_images/78ffd3a01762302291f05dad069b37af2710b6b55d7ad983a5a50e89733061d8.png b/dev/_images/78ffd3a01762302291f05dad069b37af2710b6b55d7ad983a5a50e89733061d8.png new file mode 100644 index 000000000..3c584e772 Binary files /dev/null and b/dev/_images/78ffd3a01762302291f05dad069b37af2710b6b55d7ad983a5a50e89733061d8.png differ diff --git a/dev/_images/7ac29c262916333d92fc28194fdceff517d3ecda9390770d8f16e9aeaa26f9d4.png b/dev/_images/7ac29c262916333d92fc28194fdceff517d3ecda9390770d8f16e9aeaa26f9d4.png new file mode 100644 index 000000000..01d5022b8 Binary files /dev/null and b/dev/_images/7ac29c262916333d92fc28194fdceff517d3ecda9390770d8f16e9aeaa26f9d4.png differ diff --git a/dev/_images/7f83375f6bb4391f5e1312ee4a44e05aa4f48e556b396b42cb3261e32f9fb912.svg b/dev/_images/7f83375f6bb4391f5e1312ee4a44e05aa4f48e556b396b42cb3261e32f9fb912.svg new file mode 100644 index 000000000..1e814f280 --- /dev/null +++ b/dev/_images/7f83375f6bb4391f5e1312ee4a44e05aa4f48e556b396b42cb3261e32f9fb912.svg @@ -0,0 +1,135 @@ + + + + + + +%3 + + +cluster10 + +10 + + +cluster10 x 320 + +10 x 320 + + + +sigma_temperature + +sigma_temperature +~ +HalfNormal + + + +inverse_temperature + +inverse_temperature +~ +LogNormal + + + +sigma_temperature->inverse_temperature + + + + + +mu_volatility + +mu_volatility +~ +Normal + + + +volatility + +volatility +~ +Normal + + + +mu_volatility->volatility + + + + + +sigma_volatility + +sigma_volatility +~ +HalfNormal + + + +sigma_volatility->volatility + + + + + +mu_temperature + +mu_temperature +~ +Normal + + + +mu_temperature->inverse_temperature + + + + + +pointwise_loglikelihood + +pointwise_loglikelihood +~ +Deterministic + + + +inverse_temperature->pointwise_loglikelihood + + + + + +log_likelihood + +log_likelihood +~ +CustomDist_log_likelihood + + + +inverse_temperature->log_likelihood + + + + + +volatility->pointwise_loglikelihood + + + + + +volatility->log_likelihood + + + + + \ No newline at end of file diff --git a/dev/_images/814a296a3d5ba45eb453c55807a1b1430b18f7b7513122e9077e6b6d1af31c67.png b/dev/_images/814a296a3d5ba45eb453c55807a1b1430b18f7b7513122e9077e6b6d1af31c67.png deleted file mode 100644 index a9a952672..000000000 Binary files a/dev/_images/814a296a3d5ba45eb453c55807a1b1430b18f7b7513122e9077e6b6d1af31c67.png and /dev/null differ diff --git a/dev/_images/89924152a56c33ccfa3204c63789e3f2f9eb919b53db59df63a698ae3fe1fe36.png b/dev/_images/89924152a56c33ccfa3204c63789e3f2f9eb919b53db59df63a698ae3fe1fe36.png deleted file mode 100644 index 03b4019dc..000000000 Binary files a/dev/_images/89924152a56c33ccfa3204c63789e3f2f9eb919b53db59df63a698ae3fe1fe36.png and /dev/null differ diff --git a/dev/_images/8db728f301bcd2082eef19d10e180d6e0a33ea2a3dfad6846cdff597346d9b2a.png b/dev/_images/8db728f301bcd2082eef19d10e180d6e0a33ea2a3dfad6846cdff597346d9b2a.png deleted file mode 100644 index 3aee9b2d7..000000000 Binary files a/dev/_images/8db728f301bcd2082eef19d10e180d6e0a33ea2a3dfad6846cdff597346d9b2a.png and /dev/null differ diff --git a/dev/_images/90685c5cae0e7b546798595c6eed168f1199cbb6dceb398a2aa1b47144491f9c.png b/dev/_images/90685c5cae0e7b546798595c6eed168f1199cbb6dceb398a2aa1b47144491f9c.png deleted file mode 100644 index 3a6d82979..000000000 Binary files a/dev/_images/90685c5cae0e7b546798595c6eed168f1199cbb6dceb398a2aa1b47144491f9c.png and /dev/null differ diff --git a/dev/_images/914cd605f5f2a2a84217c9ef77c6dda6762bfbb9dd5ad944a12c60b531d034b2.png b/dev/_images/914cd605f5f2a2a84217c9ef77c6dda6762bfbb9dd5ad944a12c60b531d034b2.png deleted file mode 100644 index 9818fce3f..000000000 Binary files a/dev/_images/914cd605f5f2a2a84217c9ef77c6dda6762bfbb9dd5ad944a12c60b531d034b2.png and /dev/null differ diff --git a/dev/_images/9e9911d31fcdf444013d679b9fc0facd3e3be749fa6ec97fb72422c11217979b.png b/dev/_images/9e9911d31fcdf444013d679b9fc0facd3e3be749fa6ec97fb72422c11217979b.png deleted file mode 100644 index 4daef77dc..000000000 Binary files a/dev/_images/9e9911d31fcdf444013d679b9fc0facd3e3be749fa6ec97fb72422c11217979b.png and /dev/null differ diff --git a/dev/_images/9ec896d2752649fcf664af855dd75db25e9c3c05294eea44a85d59f29f4d84b2.png b/dev/_images/9ec896d2752649fcf664af855dd75db25e9c3c05294eea44a85d59f29f4d84b2.png new file mode 100644 index 000000000..dcaccf755 Binary files /dev/null and b/dev/_images/9ec896d2752649fcf664af855dd75db25e9c3c05294eea44a85d59f29f4d84b2.png differ diff --git a/dev/_images/a3c305ff27113cdffbd731a857652b2dd932a274e7b0c5bedeb3a0fe7b269fc5.png b/dev/_images/a3c305ff27113cdffbd731a857652b2dd932a274e7b0c5bedeb3a0fe7b269fc5.png deleted file mode 100644 index a84a95cae..000000000 Binary files a/dev/_images/a3c305ff27113cdffbd731a857652b2dd932a274e7b0c5bedeb3a0fe7b269fc5.png and /dev/null differ diff --git a/dev/_images/aa0fc414be4b661462a66791a6a06b32732f67982af09a7c9f8f8528079cf457.png b/dev/_images/aa0fc414be4b661462a66791a6a06b32732f67982af09a7c9f8f8528079cf457.png deleted file mode 100644 index d6a906d34..000000000 Binary files a/dev/_images/aa0fc414be4b661462a66791a6a06b32732f67982af09a7c9f8f8528079cf457.png and /dev/null differ diff --git a/dev/_images/ad08c32d710aad4621155a93dc111666d613b308254d09a513a27ed9486be2ca.png b/dev/_images/ad08c32d710aad4621155a93dc111666d613b308254d09a513a27ed9486be2ca.png new file mode 100644 index 000000000..7ff8b1f5c Binary files /dev/null and b/dev/_images/ad08c32d710aad4621155a93dc111666d613b308254d09a513a27ed9486be2ca.png differ diff --git a/dev/_images/ae4f4840f241feb42ad3198f7dd2b8bcfae594202914db7daa6521070a721faa.png b/dev/_images/ae4f4840f241feb42ad3198f7dd2b8bcfae594202914db7daa6521070a721faa.png deleted file mode 100644 index f6fb5d1f5..000000000 Binary files a/dev/_images/ae4f4840f241feb42ad3198f7dd2b8bcfae594202914db7daa6521070a721faa.png and /dev/null differ diff --git a/dev/_images/b1ebdbec5787b8c915620c04df80de2787306c989b8114b8f298fd93bff79efe.png b/dev/_images/b1ebdbec5787b8c915620c04df80de2787306c989b8114b8f298fd93bff79efe.png deleted file mode 100644 index 722f791dd..000000000 Binary files a/dev/_images/b1ebdbec5787b8c915620c04df80de2787306c989b8114b8f298fd93bff79efe.png and /dev/null differ diff --git a/dev/_images/b33334f5c63409df2496cf92b0fc5fd94311d602dae2cb83ef4f1d0b6a1cbaf0.png b/dev/_images/b33334f5c63409df2496cf92b0fc5fd94311d602dae2cb83ef4f1d0b6a1cbaf0.png deleted file mode 100644 index 81abfc17e..000000000 Binary files a/dev/_images/b33334f5c63409df2496cf92b0fc5fd94311d602dae2cb83ef4f1d0b6a1cbaf0.png and /dev/null differ diff --git a/dev/_images/b57941e0d5c4edba1b42cd43e7413cee7aa938214f12d722746534a5c0d59112.png b/dev/_images/b57941e0d5c4edba1b42cd43e7413cee7aa938214f12d722746534a5c0d59112.png new file mode 100644 index 000000000..d87c9683c Binary files /dev/null and b/dev/_images/b57941e0d5c4edba1b42cd43e7413cee7aa938214f12d722746534a5c0d59112.png differ diff --git a/dev/_images/d1edc251cc2467c29958bb035ae47ad078dea8b3b408ed28d0fe452dd781005b.png b/dev/_images/d1edc251cc2467c29958bb035ae47ad078dea8b3b408ed28d0fe452dd781005b.png new file mode 100644 index 000000000..58d90d224 Binary files /dev/null and b/dev/_images/d1edc251cc2467c29958bb035ae47ad078dea8b3b408ed28d0fe452dd781005b.png differ diff --git a/dev/_images/d3114c8a6213cb146f6a8997c321bcd9973b364a8823e2aa3274328a72c66506.png b/dev/_images/d3114c8a6213cb146f6a8997c321bcd9973b364a8823e2aa3274328a72c66506.png new file mode 100644 index 000000000..1e9f53a49 Binary files /dev/null and b/dev/_images/d3114c8a6213cb146f6a8997c321bcd9973b364a8823e2aa3274328a72c66506.png differ diff --git a/dev/_images/dbab2b51169a1b91ae69e678f19a9e80cfc34b65b22d843517577420e2779bcb.png b/dev/_images/dbab2b51169a1b91ae69e678f19a9e80cfc34b65b22d843517577420e2779bcb.png deleted file mode 100644 index 4cca12eee..000000000 Binary files a/dev/_images/dbab2b51169a1b91ae69e678f19a9e80cfc34b65b22d843517577420e2779bcb.png and /dev/null differ diff --git a/dev/_images/dc0d222dcfe1385508ef3f221b0fcd2d0ebc4f025f09569b9d250b27e018a7c2.png b/dev/_images/dc0d222dcfe1385508ef3f221b0fcd2d0ebc4f025f09569b9d250b27e018a7c2.png deleted file mode 100644 index ed99a908f..000000000 Binary files a/dev/_images/dc0d222dcfe1385508ef3f221b0fcd2d0ebc4f025f09569b9d250b27e018a7c2.png and /dev/null differ diff --git a/dev/_images/df04c50a598763e25214aadc382bbf9d014e1de10891f6614d13a1a5fa7c6257.png b/dev/_images/df04c50a598763e25214aadc382bbf9d014e1de10891f6614d13a1a5fa7c6257.png new file mode 100644 index 000000000..a49ce9766 Binary files /dev/null and b/dev/_images/df04c50a598763e25214aadc382bbf9d014e1de10891f6614d13a1a5fa7c6257.png differ diff --git a/dev/_images/e288043d732abf201db1bbb2866ad3378beee8f0f8a551a277a89997f4109245.png b/dev/_images/e288043d732abf201db1bbb2866ad3378beee8f0f8a551a277a89997f4109245.png deleted file mode 100644 index 328c02c59..000000000 Binary files a/dev/_images/e288043d732abf201db1bbb2866ad3378beee8f0f8a551a277a89997f4109245.png and /dev/null differ diff --git a/dev/_images/ecd192b619fcda3b40cdb5f737d2b936691486677eb7a4f82b5cbc7f55367e9e.svg b/dev/_images/ecd192b619fcda3b40cdb5f737d2b936691486677eb7a4f82b5cbc7f55367e9e.svg new file mode 100644 index 000000000..0a0877fe9 --- /dev/null +++ b/dev/_images/ecd192b619fcda3b40cdb5f737d2b936691486677eb7a4f82b5cbc7f55367e9e.svg @@ -0,0 +1,35 @@ + + + + + + +%3 + + + +hgf_loglike + +hgf_loglike +~ +Potential + + + +tonic_volatility_2 + +tonic_volatility_2 +~ +Uniform + + + +tonic_volatility_2->hgf_loglike + + + + + \ No newline at end of file diff --git a/dev/_images/graph_network.svg b/dev/_images/graph_network.svg new file mode 100644 index 000000000..0218ad7b7 --- /dev/null +++ b/dev/_images/graph_network.svg @@ -0,0 +1,2578 @@ + + + +Update functionsUpdate sequencesPosterior updateAttributesEdgesPredictionPrediction errortt+1 diff --git a/dev/_sources/learn.md.txt b/dev/_sources/learn.md.txt index a18daa681..385388dca 100644 --- a/dev/_sources/learn.md.txt +++ b/dev/_sources/learn.md.txt @@ -67,7 +67,7 @@ How the generative model of the Hierarchical Gaussian filter can be turned into :::{grid-item-card} Creating and manipulating networks of probabilistic nodes :link: probabilistic_networks :link-type: ref -:img-top: ./images/graph_networks.svg +:img-top: ./images/graph_network.svg How to create and manipulate a network of probabilistic nodes for reinforcement learning? Working at the intersection of graphs, neural networks and probabilistic frameworks. ::: diff --git a/dev/_sources/notebooks/0.2-Creating_networks.ipynb.txt b/dev/_sources/notebooks/0.2-Creating_networks.ipynb.txt index a77d8f0b9..743923905 100644 --- a/dev/_sources/notebooks/0.2-Creating_networks.ipynb.txt +++ b/dev/_sources/notebooks/0.2-Creating_networks.ipynb.txt @@ -132,7 +132,7 @@ "\n", "This list describes the sequence of function-to-nodes instructions that are executed during the inference and update processes.\n", "\n", - "![graph_networks](../images/graph_networks.svg)\n", + "![graph_network](../images/graph_network.svg)\n", "\n", "```{tip} Compatibility with JAX transformations\n", "One of the advantages of reasoning this way is that it dissociates variables that are transparent to the JAX framework and can be expressed as \"PyTress\" from variables that should be filtered before transformations. The variable `attributes` ($\\theta$) is typically expressed as a PyTree while the other variables that contain parametrized functions are filtered. See [the documattion](https://jax.readthedocs.io/en/latest/notebooks/thinking_in_jax.html#jit-mechanics-tracing-and-static-variables) for further details on JAX transformations.\n", diff --git a/dev/learn.html b/dev/learn.html index ee5eb8f1e..784a9cef0 100644 --- a/dev/learn.html +++ b/dev/learn.html @@ -528,7 +528,7 @@

Theory#
-../_images/7d29572ae423fb4c8d4ea736f01dab651bf0ee09a3d53b5838bcf639ba2eaf01.svg +../_images/ecd192b619fcda3b40cdb5f737d2b936691486677eb7a4f82b5cbc7f55367e9e.svg
@@ -814,10 +814,6 @@

Sampling "ipywidgets" for Jupyter support warnings.warn('install "ipywidgets" for Jupyter support') -
/opt/hostedtoolcache/Python/3.12.5/x64/lib/python3.12/site-packages/rich/live.py:231: UserWarning: install 
-"ipywidgets" for Jupyter support
-  warnings.warn('install "ipywidgets" for Jupyter support')
-

 

 
-../_images/a3c305ff27113cdffbd731a857652b2dd932a274e7b0c5bedeb3a0fe7b269fc5.png +../_images/06334d74dea62d03736ed5ff69b1cbd6e5df290d314b5cbaf9bf5e3eae24452d.png
@@ -872,7 +868,7 @@

Using the learned parameters -../_images/b33334f5c63409df2496cf92b0fc5fd94311d602dae2cb83ef4f1d0b6a1cbaf0.png +../_images/3ac2ac56a5061c4dfe402ef793c1fa39ff840b69973563bb8e554a65772ed8e7.png @@ -980,10 +976,6 @@

Sampling# "ipywidgets" for Jupyter support warnings.warn('install "ipywidgets" for Jupyter support') -
/opt/hostedtoolcache/Python/3.12.5/x64/lib/python3.12/site-packages/rich/live.py:231: UserWarning: install 
-"ipywidgets" for Jupyter support
-  warnings.warn('install "ipywidgets" for Jupyter support')
-

 

 
Sampling 2 chains for 1_000 tune and 1_000 draw iterations (2_000 + 2_000 draws total) took 9 seconds.
@@ -1003,7 +995,7 @@ 

Sampling#

-../_images/0564071d1880f558fc740741edd8ca2e61db996003f3f1edbcf0c91b0a39902e.png +../_images/9ec896d2752649fcf664af855dd75db25e9c3c05294eea44a85d59f29f4d84b2.png
@@ -1041,7 +1033,7 @@

Using the learned parameters -../_images/ae4f4840f241feb42ad3198f7dd2b8bcfae594202914db7daa6521070a721faa.png +../_images/b57941e0d5c4edba1b42cd43e7413cee7aa938214f12d722746534a5c0d59112.png @@ -856,13 +856,13 @@

System configuration diff --git a/dev/notebooks/1.3-Continuous_HGF.html b/dev/notebooks/1.3-Continuous_HGF.html index 7ebe5e7d6..ed90ed090 100644 --- a/dev/notebooks/1.3-Continuous_HGF.html +++ b/dev/notebooks/1.3-Continuous_HGF.html @@ -873,10 +873,6 @@

Sampling "ipywidgets" for Jupyter support warnings.warn('install "ipywidgets" for Jupyter support') -
/opt/hostedtoolcache/Python/3.12.5/x64/lib/python3.12/site-packages/rich/live.py:231: UserWarning: install 
-"ipywidgets" for Jupyter support
-  warnings.warn('install "ipywidgets" for Jupyter support')
-

 

 
@@ -944,7 +940,7 @@

Using the learned parameters -
Array(-1106.1144, dtype=float32)
+
Array(-1106.1195, dtype=float32)
 
@@ -1044,11 +1040,18 @@

Sampling# "ipywidgets" for Jupyter support warnings.warn('install "ipywidgets" for Jupyter support') +

/opt/hostedtoolcache/Python/3.12.5/x64/lib/python3.12/site-packages/rich/live.py:231: UserWarning: install 
+"ipywidgets" for Jupyter support
+  warnings.warn('install "ipywidgets" for Jupyter support')
+

 

 
Sampling 2 chains for 1_000 tune and 1_000 draw iterations (2_000 + 2_000 draws total) took 8 seconds.
 
+
There were 1 divergences after tuning. Increase `target_accept` or reparameterize.
+
+
We recommend running at least 4 chains for robust computation of convergence diagnostics
 
@@ -1061,7 +1064,7 @@

Sampling#

-../_images/02d50512b4ae418f5375837aa92775400b80e4e22eb845907dd7168dcd7b0fb2.png +../_images/3a0f76b6c4d871ca3fcc32a44a7a239e493649653bc8f7be5749ae0e5a7f3edc.png
@@ -1095,7 +1098,7 @@

Using the learned parameters -../_images/dbab2b51169a1b91ae69e678f19a9e80cfc34b65b22d843517577420e2779bcb.png +../_images/d1edc251cc2467c29958bb035ae47ad078dea8b3b408ed28d0fe452dd781005b.png ../_images/89924152a56c33ccfa3204c63789e3f2f9eb919b53db59df63a698ae3fe1fe36.png +../_images/25564f805e32fc7c22e4f64804c95fef19978c0e8b2a1c02e403155b1fa80863.png

The results above indicate that given the responses provided by the participant, the most likely values for the parameter \(\omega_2\) are between -4.9 and -3.1, with a mean at -3.9 (you can find slightly different values if you sample different actions from the decisions function). We can consider this as an excellent estimate given the sparsity of the data, and the complexity of the model.

@@ -1017,12 +1017,12 @@

System configurationPlot the computational graph -../_images/14ce0fe48b4c42282a1f1418a319a9ecba80ec384cdb55da28354e40beca4ddf.svg +../_images/7f83375f6bb4391f5e1312ee4a44e05aa4f48e556b396b42cb3261e32f9fb912.svg @@ -831,6 +831,9 @@

Sampling
Sampling 2 chains for 1_000 tune and 1_000 draw iterations (2_000 + 2_000 draws total) took 45 seconds.
 
+
There were 1 divergences after tuning. Increase `target_accept` or reparameterize.
+
+
We recommend running at least 4 chains for robust computation of convergence diagnostics
 
@@ -860,7 +863,7 @@

Visualization of the posterior distributions -../_images/8db728f301bcd2082eef19d10e180d6e0a33ea2a3dfad6846cdff597346d9b2a.png +../_images/25432f6d75602060a4bad305d793aca90494098794032fb1d2d1f394a706397c.png

The reference values on both posterior distributions indicate the mean of the distribution used for simulation.

@@ -887,16 +890,16 @@

Model comparison
Computed from 2000 posterior samples and 3200 observations log-likelihood matrix.
 
          Estimate       SE
-elpd_loo -1684.41    25.64
-p_loo       18.15        -
+elpd_loo -1684.38    25.64
+p_loo       18.10        -
 
 There has been a warning during the calculation. Please check the results.
 ------
 
 Pareto k diagnostic values:
                          Count   Pct.
-(-Inf, 0.70]   (good)     3185   99.5%
-   (0.70, 1]   (bad)         2    0.1%
+(-Inf, 0.70]   (good)     3187   99.6%
+   (0.70, 1]   (bad)         0    0.0%
    (1, Inf)   (very bad)   13    0.4%
 
@@ -924,14 +927,14 @@

System configuration diff --git a/dev/notebooks/4-Parameter_recovery.html b/dev/notebooks/4-Parameter_recovery.html index b2dee6c81..07b0c71ba 100644 --- a/dev/notebooks/4-Parameter_recovery.html +++ b/dev/notebooks/4-Parameter_recovery.html @@ -685,9 +685,13 @@

Inference from the simulated behaviours +
/opt/hostedtoolcache/Python/3.12.5/x64/lib/python3.12/site-packages/rich/live.py:231: UserWarning: install 
+"ipywidgets" for Jupyter support
+  warnings.warn('install "ipywidgets" for Jupyter support')
+

 

-
diff --git a/dev/notebooks/5-Non_linear_value_coupling.html b/dev/notebooks/5-Non_linear_value_coupling.html index 1ec4d542a..22ed12db8 100644 --- a/dev/notebooks/5-Non_linear_value_coupling.html +++ b/dev/notebooks/5-Non_linear_value_coupling.html @@ -932,12 +932,12 @@

System configuration diff --git a/dev/notebooks/Example_1_Heart_rate_variability.html b/dev/notebooks/Example_1_Heart_rate_variability.html index 527cb40a8..41d5f2f8b 100644 --- a/dev/notebooks/Example_1_Heart_rate_variability.html +++ b/dev/notebooks/Example_1_Heart_rate_variability.html @@ -567,16 +567,16 @@

Loading and preprocessing physiological recording
Downloading ECG channel:   0%|          | 0/2 [00:00<?, ?it/s]
 
-
Downloading ECG channel:  50%|█████     | 1/2 [00:01<00:01,  1.03s/it]
+
Downloading ECG channel:  50%|█████     | 1/2 [00:00<00:00,  1.15it/s]
 
-
Downloading Respiration channel:  50%|█████     | 1/2 [00:01<00:01,  1.03s/it]
+
Downloading Respiration channel:  50%|█████     | 1/2 [00:00<00:00,  1.15it/s]
 
-
Downloading Respiration channel: 100%|██████████| 2/2 [00:01<00:00,  1.02it/s]
+
Downloading Respiration channel: 100%|██████████| 2/2 [00:01<00:00,  1.35it/s]
 
-
diff --git a/dev/notebooks/Example_2_Input_node_volatility_coupling.html b/dev/notebooks/Example_2_Input_node_volatility_coupling.html index fed5c8649..909a33db4 100644 --- a/dev/notebooks/Example_2_Input_node_volatility_coupling.html +++ b/dev/notebooks/Example_2_Input_node_volatility_coupling.html @@ -698,11 +698,11 @@

System configuration

diff --git a/dev/notebooks/Example_3_Multi_armed_bandit.html b/dev/notebooks/Example_3_Multi_armed_bandit.html index c0ce6a6cc..e0b2969d6 100644 --- a/dev/notebooks/Example_3_Multi_armed_bandit.html +++ b/dev/notebooks/Example_3_Multi_armed_bandit.html @@ -1137,7 +1137,7 @@

Bayesian inference -../_images/128d2d731899b9ac31c46042c08ac6493e2a74b7ec747afff2f129b4d49ba93c.png +../_images/5601fc7000039a546a1148d8c43f5b57a8d0d2fa35dd6ce0aaa642757224dfa9.png

@@ -1162,14 +1162,14 @@

System configurationSystem configuration

diff --git a/dev/notebooks/Exercise_2_Bayesian_reinforcement_learning.html b/dev/notebooks/Exercise_2_Bayesian_reinforcement_learning.html index a6cc3b571..40b6beeb9 100644 --- a/dev/notebooks/Exercise_2_Bayesian_reinforcement_learning.html +++ b/dev/notebooks/Exercise_2_Bayesian_reinforcement_learning.html @@ -729,7 +729,7 @@

Parameters optimization

-../_images/1e061dc0dd11f04e68a20b0f57a3087c2ad5d719eba4e38c5196874dbab3010e.png +../_images/6c124353a22e3c8858a204cbb7ffe905b0b3cbd8c2fc72cbbcfe7e1b29bacd71.png

Assess model fitting, here using leave-one-out cross-validation from the Arviz library.

@@ -924,7 +924,7 @@

Rescorla-Wagner

-

We have saved the pointwise log probabilities as a variable, here we simply move this variable to the log_likelihoo field of the idata object, so Arviz knows that this can be used later for model comparison.

@@ -1178,7 +1178,7 @@

Three-level HGF
Sampling 2 chains for 1_000 tune and 1_000 draw iterations (2_000 + 2_000 draws total) took 7 seconds.
 
-

Looking at the final result, we can see that the three-level HGF had the best predictive performance on the participant decision, suggesting that higher-level uncertainty is important here to understand the agent’s behaviour.

@@ -1439,7 +1439,7 @@

Beliefs trajectories
-../_images/9e9911d31fcdf444013d679b9fc0facd3e3be749fa6ec97fb72422c11217979b.png +../_images/05d12e103eb7b1600b7a878baf77195ef9499447795dcb592d04dddfe437ad9f.png

The resulting samples show belief trajectories for 10 samples for each model (we are not depicting the biased random here for clarity). The trajectories are highly similar, but we can see that the two and three-level HGF are slightly adjusting their learning rates in a way that was more consistent with the observed behaviours.

@@ -1483,14 +1483,14 @@

System configuration diff --git a/dev/searchindex.js b/dev/searchindex.js index d38c3e12a..527bf9630 100644 --- a/dev/searchindex.js +++ b/dev/searchindex.js @@ -1 +1 @@ -Search.setIndex({"alltitles": {"": [[77, "exercise1"], [77, "exercise2"], [77, "exercise3"], [77, "exercise4"], [77, "exercise5"]], "API": [[0, "api"]], "Acknowledgments": [[62, "acknowledgments"]], "Add data": [[67, "add-data"], [67, "id4"], [69, "add-data"], [69, "id3"]], "Adding a drift to the random walk": [[64, "adding-a-drift-to-the-random-walk"]], "Application to reinforcement learning": [[78, null]], "Autoregressive processes": [[64, "autoregressive-processes"]], "Bayesian inference": [[76, "bayesian-inference"]], "Beliefs trajectories": [[78, "beliefs-trajectories"]], "Biased random": [[78, "biased-random"]], "Binary inputs": [[0, "binary-inputs"]], "Binary nodes": [[0, "binary-nodes"], [0, "id1"]], "Binary state nodes": [[0, "binary-state-nodes"]], "Bivariate normal distribution": [[66, "bivariate-normal-distribution"]], "Categorical nodes": [[0, "categorical-nodes"]], "Continuous inputs": [[0, "continuous-inputs"]], "Continuous nodes": [[0, "continuous-nodes"], [0, "id2"]], "Continuous state nodes": [[0, "continuous-state-nodes"]], "Continuous value coupling": [[65, "continuous-value-coupling"]], "Continuous volatility coupling": [[65, "continuous-volatility-coupling"]], "Coupling with binary nodes": [[65, "coupling-with-binary-nodes"]], "Create the model": [[67, "create-the-model"], [67, "id3"], [69, "create-the-model"], [69, "id2"]], "Creating a new response function": [[70, "creating-a-new-response-function"]], "Creating a new response function: the binary surprise": [[70, "creating-a-new-response-function-the-binary-surprise"]], "Creating and manipulating networks of probabilistic nodes": [[65, null]], "Creating custom update functions": [[65, "creating-custom-update-functions"]], "Creating custom update sequences": [[65, "creating-custom-update-sequences"]], "Creating probabilistic nodes": [[65, "creating-probabilistic-nodes"]], "Creating the decision rule": [[70, "creating-the-decision-rule"]], "Creating the model": [[67, "creating-the-model"], [67, "id7"], [69, "creating-the-model"], [69, "id5"]], "Creating the probabilistic network": [[68, "creating-the-probabilistic-network"]], "Decision rule": [[76, "decision-rule"]], "Dirichlet processes": [[0, "dirichlet-processes"], [0, "id3"]], "Distribution": [[0, "distribution"]], "Dynamic assignation of update sequences": [[65, "dynamic-assignation-of-update-sequences"]], "Dynamic beliefs updating": [[64, "dynamic-beliefs-updating"]], "Example 1: Bayesian filtering of cardiac volatility": [[74, null]], "Example 2: Estimating the mean and precision of an input node": [[75, null]], "Example 3: A multi-armed bandit task with independent rewards and punishments": [[76, null]], "Exercises": [[63, "exercises"]], "Exponential family": [[0, "exponential-family"]], "Filtering the Sufficient Statistics of a Non-Stationary Distribution": [[66, "filtering-the-sufficient-statistics-of-a-non-stationary-distribution"]], "Filtering the Sufficient Statistics of a Stationary Distribution": [[66, "filtering-the-sufficient-statistics-of-a-stationary-distribution"]], "Fitting behaviours to different RL models": [[78, "fitting-behaviours-to-different-rl-models"]], "Fitting the binary HGF with fixed parameters": [[67, "fitting-the-binary-hgf-with-fixed-parameters"]], "Fitting the continuous HGF with fixed parameters": [[69, "fitting-the-continuous-hgf-with-fixed-parameters"]], "Fitting the model forwards": [[68, "fitting-the-model-forwards"]], "Frequency tracking": [[73, "frequency-tracking"]], "From Reinforcement Learning to Generalised Bayesian Filtering": [[66, null]], "Gaussian Random Walks": [[64, "gaussian-random-walks"], [77, "gaussian-random-walks"]], "Generic input": [[0, "generic-input"]], "Getting started": [[62, "getting-started"]], "Glossary": [[64, "glossary"], [70, "glossary"]], "Group-level inference": [[71, "group-level-inference"]], "Hierarchical Bayesian modelling with probabilistic neural networks": [[71, null]], "How does it work?": [[62, "how-does-it-work"]], "How to cite?": [[1, null]], "Imports": [[67, "imports"]], "Inference from the simulated behaviours": [[72, "inference-from-the-simulated-behaviours"]], "Inference using MCMC sampling": [[68, "inference-using-mcmc-sampling"]], "Inputs": [[0, "inputs"]], "Installation": [[62, "installation"]], "Introduction to the Generalised Hierarchical Gaussian Filter": [[64, null]], "Introduction to the generalised Hierarchical Gaussian Filter": [[77, null]], "Kown mean, unknown precision": [[75, "kown-mean-unknown-precision"]], "Learn": [[63, null]], "Learning parameters with MCMC sampling": [[67, "learning-parameters-with-mcmc-sampling"], [69, "learning-parameters-with-mcmc-sampling"]], "Loading and preprocessing physiological recording": [[74, "loading-and-preprocessing-physiological-recording"]], "Math": [[0, "math"]], "Model": [[0, "model"], [74, "model"]], "Model comparison": [[71, "model-comparison"], [78, "model-comparison"]], "Model fitting": [[62, "model-fitting"]], "Model inversion: the generalized Hierarchical Gaussian Filter": [[77, "model-inversion-the-generalized-hierarchical-gaussian-filter"]], "Modifying the attributes": [[65, "modifying-the-attributes"]], "Modifying the edges": [[65, "modifying-the-edges"]], "Multivariate coupling": [[65, "multivariate-coupling"]], "Non-linear predictions": [[73, "non-linear-predictions"]], "Non-linear value coupling": [[73, null]], "Parameter recovery": [[76, "parameter-recovery"]], "Parameters optimization": [[78, "parameters-optimization"]], "Plot correlation": [[69, "plot-correlation"]], "Plot the computational graph": [[71, "plot-the-computational-graph"]], "Plot the signal with instantaneous heart rate derivations": [[74, "plot-the-signal-with-instantaneous-heart-rate-derivations"]], "Plot trajectories": [[67, "plot-trajectories"], [67, "id5"], [69, "plot-trajectories"], [69, "id4"]], "Plots": [[0, "plots"]], "Posterior predictive sampling": [[78, "posterior-predictive-sampling"]], "Posterior updates": [[0, "posterior-updates"]], "Practice: Filtering the worlds weather": [[77, "practice-filtering-the-worlds-weather"]], "Prediction error steps": [[0, "prediction-error-steps"]], "Prediction steps": [[0, "prediction-steps"]], "Preprocessing": [[74, "preprocessing"]], "Probabilistic coupling between nodes": [[77, "probabilistic-coupling-between-nodes"]], "PyHGF: A Neural Network Library for Predictive Coding": [[62, null]], "ReLU (rectified linear unit) activation function": [[73, "relu-rectified-linear-unit-activation-function"]], "Real-time decision and belief updating": [[76, "real-time-decision-and-belief-updating"]], "Recovering HGF parameters from the observed behaviors": [[70, "recovering-hgf-parameters-from-the-observed-behaviors"]], "Recovering computational parameters from observed behaviours": [[72, null]], "References": [[62, "references"], [79, null]], "Rescorla-Wagner": [[78, "rescorla-wagner"]], "Response": [[0, "response"]], "Sampling": [[67, "sampling"], [67, "id9"], [69, "sampling"], [69, "id7"], [71, "sampling"]], "Simulate a dataset": [[71, "simulate-a-dataset"], [76, "simulate-a-dataset"]], "Simulate behaviours from a one-armed bandit task": [[72, "simulate-behaviours-from-a-one-armed-bandit-task"]], "Simulate responses from a participant": [[76, "simulate-responses-from-a-participant"]], "Simulating a dataset": [[68, "simulating-a-dataset"]], "Solution to Exercise 1": [[77, "solution-exercise1"]], "Solution to Exercise 2": [[77, "solution-exercise2"]], "Solution to Exercise 3": [[77, "solution-exercise3"]], "Solution to Exercise 4": [[77, "solution-exercise4"]], "Solutions": [[77, "solutions"], [78, "solutions"]], "State nodes": [[0, "state-nodes"]], "Static assignation of update sequences": [[65, "static-assignation-of-update-sequences"]], "Surprise": [[67, "surprise"], [67, "id6"], [69, "surprise"]], "System configuration": [[64, "system-configuration"], [65, "system-configuration"], [66, "system-configuration"], [67, "system-configuration"], [68, "system-configuration"], [69, "system-configuration"], [70, "system-configuration"], [71, "system-configuration"], [72, "system-configuration"], [73, "system-configuration"], [74, "system-configuration"], [75, "system-configuration"], [76, "system-configuration"], [77, "system-configuration"], [78, "system-configuration"]], "Table of Contents": [[0, null]], "Task structure": [[76, "task-structure"]], "The Generalized Hierarchical Gaussian Filter": [[62, "the-generalized-hierarchical-gaussian-filter"]], "The Hierarchical Gaussian Filter": [[63, "the-hierarchical-gaussian-filter"]], "The Hierarchical Gaussian Filter in a network of predictive nodes": [[64, "the-hierarchical-gaussian-filter-in-a-network-of-predictive-nodes"]], "The binary HGF": [[78, "the-binary-hgf"]], "The binary Hierarchical Gaussian Filter": [[67, null]], "The case of multivariate ascendency": [[65, "the-case-of-multivariate-ascendency"]], "The case of multivariate descendency": [[65, "the-case-of-multivariate-descendency"]], "The categorical Hierarchical Gaussian Filter": [[68, null]], "The categorical state node": [[68, "the-categorical-state-node"]], "The categorical state-transition node": [[68, "the-categorical-state-transition-node"]], "The continuous Hierarchical Gaussian Filter": [[69, null]], "The generative model": [[64, "the-generative-model"], [77, "the-generative-model"]], "The propagation of prediction and prediction errors": [[64, "the-propagation-of-prediction-and-prediction-errors"]], "The three-level binary Hierarchical Gaussian Filter": [[67, "the-three-level-binary-hierarchical-gaussian-filter"]], "The three-level continuous Hierarchical Gaussian Filter": [[69, "the-three-level-continuous-hierarchical-gaussian-filter"]], "The two-level binary Hierarchical Gaussian Filter": [[67, "the-two-level-binary-hierarchical-gaussian-filter"]], "The two-level continuous Hierarchical Gaussian Filter": [[69, "the-two-level-continuous-hierarchical-gaussian-filter"]], "Theory": [[63, "theory"]], "Theory and implementation details": [[65, "theory-and-implementation-details"]], "Three-level HGF": [[78, "three-level-hgf"]], "Three-level model": [[67, "three-level-model"], [69, "three-level-model"]], "Time-varying update sequences": [[65, "time-varying-update-sequences"]], "Tutorials": [[63, "tutorials"]], "Two-level HGF": [[78, "two-level-hgf"]], "Two-level model": [[67, "two-level-model"], [69, "two-level-model"]], "Univariate normal distribution": [[66, "univariate-normal-distribution"]], "Unkown mean, known precision": [[75, "unkown-mean-known-precision"]], "Unkown mean, unknown precision": [[75, "unkown-mean-unknown-precision"]], "Update functions": [[65, "update-functions"]], "Updates functions": [[0, "updates-functions"]], "Use cases": [[63, "use-cases"]], "Using a dynamically adapted \\nu through a collection of Hierarchical Gaussian Filters": [[66, "using-a-dynamically-adapted-nu-through-a-collection-of-hierarchical-gaussian-filters"]], "Using a fixed \\nu": [[66, "using-a-fixed-nu"]], "Using custom response models": [[70, null]], "Using the learned parameters": [[67, "using-the-learned-parameters"], [67, "id10"], [69, "using-the-learned-parameters"], [69, "id8"]], "Utils": [[0, "utils"]], "Value coupling": [[64, "value-coupling"], [65, "value-coupling"], [77, "value-coupling"]], "Visualization of the posterior distributions": [[71, "visualization-of-the-posterior-distributions"]], "Visualizing parameters recovery": [[72, "visualizing-parameters-recovery"]], "Visualizing probabilistic networks": [[65, "visualizing-probabilistic-networks"]], "Visualizing the model": [[67, "visualizing-the-model"], [67, "id8"], [69, "visualizing-the-model"], [69, "id6"]], "Volatility coupling": [[64, "volatility-coupling"], [65, "volatility-coupling"], [77, "volatility-coupling"]], "Where to go next?": [[78, "where-to-go-next"]], "Working with missing or unobserved input sequences": [[65, "working-with-missing-or-unobserved-input-sequences"]], "pyhgf.distribution.HGFDistribution": [[2, null]], "pyhgf.distribution.HGFLogpGradOp": [[3, null]], "pyhgf.distribution.HGFPointwise": [[4, null]], "pyhgf.distribution.hgf_logp": [[5, null]], "pyhgf.distribution.logp": [[6, null]], "pyhgf.math.MultivariateNormal": [[7, null]], "pyhgf.math.Normal": [[8, null]], "pyhgf.math.binary_surprise": [[9, null]], "pyhgf.math.binary_surprise_finite_precision": [[10, null]], "pyhgf.math.dirichlet_kullback_leibler": [[11, null]], "pyhgf.math.gaussian_density": [[12, null]], "pyhgf.math.gaussian_predictive_distribution": [[13, null]], "pyhgf.math.gaussian_surprise": [[14, null]], "pyhgf.math.sigmoid": [[15, null]], "pyhgf.model.HGF": [[16, null]], "pyhgf.model.Network": [[17, null]], "pyhgf.plots.plot_correlations": [[18, null]], "pyhgf.plots.plot_network": [[19, null]], "pyhgf.plots.plot_nodes": [[20, null]], "pyhgf.plots.plot_trajectories": [[21, null]], "pyhgf.response.binary_softmax": [[22, null]], "pyhgf.response.binary_softmax_inverse_temperature": [[23, null]], "pyhgf.response.first_level_binary_surprise": [[24, null]], "pyhgf.response.first_level_gaussian_surprise": [[25, null]], "pyhgf.response.total_gaussian_surprise": [[26, null]], "pyhgf.updates.posterior.binary.binary_node_update_finite": [[27, null]], "pyhgf.updates.posterior.binary.binary_node_update_infinite": [[28, null]], "pyhgf.updates.posterior.categorical.categorical_input_update": [[29, null]], "pyhgf.updates.posterior.continuous.continuous_node_update": [[30, null]], "pyhgf.updates.posterior.continuous.continuous_node_update_ehgf": [[31, null]], "pyhgf.updates.posterior.continuous.posterior_update_mean_continuous_node": [[32, null]], "pyhgf.updates.posterior.continuous.posterior_update_precision_continuous_node": [[33, null]], "pyhgf.updates.posterior.exponential.posterior_update_exponential_family": [[34, null]], "pyhgf.updates.prediction.binary.binary_state_node_prediction": [[35, null]], "pyhgf.updates.prediction.continuous.continuous_node_prediction": [[36, null]], "pyhgf.updates.prediction.continuous.predict_mean": [[37, null]], "pyhgf.updates.prediction.continuous.predict_precision": [[38, null]], "pyhgf.updates.prediction.dirichlet.dirichlet_node_prediction": [[39, null]], "pyhgf.updates.prediction_error.inputs.binary.binary_input_prediction_error_finite_precision": [[40, null]], "pyhgf.updates.prediction_error.inputs.binary.binary_input_prediction_error_infinite_precision": [[41, null]], "pyhgf.updates.prediction_error.inputs.continuous.continuous_input_prediction_error": [[42, null]], "pyhgf.updates.prediction_error.inputs.continuous.continuous_input_value_prediction_error": [[43, null]], "pyhgf.updates.prediction_error.inputs.continuous.continuous_input_volatility_prediction_error": [[44, null]], "pyhgf.updates.prediction_error.inputs.generic.generic_input_prediction_error": [[45, null]], "pyhgf.updates.prediction_error.nodes.binary.binary_state_node_prediction_error": [[46, null]], "pyhgf.updates.prediction_error.nodes.continuous.continuous_node_prediction_error": [[47, null]], "pyhgf.updates.prediction_error.nodes.continuous.continuous_node_value_prediction_error": [[48, null]], "pyhgf.updates.prediction_error.nodes.continuous.continuous_node_volatility_prediction_error": [[49, null]], "pyhgf.updates.prediction_error.nodes.dirichlet.clusters_likelihood": [[50, null]], "pyhgf.updates.prediction_error.nodes.dirichlet.create_cluster": [[51, null]], "pyhgf.updates.prediction_error.nodes.dirichlet.dirichlet_node_prediction_error": [[52, null]], "pyhgf.updates.prediction_error.nodes.dirichlet.get_candidate": [[53, null]], "pyhgf.updates.prediction_error.nodes.dirichlet.likely_cluster_proposal": [[54, null]], "pyhgf.updates.prediction_error.nodes.dirichlet.update_cluster": [[55, null]], "pyhgf.utils.add_edges": [[56, null]], "pyhgf.utils.beliefs_propagation": [[57, null]], "pyhgf.utils.fill_categorical_state_node": [[58, null]], "pyhgf.utils.get_update_sequence": [[59, null]], "pyhgf.utils.list_branches": [[60, null]], "pyhgf.utils.to_pandas": [[61, null]]}, "docnames": ["api", "cite", "generated/pyhgf.distribution/pyhgf.distribution.HGFDistribution", "generated/pyhgf.distribution/pyhgf.distribution.HGFLogpGradOp", "generated/pyhgf.distribution/pyhgf.distribution.HGFPointwise", "generated/pyhgf.distribution/pyhgf.distribution.hgf_logp", "generated/pyhgf.distribution/pyhgf.distribution.logp", "generated/pyhgf.math/pyhgf.math.MultivariateNormal", "generated/pyhgf.math/pyhgf.math.Normal", "generated/pyhgf.math/pyhgf.math.binary_surprise", "generated/pyhgf.math/pyhgf.math.binary_surprise_finite_precision", "generated/pyhgf.math/pyhgf.math.dirichlet_kullback_leibler", "generated/pyhgf.math/pyhgf.math.gaussian_density", "generated/pyhgf.math/pyhgf.math.gaussian_predictive_distribution", "generated/pyhgf.math/pyhgf.math.gaussian_surprise", "generated/pyhgf.math/pyhgf.math.sigmoid", "generated/pyhgf.model/pyhgf.model.HGF", "generated/pyhgf.model/pyhgf.model.Network", "generated/pyhgf.plots/pyhgf.plots.plot_correlations", "generated/pyhgf.plots/pyhgf.plots.plot_network", "generated/pyhgf.plots/pyhgf.plots.plot_nodes", "generated/pyhgf.plots/pyhgf.plots.plot_trajectories", "generated/pyhgf.response/pyhgf.response.binary_softmax", "generated/pyhgf.response/pyhgf.response.binary_softmax_inverse_temperature", "generated/pyhgf.response/pyhgf.response.first_level_binary_surprise", "generated/pyhgf.response/pyhgf.response.first_level_gaussian_surprise", "generated/pyhgf.response/pyhgf.response.total_gaussian_surprise", "generated/pyhgf.updates.posterior.binary/pyhgf.updates.posterior.binary.binary_node_update_finite", "generated/pyhgf.updates.posterior.binary/pyhgf.updates.posterior.binary.binary_node_update_infinite", "generated/pyhgf.updates.posterior.categorical/pyhgf.updates.posterior.categorical.categorical_input_update", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.continuous_node_update", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.continuous_node_update_ehgf", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.posterior_update_mean_continuous_node", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.posterior_update_precision_continuous_node", "generated/pyhgf.updates.posterior.exponential/pyhgf.updates.posterior.exponential.posterior_update_exponential_family", "generated/pyhgf.updates.prediction.binary/pyhgf.updates.prediction.binary.binary_state_node_prediction", "generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.continuous_node_prediction", "generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.predict_mean", "generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.predict_precision", "generated/pyhgf.updates.prediction.dirichlet/pyhgf.updates.prediction.dirichlet.dirichlet_node_prediction", "generated/pyhgf.updates.prediction_error.inputs.binary/pyhgf.updates.prediction_error.inputs.binary.binary_input_prediction_error_finite_precision", "generated/pyhgf.updates.prediction_error.inputs.binary/pyhgf.updates.prediction_error.inputs.binary.binary_input_prediction_error_infinite_precision", "generated/pyhgf.updates.prediction_error.inputs.continuous/pyhgf.updates.prediction_error.inputs.continuous.continuous_input_prediction_error", "generated/pyhgf.updates.prediction_error.inputs.continuous/pyhgf.updates.prediction_error.inputs.continuous.continuous_input_value_prediction_error", "generated/pyhgf.updates.prediction_error.inputs.continuous/pyhgf.updates.prediction_error.inputs.continuous.continuous_input_volatility_prediction_error", "generated/pyhgf.updates.prediction_error.inputs.generic/pyhgf.updates.prediction_error.inputs.generic.generic_input_prediction_error", "generated/pyhgf.updates.prediction_error.nodes.binary/pyhgf.updates.prediction_error.nodes.binary.binary_state_node_prediction_error", "generated/pyhgf.updates.prediction_error.nodes.continuous/pyhgf.updates.prediction_error.nodes.continuous.continuous_node_prediction_error", "generated/pyhgf.updates.prediction_error.nodes.continuous/pyhgf.updates.prediction_error.nodes.continuous.continuous_node_value_prediction_error", "generated/pyhgf.updates.prediction_error.nodes.continuous/pyhgf.updates.prediction_error.nodes.continuous.continuous_node_volatility_prediction_error", "generated/pyhgf.updates.prediction_error.nodes.dirichlet/pyhgf.updates.prediction_error.nodes.dirichlet.clusters_likelihood", "generated/pyhgf.updates.prediction_error.nodes.dirichlet/pyhgf.updates.prediction_error.nodes.dirichlet.create_cluster", "generated/pyhgf.updates.prediction_error.nodes.dirichlet/pyhgf.updates.prediction_error.nodes.dirichlet.dirichlet_node_prediction_error", "generated/pyhgf.updates.prediction_error.nodes.dirichlet/pyhgf.updates.prediction_error.nodes.dirichlet.get_candidate", "generated/pyhgf.updates.prediction_error.nodes.dirichlet/pyhgf.updates.prediction_error.nodes.dirichlet.likely_cluster_proposal", "generated/pyhgf.updates.prediction_error.nodes.dirichlet/pyhgf.updates.prediction_error.nodes.dirichlet.update_cluster", "generated/pyhgf.utils/pyhgf.utils.add_edges", "generated/pyhgf.utils/pyhgf.utils.beliefs_propagation", "generated/pyhgf.utils/pyhgf.utils.fill_categorical_state_node", "generated/pyhgf.utils/pyhgf.utils.get_update_sequence", "generated/pyhgf.utils/pyhgf.utils.list_branches", "generated/pyhgf.utils/pyhgf.utils.to_pandas", "index", "learn", "notebooks/0.1-Theory", "notebooks/0.2-Creating_networks", "notebooks/0.3-Generalised_filtering", "notebooks/1.1-Binary_HGF", "notebooks/1.2-Categorical_HGF", "notebooks/1.3-Continuous_HGF", "notebooks/2-Using_custom_response_functions", "notebooks/3-Multilevel_HGF", "notebooks/4-Parameter_recovery", "notebooks/5-Non_linear_value_coupling", "notebooks/Example_1_Heart_rate_variability", "notebooks/Example_2_Input_node_volatility_coupling", "notebooks/Example_3_Multi_armed_bandit", "notebooks/Exercise_1_Introduction_to_the_generalised_hierarchical_gaussian_filter", "notebooks/Exercise_2_Bayesian_reinforcement_learning", "references"], "envversion": {"sphinx": 63, "sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.viewcode": 1, "sphinxcontrib.bibtex": 9}, "filenames": ["api.rst", "cite.md", "generated/pyhgf.distribution/pyhgf.distribution.HGFDistribution.rst", "generated/pyhgf.distribution/pyhgf.distribution.HGFLogpGradOp.rst", "generated/pyhgf.distribution/pyhgf.distribution.HGFPointwise.rst", "generated/pyhgf.distribution/pyhgf.distribution.hgf_logp.rst", "generated/pyhgf.distribution/pyhgf.distribution.logp.rst", "generated/pyhgf.math/pyhgf.math.MultivariateNormal.rst", "generated/pyhgf.math/pyhgf.math.Normal.rst", "generated/pyhgf.math/pyhgf.math.binary_surprise.rst", "generated/pyhgf.math/pyhgf.math.binary_surprise_finite_precision.rst", "generated/pyhgf.math/pyhgf.math.dirichlet_kullback_leibler.rst", "generated/pyhgf.math/pyhgf.math.gaussian_density.rst", "generated/pyhgf.math/pyhgf.math.gaussian_predictive_distribution.rst", "generated/pyhgf.math/pyhgf.math.gaussian_surprise.rst", "generated/pyhgf.math/pyhgf.math.sigmoid.rst", "generated/pyhgf.model/pyhgf.model.HGF.rst", "generated/pyhgf.model/pyhgf.model.Network.rst", "generated/pyhgf.plots/pyhgf.plots.plot_correlations.rst", "generated/pyhgf.plots/pyhgf.plots.plot_network.rst", "generated/pyhgf.plots/pyhgf.plots.plot_nodes.rst", "generated/pyhgf.plots/pyhgf.plots.plot_trajectories.rst", "generated/pyhgf.response/pyhgf.response.binary_softmax.rst", "generated/pyhgf.response/pyhgf.response.binary_softmax_inverse_temperature.rst", "generated/pyhgf.response/pyhgf.response.first_level_binary_surprise.rst", "generated/pyhgf.response/pyhgf.response.first_level_gaussian_surprise.rst", "generated/pyhgf.response/pyhgf.response.total_gaussian_surprise.rst", "generated/pyhgf.updates.posterior.binary/pyhgf.updates.posterior.binary.binary_node_update_finite.rst", "generated/pyhgf.updates.posterior.binary/pyhgf.updates.posterior.binary.binary_node_update_infinite.rst", "generated/pyhgf.updates.posterior.categorical/pyhgf.updates.posterior.categorical.categorical_input_update.rst", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.continuous_node_update.rst", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.continuous_node_update_ehgf.rst", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.posterior_update_mean_continuous_node.rst", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.posterior_update_precision_continuous_node.rst", "generated/pyhgf.updates.posterior.exponential/pyhgf.updates.posterior.exponential.posterior_update_exponential_family.rst", "generated/pyhgf.updates.prediction.binary/pyhgf.updates.prediction.binary.binary_state_node_prediction.rst", "generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.continuous_node_prediction.rst", "generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.predict_mean.rst", "generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.predict_precision.rst", "generated/pyhgf.updates.prediction.dirichlet/pyhgf.updates.prediction.dirichlet.dirichlet_node_prediction.rst", "generated/pyhgf.updates.prediction_error.inputs.binary/pyhgf.updates.prediction_error.inputs.binary.binary_input_prediction_error_finite_precision.rst", "generated/pyhgf.updates.prediction_error.inputs.binary/pyhgf.updates.prediction_error.inputs.binary.binary_input_prediction_error_infinite_precision.rst", "generated/pyhgf.updates.prediction_error.inputs.continuous/pyhgf.updates.prediction_error.inputs.continuous.continuous_input_prediction_error.rst", "generated/pyhgf.updates.prediction_error.inputs.continuous/pyhgf.updates.prediction_error.inputs.continuous.continuous_input_value_prediction_error.rst", "generated/pyhgf.updates.prediction_error.inputs.continuous/pyhgf.updates.prediction_error.inputs.continuous.continuous_input_volatility_prediction_error.rst", "generated/pyhgf.updates.prediction_error.inputs.generic/pyhgf.updates.prediction_error.inputs.generic.generic_input_prediction_error.rst", "generated/pyhgf.updates.prediction_error.nodes.binary/pyhgf.updates.prediction_error.nodes.binary.binary_state_node_prediction_error.rst", "generated/pyhgf.updates.prediction_error.nodes.continuous/pyhgf.updates.prediction_error.nodes.continuous.continuous_node_prediction_error.rst", "generated/pyhgf.updates.prediction_error.nodes.continuous/pyhgf.updates.prediction_error.nodes.continuous.continuous_node_value_prediction_error.rst", "generated/pyhgf.updates.prediction_error.nodes.continuous/pyhgf.updates.prediction_error.nodes.continuous.continuous_node_volatility_prediction_error.rst", "generated/pyhgf.updates.prediction_error.nodes.dirichlet/pyhgf.updates.prediction_error.nodes.dirichlet.clusters_likelihood.rst", "generated/pyhgf.updates.prediction_error.nodes.dirichlet/pyhgf.updates.prediction_error.nodes.dirichlet.create_cluster.rst", "generated/pyhgf.updates.prediction_error.nodes.dirichlet/pyhgf.updates.prediction_error.nodes.dirichlet.dirichlet_node_prediction_error.rst", "generated/pyhgf.updates.prediction_error.nodes.dirichlet/pyhgf.updates.prediction_error.nodes.dirichlet.get_candidate.rst", "generated/pyhgf.updates.prediction_error.nodes.dirichlet/pyhgf.updates.prediction_error.nodes.dirichlet.likely_cluster_proposal.rst", "generated/pyhgf.updates.prediction_error.nodes.dirichlet/pyhgf.updates.prediction_error.nodes.dirichlet.update_cluster.rst", "generated/pyhgf.utils/pyhgf.utils.add_edges.rst", "generated/pyhgf.utils/pyhgf.utils.beliefs_propagation.rst", "generated/pyhgf.utils/pyhgf.utils.fill_categorical_state_node.rst", "generated/pyhgf.utils/pyhgf.utils.get_update_sequence.rst", "generated/pyhgf.utils/pyhgf.utils.list_branches.rst", "generated/pyhgf.utils/pyhgf.utils.to_pandas.rst", "index.md", "learn.md", "notebooks/0.1-Theory.ipynb", "notebooks/0.2-Creating_networks.ipynb", "notebooks/0.3-Generalised_filtering.ipynb", "notebooks/1.1-Binary_HGF.ipynb", "notebooks/1.2-Categorical_HGF.ipynb", "notebooks/1.3-Continuous_HGF.ipynb", "notebooks/2-Using_custom_response_functions.ipynb", "notebooks/3-Multilevel_HGF.ipynb", "notebooks/4-Parameter_recovery.ipynb", "notebooks/5-Non_linear_value_coupling.ipynb", "notebooks/Example_1_Heart_rate_variability.ipynb", "notebooks/Example_2_Input_node_volatility_coupling.ipynb", "notebooks/Example_3_Multi_armed_bandit.ipynb", "notebooks/Exercise_1_Introduction_to_the_generalised_hierarchical_gaussian_filter.ipynb", "notebooks/Exercise_2_Bayesian_reinforcement_learning.ipynb", "references.md"], "indexentries": {"__init__() (pyhgf.distribution.hgfdistribution method)": [[2, "pyhgf.distribution.HGFDistribution.__init__", false]], "__init__() (pyhgf.distribution.hgflogpgradop method)": [[3, "pyhgf.distribution.HGFLogpGradOp.__init__", false]], "__init__() (pyhgf.distribution.hgfpointwise method)": [[4, "pyhgf.distribution.HGFPointwise.__init__", false]], "__init__() (pyhgf.math.multivariatenormal method)": [[7, "pyhgf.math.MultivariateNormal.__init__", false]], "__init__() (pyhgf.math.normal method)": [[8, "pyhgf.math.Normal.__init__", false]], "__init__() (pyhgf.model.hgf method)": [[16, "pyhgf.model.HGF.__init__", false]], "__init__() (pyhgf.model.network method)": [[17, "pyhgf.model.Network.__init__", false]], "add_edges() (in module pyhgf.utils)": [[56, "pyhgf.utils.add_edges", false]], "beliefs_propagation() (in module pyhgf.utils)": [[57, "pyhgf.utils.beliefs_propagation", false]], "binary_input_prediction_error_finite_precision() (in module pyhgf.updates.prediction_error.inputs.binary)": [[40, "pyhgf.updates.prediction_error.inputs.binary.binary_input_prediction_error_finite_precision", false]], "binary_input_prediction_error_infinite_precision() (in module pyhgf.updates.prediction_error.inputs.binary)": [[41, "pyhgf.updates.prediction_error.inputs.binary.binary_input_prediction_error_infinite_precision", false]], "binary_node_update_finite() (in module pyhgf.updates.posterior.binary)": [[27, "pyhgf.updates.posterior.binary.binary_node_update_finite", false]], "binary_node_update_infinite() (in module pyhgf.updates.posterior.binary)": [[28, "pyhgf.updates.posterior.binary.binary_node_update_infinite", false]], "binary_softmax() (in module pyhgf.response)": [[22, "pyhgf.response.binary_softmax", false]], "binary_softmax_inverse_temperature() (in module pyhgf.response)": [[23, "pyhgf.response.binary_softmax_inverse_temperature", false]], "binary_state_node_prediction() (in module pyhgf.updates.prediction.binary)": [[35, "pyhgf.updates.prediction.binary.binary_state_node_prediction", false]], "binary_state_node_prediction_error() (in module pyhgf.updates.prediction_error.nodes.binary)": [[46, "pyhgf.updates.prediction_error.nodes.binary.binary_state_node_prediction_error", false]], "binary_surprise() (in module pyhgf.math)": [[9, "pyhgf.math.binary_surprise", false]], "binary_surprise_finite_precision() (in module pyhgf.math)": [[10, "pyhgf.math.binary_surprise_finite_precision", false]], "categorical_input_update() (in module pyhgf.updates.posterior.categorical)": [[29, "pyhgf.updates.posterior.categorical.categorical_input_update", false]], "clusters_likelihood() (in module pyhgf.updates.prediction_error.nodes.dirichlet)": [[50, "pyhgf.updates.prediction_error.nodes.dirichlet.clusters_likelihood", false]], "continuous_input_prediction_error() (in module pyhgf.updates.prediction_error.inputs.continuous)": [[42, "pyhgf.updates.prediction_error.inputs.continuous.continuous_input_prediction_error", false]], "continuous_input_value_prediction_error() (in module pyhgf.updates.prediction_error.inputs.continuous)": [[43, "pyhgf.updates.prediction_error.inputs.continuous.continuous_input_value_prediction_error", false]], "continuous_input_volatility_prediction_error() (in module pyhgf.updates.prediction_error.inputs.continuous)": [[44, "pyhgf.updates.prediction_error.inputs.continuous.continuous_input_volatility_prediction_error", false]], "continuous_node_prediction() (in module pyhgf.updates.prediction.continuous)": [[36, "pyhgf.updates.prediction.continuous.continuous_node_prediction", false]], "continuous_node_prediction_error() (in module pyhgf.updates.prediction_error.nodes.continuous)": [[47, "pyhgf.updates.prediction_error.nodes.continuous.continuous_node_prediction_error", false]], "continuous_node_update() (in module pyhgf.updates.posterior.continuous)": [[30, "pyhgf.updates.posterior.continuous.continuous_node_update", false]], "continuous_node_update_ehgf() (in module pyhgf.updates.posterior.continuous)": [[31, "pyhgf.updates.posterior.continuous.continuous_node_update_ehgf", false]], "continuous_node_value_prediction_error() (in module pyhgf.updates.prediction_error.nodes.continuous)": [[48, "pyhgf.updates.prediction_error.nodes.continuous.continuous_node_value_prediction_error", false]], "continuous_node_volatility_prediction_error() (in module pyhgf.updates.prediction_error.nodes.continuous)": [[49, "pyhgf.updates.prediction_error.nodes.continuous.continuous_node_volatility_prediction_error", false]], "create_cluster() (in module pyhgf.updates.prediction_error.nodes.dirichlet)": [[51, "pyhgf.updates.prediction_error.nodes.dirichlet.create_cluster", false]], "decision rule": [[70, "term-Decision-rule", true]], "dirichlet_kullback_leibler() (in module pyhgf.math)": [[11, "pyhgf.math.dirichlet_kullback_leibler", false]], "dirichlet_node_prediction() (in module pyhgf.updates.prediction.dirichlet)": [[39, "pyhgf.updates.prediction.dirichlet.dirichlet_node_prediction", false]], "dirichlet_node_prediction_error() (in module pyhgf.updates.prediction_error.nodes.dirichlet)": [[52, "pyhgf.updates.prediction_error.nodes.dirichlet.dirichlet_node_prediction_error", false]], "fill_categorical_state_node() (in module pyhgf.utils)": [[58, "pyhgf.utils.fill_categorical_state_node", false]], "first_level_binary_surprise() (in module pyhgf.response)": [[24, "pyhgf.response.first_level_binary_surprise", false]], "first_level_gaussian_surprise() (in module pyhgf.response)": [[25, "pyhgf.response.first_level_gaussian_surprise", false]], "gaussian random walk": [[64, "term-Gaussian-Random-Walk", true]], "gaussian_density() (in module pyhgf.math)": [[12, "pyhgf.math.gaussian_density", false]], "gaussian_predictive_distribution() (in module pyhgf.math)": [[13, "pyhgf.math.gaussian_predictive_distribution", false]], "gaussian_surprise() (in module pyhgf.math)": [[14, "pyhgf.math.gaussian_surprise", false]], "generic_input_prediction_error() (in module pyhgf.updates.prediction_error.inputs.generic)": [[45, "pyhgf.updates.prediction_error.inputs.generic.generic_input_prediction_error", false]], "get_candidate() (in module pyhgf.updates.prediction_error.nodes.dirichlet)": [[53, "pyhgf.updates.prediction_error.nodes.dirichlet.get_candidate", false]], "get_update_sequence() (in module pyhgf.utils)": [[59, "pyhgf.utils.get_update_sequence", false]], "hgf (class in pyhgf.model)": [[16, "pyhgf.model.HGF", false]], "hgf_logp() (in module pyhgf.distribution)": [[5, "pyhgf.distribution.hgf_logp", false]], "hgfdistribution (class in pyhgf.distribution)": [[2, "pyhgf.distribution.HGFDistribution", false]], "hgflogpgradop (class in pyhgf.distribution)": [[3, "pyhgf.distribution.HGFLogpGradOp", false]], "hgfpointwise (class in pyhgf.distribution)": [[4, "pyhgf.distribution.HGFPointwise", false]], "likely_cluster_proposal() (in module pyhgf.updates.prediction_error.nodes.dirichlet)": [[54, "pyhgf.updates.prediction_error.nodes.dirichlet.likely_cluster_proposal", false]], "list_branches() (in module pyhgf.utils)": [[60, "pyhgf.utils.list_branches", false]], "logp() (in module pyhgf.distribution)": [[6, "pyhgf.distribution.logp", false]], "multivariatenormal (class in pyhgf.math)": [[7, "pyhgf.math.MultivariateNormal", false]], "network (class in pyhgf.model)": [[17, "pyhgf.model.Network", false]], "node": [[64, "term-Node", true]], "normal (class in pyhgf.math)": [[8, "pyhgf.math.Normal", false]], "perceptual model": [[70, "term-Perceptual-model", true]], "plot_correlations() (in module pyhgf.plots)": [[18, "pyhgf.plots.plot_correlations", false]], "plot_network() (in module pyhgf.plots)": [[19, "pyhgf.plots.plot_network", false]], "plot_nodes() (in module pyhgf.plots)": [[20, "pyhgf.plots.plot_nodes", false]], "plot_trajectories() (in module pyhgf.plots)": [[21, "pyhgf.plots.plot_trajectories", false]], "posterior_update_exponential_family() (in module pyhgf.updates.posterior.exponential)": [[34, "pyhgf.updates.posterior.exponential.posterior_update_exponential_family", false]], "posterior_update_mean_continuous_node() (in module pyhgf.updates.posterior.continuous)": [[32, "pyhgf.updates.posterior.continuous.posterior_update_mean_continuous_node", false]], "posterior_update_precision_continuous_node() (in module pyhgf.updates.posterior.continuous)": [[33, "pyhgf.updates.posterior.continuous.posterior_update_precision_continuous_node", false]], "predict_mean() (in module pyhgf.updates.prediction.continuous)": [[37, "pyhgf.updates.prediction.continuous.predict_mean", false]], "predict_precision() (in module pyhgf.updates.prediction.continuous)": [[38, "pyhgf.updates.prediction.continuous.predict_precision", false]], "prediction": [[64, "term-Prediction", true]], "prediction error": [[64, "term-Prediction-error", true]], "response function": [[70, "term-Response-function", true]], "response model": [[70, "term-Response-model", true]], "sigmoid() (in module pyhgf.math)": [[15, "pyhgf.math.sigmoid", false]], "to_pandas() (in module pyhgf.utils)": [[61, "pyhgf.utils.to_pandas", false]], "total_gaussian_surprise() (in module pyhgf.response)": [[26, "pyhgf.response.total_gaussian_surprise", false]], "update": [[64, "term-Update", true]], "update_cluster() (in module pyhgf.updates.prediction_error.nodes.dirichlet)": [[55, "pyhgf.updates.prediction_error.nodes.dirichlet.update_cluster", false]], "vape": [[64, "term-VAPE", true]], "vope": [[64, "term-VOPE", true]]}, "objects": {"pyhgf.distribution": [[2, 0, 1, "", "HGFDistribution"], [3, 0, 1, "", "HGFLogpGradOp"], [4, 0, 1, "", "HGFPointwise"], [5, 2, 1, "", "hgf_logp"], [6, 2, 1, "", "logp"]], "pyhgf.distribution.HGFDistribution": [[2, 1, 1, "", "__init__"]], "pyhgf.distribution.HGFLogpGradOp": [[3, 1, 1, "", "__init__"]], "pyhgf.distribution.HGFPointwise": [[4, 1, 1, "", "__init__"]], "pyhgf.math": [[7, 0, 1, "", "MultivariateNormal"], [8, 0, 1, "", "Normal"], [9, 2, 1, "", "binary_surprise"], [10, 2, 1, "", "binary_surprise_finite_precision"], [11, 2, 1, "", "dirichlet_kullback_leibler"], [12, 2, 1, "", "gaussian_density"], [13, 2, 1, "", "gaussian_predictive_distribution"], [14, 2, 1, "", "gaussian_surprise"], [15, 2, 1, "", "sigmoid"]], "pyhgf.math.MultivariateNormal": [[7, 1, 1, "", "__init__"]], "pyhgf.math.Normal": [[8, 1, 1, "", "__init__"]], "pyhgf.model": [[16, 0, 1, "", "HGF"], [17, 0, 1, "", "Network"]], "pyhgf.model.HGF": [[16, 1, 1, "", "__init__"]], "pyhgf.model.Network": [[17, 1, 1, "", "__init__"]], "pyhgf.plots": [[18, 2, 1, "", "plot_correlations"], [19, 2, 1, "", "plot_network"], [20, 2, 1, "", "plot_nodes"], [21, 2, 1, "", "plot_trajectories"]], "pyhgf.response": [[22, 2, 1, "", "binary_softmax"], [23, 2, 1, "", "binary_softmax_inverse_temperature"], [24, 2, 1, "", "first_level_binary_surprise"], [25, 2, 1, "", "first_level_gaussian_surprise"], [26, 2, 1, "", "total_gaussian_surprise"]], "pyhgf.updates.posterior.binary": [[27, 2, 1, "", "binary_node_update_finite"], [28, 2, 1, "", "binary_node_update_infinite"]], "pyhgf.updates.posterior.categorical": [[29, 2, 1, "", "categorical_input_update"]], "pyhgf.updates.posterior.continuous": [[30, 2, 1, "", "continuous_node_update"], [31, 2, 1, "", "continuous_node_update_ehgf"], [32, 2, 1, "", "posterior_update_mean_continuous_node"], [33, 2, 1, "", "posterior_update_precision_continuous_node"]], "pyhgf.updates.posterior.exponential": [[34, 2, 1, "", "posterior_update_exponential_family"]], "pyhgf.updates.prediction.binary": [[35, 2, 1, "", "binary_state_node_prediction"]], "pyhgf.updates.prediction.continuous": [[36, 2, 1, "", "continuous_node_prediction"], [37, 2, 1, "", "predict_mean"], [38, 2, 1, "", "predict_precision"]], "pyhgf.updates.prediction.dirichlet": [[39, 2, 1, "", "dirichlet_node_prediction"]], "pyhgf.updates.prediction_error.inputs.binary": [[40, 2, 1, "", "binary_input_prediction_error_finite_precision"], [41, 2, 1, "", "binary_input_prediction_error_infinite_precision"]], "pyhgf.updates.prediction_error.inputs.continuous": [[42, 2, 1, "", "continuous_input_prediction_error"], [43, 2, 1, "", "continuous_input_value_prediction_error"], [44, 2, 1, "", "continuous_input_volatility_prediction_error"]], "pyhgf.updates.prediction_error.inputs.generic": [[45, 2, 1, "", "generic_input_prediction_error"]], "pyhgf.updates.prediction_error.nodes.binary": [[46, 2, 1, "", "binary_state_node_prediction_error"]], "pyhgf.updates.prediction_error.nodes.continuous": [[47, 2, 1, "", "continuous_node_prediction_error"], [48, 2, 1, "", "continuous_node_value_prediction_error"], [49, 2, 1, "", "continuous_node_volatility_prediction_error"]], "pyhgf.updates.prediction_error.nodes.dirichlet": [[50, 2, 1, "", "clusters_likelihood"], [51, 2, 1, "", "create_cluster"], [52, 2, 1, "", "dirichlet_node_prediction_error"], [53, 2, 1, "", "get_candidate"], [54, 2, 1, "", "likely_cluster_proposal"], [55, 2, 1, "", "update_cluster"]], "pyhgf.utils": [[56, 2, 1, "", "add_edges"], [57, 2, 1, "", "beliefs_propagation"], [58, 2, 1, "", "fill_categorical_state_node"], [59, 2, 1, "", "get_update_sequence"], [60, 2, 1, "", "list_branches"], [61, 2, 1, "", "to_pandas"]]}, "objnames": {"0": ["py", "class", "Python class"], "1": ["py", "method", "Python method"], "2": ["py", "function", "Python function"]}, "objtypes": {"0": "py:class", "1": "py:method", "2": "py:function"}, "terms": {"": [1, 2, 17, 20, 21, 24, 25, 26, 37, 44, 56, 57, 59, 62, 64, 65, 66, 67, 69, 70, 72, 73, 74, 76, 77, 78], "0": [0, 2, 3, 4, 5, 6, 9, 10, 14, 15, 16, 20, 21, 22, 23, 37, 54, 56, 62, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "00": [74, 77, 78], "000000": 78, "000000e": 78, "00039": [1, 62, 79], "006053": 78, "007260": 78, "00825": [1, 62, 79], "01": [66, 70, 72, 73, 74, 75, 77], "012": 78, "014": 70, "016": [78, 79], "016216": 70, "018": 77, "0192": 67, "01it": 74, "02": [66, 70, 77], "027": 2, "02it": 74, "03": [73, 74, 77], "030": [13, 34], "038": 2, "04": [20, 21, 69, 77], "041832": 78, "0496": 69, "05": [73, 76, 78], "052772": 78, "056803": 70, "060": 79, "061": 77, "065": 2, "066": 70, "067450": 70, "068": 79, "077038": 70, "079030": 78, "08": 79, "08008": 72, "09": 78, "1": [1, 2, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 20, 21, 22, 23, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 52, 56, 59, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 75, 76, 78, 79], "10": [1, 13, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 62, 64, 65, 66, 68, 69, 71, 73, 75, 76, 78, 79], "100": [66, 72, 74], "1000": [2, 64, 65, 66, 73, 74, 75, 77], "10000": [16, 64], "1007": [13, 34, 79], "1016": 79, "1017": 79, "104594": 78, "109": 78, "10937": [27, 28, 30, 31, 32, 33, 36, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 62, 79], "11": [2, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79], "1106": 69, "1118": 69, "112": 78, "113": 78, "114": 79, "1144": 69, "117590": 79, "12": [2, 20, 21, 62, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "1217": 70, "1224": 79, "123": [64, 65, 66, 71, 72, 75, 76, 77, 78], "1239": 79, "124": 77, "125": [64, 77], "1251": 79, "1265": 79, "128": [66, 77], "13": [20, 21, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "138": 62, "14": [2, 70], "1413": 79, "1432": 79, "147": 77, "15": [71, 75], "150": [68, 75], "1500": 65, "16": [2, 66, 67, 69, 70, 71, 72, 74, 76, 78], "1662": 1, "16625161": 1, "1684": 71, "17": 68, "1724106460": 65, "172870": 78, "18": [20, 21, 70, 71], "185465": 70, "187516e": 78, "19": [64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "1903": 72, "196": 77, "1_000": [67, 69, 70, 71, 72, 74, 76, 78], "1d": [2, 4], "1e1": [20, 21, 67, 69, 74], "1e2": 77, "1e4": [16, 20, 21, 67, 69, 70, 74], "1i": [11, 68], "1rst": 67, "2": [2, 3, 4, 5, 6, 11, 13, 14, 16, 17, 20, 21, 30, 31, 32, 33, 44, 49, 52, 59, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 78, 79], "20": [1, 72, 73, 78, 79], "200": [64, 65, 66, 77], "2000": [65, 71, 72], "20000": [53, 54], "2001": 11, "2010": 69, "2011": [1, 62, 64, 65, 69, 79], "2013": 62, "2014": [1, 62, 64, 65, 71, 77, 79], "2016": [71, 77, 79], "2017": [76, 79], "2019": [72, 77, 79], "202": 67, "2020": [13, 34, 66, 79], "2021": [62, 67, 70, 78, 79], "2023": [0, 27, 28, 30, 31, 32, 33, 36, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 62, 64, 65, 77, 79], "2024": [62, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "203": 67, "205": 70, "21": [68, 78], "21596": 67, "21629826": 1, "222": 78, "224": 77, "226": 79, "229413": 78, "2305": [27, 28, 30, 31, 32, 33, 36, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 62, 79], "230946": 70, "231": [67, 69, 70, 71, 72, 74, 76, 78], "232583": 70, "233799": 70, "234603": 70, "235004": 70, "24": 77, "242169": 78, "244": 77, "245": 77, "247": 77, "249": 77, "25": [64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "250": [64, 65, 68, 73, 77], "2516081684": 69, "256": 66, "26": [64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 78], "27": [64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79], "270900": 70, "27879": 79, "283697": 70, "296556": 70, "2_000": [67, 69, 70, 71, 72, 74, 76, 78], "2_i": 71, "2a2a2a": 68, "2i": [11, 68], "2nd": 67, "3": [2, 3, 4, 5, 13, 16, 17, 20, 21, 34, 59, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 78, 79], "30": [64, 65, 66, 68, 77, 79], "301674": 70, "308": 77, "31": [64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "3185": 71, "32": 66, "3200": 71, "3389": [1, 62, 79], "345082": 78, "345825": 78, "35": [66, 68], "350": 73, "355": 78, "35667497": 9, "387": 77, "388": 78, "389923": 70, "4": [59, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 78, 79], "40": 76, "400": [65, 66, 73], "400254": 70, "4093": 69, "41": [64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "413007": 78, "416410": 70, "42": [54, 73], "43": 73, "444049": 70, "45": [65, 71], "458906": 70, "466356": 70, "471469": 70, "472": 77, "474077": 70, "48550": [27, 28, 30, 31, 32, 33, 36, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 62], "487": 70, "49547": 79, "4c72b0": [64, 70, 77, 78], "5": [0, 1, 2, 20, 21, 62, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79], "50": [74, 75], "500": [71, 75], "500000": 70, "506923": 70, "509100": 78, "510734": 78, "510971": 70, "512": 66, "5161": 1, "518301": 70, "52": [13, 34, 79], "520583": 70, "53": 67, "530355": 70, "530717": 70, "536678": 70, "5377": 77, "54": 70, "540697": 70, "550": 73, "557": 78, "55a868": [64, 72, 78], "566859": 70, "567": 78, "569930": 78, "58": [13, 34, 79], "582766": [66, 75], "597464": 70, "5d1e51": 78, "6": [21, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79], "60": [72, 74, 78], "600": [65, 66, 73], "601": 70, "611762": 78, "6174": 69, "620": 78, "622459": 70, "624085": 70, "627284": 70, "631975": 70, "635": 77, "638038": 70, "64": [66, 71], "64919": [13, 34], "650": 73, "659764": 70, "66": 78, "660445": 70, "661825": 70, "663944": 70, "680811": 62, "687639": 78, "698": 69, "698733": 70, "7": [9, 66, 69, 72, 76, 77, 78, 79], "70": [71, 72], "701": 77, "731660": 70, "732927": 70, "750": 65, "7554": 79, "766": 2, "776": 2, "7_7": [13, 34], "7f7f7f": 68, "8": [1, 11, 62, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79], "80": 76, "800": [65, 66], "806": 2, "828": 69, "834867": 70, "843076": 78, "844": 70, "850": 73, "865": 77, "87854": 70, "885582": 78, "886": 69, "889": 78, "8992462158203": 62, "9": [11, 20, 21, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79], "90": 65, "900": 65, "903": 69, "906231": 78, "910": 69, "9189386": 14, "931": 77, "936": 70, "938": 2, "944": 2, "950": 73, "964": 69, "965": 69, "9696": 79, "97632": 67, "978": [13, 34], "99": 71, "999": 66, "A": [0, 1, 2, 3, 4, 5, 16, 17, 20, 21, 23, 27, 28, 30, 31, 32, 33, 36, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 54, 57, 59, 60, 63, 64, 65, 67, 69, 70, 71, 72, 73, 77, 78, 79], "And": 70, "As": [65, 71, 76], "At": [63, 64, 77], "Being": 70, "But": [65, 69, 70, 71, 77], "By": [2, 3, 4, 31, 37, 62, 69, 70], "For": [1, 17, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 47, 51, 52, 55, 64, 65, 66, 70, 72, 73, 77, 78], "If": [1, 2, 3, 4, 16, 20, 21, 32, 33, 37, 56, 60, 64, 68, 70, 71, 73, 76, 78], "In": [1, 13, 20, 21, 34, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79], "It": [1, 16, 29, 56, 62, 64, 65, 66, 69, 70, 72, 73, 75, 76, 78], "NOT": 78, "OR": 77, "On": 70, "One": [65, 67, 69, 78], "Or": 77, "Such": [64, 66, 78], "That": 78, "The": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 66, 70, 71, 72, 73, 74, 75, 76, 79], "Then": [73, 77], "There": [70, 71, 72, 78], "These": [1, 62, 64, 67], "To": [64, 67, 69, 70, 71, 73, 77, 78], "With": [64, 73], "_": [21, 23, 32, 33, 64, 65, 66, 67, 68, 70, 71, 72, 73, 74, 76, 77, 78], "_1": [70, 71], "__init__": [2, 3, 4, 7, 8, 16, 17], "_a": [35, 37, 38], "_b": [32, 33, 35], "_i": 64, "_j": [32, 33, 43, 44, 48, 49], "a_custom_hgf": 65, "aarhu": [73, 77], "aarhus_weather_df": 77, "ab": 72, "aberr": 69, "abil": 72, "abl": [62, 67, 70, 71, 73], "about": [1, 63, 64, 65, 66, 67, 68, 69, 70, 76, 77, 78], "abov": [60, 64, 65, 66, 69, 70, 73, 76, 77], "absenc": [72, 76], "abstract": [1, 66, 79], "ac": 11, "acceler": 69, "accept": [67, 69, 73], "access": [2, 3, 4, 65, 70], "accommod": 1, "accord": [0, 70, 73], "accordingli": [5, 64, 67, 69, 76, 77], "account": [1, 64, 65, 76], "accumul": 57, "accur": 72, "acetylcholin": 1, "achiev": 66, "across": [26, 64, 66, 67, 69, 76], "act": [67, 69, 70, 71], "action": [62, 70, 71, 78], "actionmodel": 70, "activ": [13, 34, 62, 70, 78, 79], "actual": [62, 65, 68, 76], "acycl": 65, "ad": [67, 68, 69, 73, 75, 76, 77], "adapt": [1, 63, 64, 69, 70, 78], "adapt_diag": [67, 69, 70, 71, 72, 74, 76, 78], "add": [56, 62, 64, 73, 76, 77, 78], "add_group": [71, 78], "add_nod": [2, 3, 4, 62, 65, 66, 68, 73, 75, 76, 77], "addit": [2, 3, 4, 5, 6, 65, 66, 69, 70], "addition": [72, 78], "additionn": [22, 23, 24, 25, 26], "adjac": 65, "adjacencylist": [17, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 47, 51, 52, 55, 56, 57, 65], "adjust": 78, "adopt": [67, 69], "advanc": 63, "advantag": [64, 65, 78], "aesara": [67, 69], "affect": [5, 6, 16, 69, 76, 79], "after": [0, 17, 20, 27, 28, 29, 30, 31, 57, 66, 67, 72, 77, 78], "afterward": [2, 3, 4, 16], "again": [68, 69], "against": 69, "agent": [1, 62, 63, 65, 66, 67, 69, 70, 71, 72, 74, 76, 77, 78], "agnost": 1, "aim": [62, 69], "air": 77, "aki": 79, "al": [0, 62, 64, 65, 67, 70, 71, 77, 78], "algorithm": [1, 62, 64, 67, 74], "align": [64, 66, 70], "alin": 79, "all": [0, 1, 2, 5, 16, 56, 59, 60, 67, 69, 70, 71, 72, 73, 74, 76, 77, 78], "alloc": 52, "allow": [1, 65, 69, 70, 73, 76, 77], "alon": 77, "along": [5, 24, 78], "alpha": [66, 68, 70, 72, 73, 75, 76, 77, 78], "alpha_": [11, 68, 73], "alpha_1": 11, "alpha_2": 11, "alreadi": [60, 65, 70, 71], "also": [16, 20, 36, 38, 42, 47, 60, 62, 64, 65, 67, 69, 70, 71, 73, 75, 76, 77, 78], "altern": [59, 65, 69, 70, 76, 78], "alternative\u00e6li": 71, "alwai": [52, 68, 71, 72, 76, 77, 78], "among": 70, "amount": 69, "an": [1, 2, 3, 4, 5, 6, 7, 8, 14, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 29, 32, 33, 34, 41, 42, 43, 44, 45, 47, 53, 55, 57, 59, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 77, 78], "analys": [1, 78], "analyt": 1, "andrew": 79, "ani": [0, 1, 27, 28, 30, 31, 60, 62, 63, 64, 66, 67, 68, 69, 70, 71, 73], "anim": 66, "ann": 79, "anna": 79, "anoth": [64, 68, 69, 73, 75, 77, 78], "another_custom_hgf": 65, "answer": 72, "anymor": [37, 64, 66], "anyth": [64, 68], "api": [62, 67, 68, 69, 70, 71, 72, 74, 76, 78], "apont": 62, "appar": 64, "appear": [65, 73], "append": [20, 64, 66, 71, 72, 76, 77, 78], "appli": [17, 44, 57, 59, 63, 65, 66, 68, 70, 71, 72, 76, 77, 78], "applic": [1, 63, 65, 66, 69, 70, 72], "apply_along_axi": 66, "approach": [64, 66, 67, 68, 71, 72], "appropri": 75, "approxim": [1, 31, 62, 64, 65, 77], "april": [69, 79], "ar": [0, 1, 2, 4, 5, 16, 17, 20, 29, 44, 56, 57, 60, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "ar1": [64, 76], "arang": [65, 66, 68, 70, 73, 76, 78], "arbitrari": [2, 65, 70, 73, 77], "arbitrarili": 62, "area": [20, 77], "arg": [7, 8, 27, 28, 29, 30, 31, 34, 35, 36, 39, 40, 41, 45, 46, 47, 52], "argument": [2, 3, 4, 65, 67, 69, 70, 73], "arm": [63, 70, 71, 78], "around": [20, 21, 63, 64, 65, 69, 70, 78], "arrai": [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 22, 23, 29, 37, 38, 46, 48, 50, 53, 54, 57, 65, 66, 67, 68, 69, 70, 71, 72, 73, 76, 77, 78], "arrang": 77, "arriv": 64, "articl": [1, 79], "artifici": 73, "arviz": [2, 67, 69, 70, 71, 72, 74, 76, 78], "arxiv": [27, 28, 30, 31, 32, 33, 36, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 62, 72, 79], "as_tensor_vari": [68, 76, 78], "asarrai": [68, 76], "ask": [1, 69], "aspect": 68, "assert": 65, "assess": [52, 67, 69, 78], "assign": [67, 68, 69, 70, 71, 72, 74, 76, 78], "associ": [2, 3, 4, 5, 6, 59, 62, 68, 70, 71, 72, 73, 76, 78, 79], "assum": [1, 30, 31, 34, 40, 41, 56, 64, 65, 67, 69, 70, 71, 72, 73, 75, 76, 77, 78], "assumpt": [75, 78], "astyp": [73, 76], "atmospher": 77, "attribut": [2, 3, 4, 16, 17, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 55, 56, 57, 62, 66, 68, 71, 72, 75, 76], "au": 73, "aug": [64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "august": [69, 79], "author": [1, 73], "auto": [67, 68, 69, 70, 71, 72, 74, 76, 78], "autoconnect": [37, 64, 73], "autoconnection_strength": 73, "autocorrel": 73, "autom": 77, "automat": [65, 67, 69, 71], "autoregress": 37, "avail": [0, 62, 77], "averag": [67, 77], "avoid": 72, "awai": 66, "ax": [18, 20, 21, 64, 65, 66, 68, 72, 73, 75, 76, 78], "axi": [5, 64, 66, 71], "axvlin": 76, "az": [2, 67, 68, 69, 70, 71, 72, 74, 76, 78], "b": [32, 33, 35, 37, 62, 66, 67, 73, 76], "back": [37, 64, 71], "backgroud": 20, "backslash": 1, "backward": 65, "bad": 71, "badg": 63, "bandit": [63, 70, 71, 78], "bank": 69, "base": [1, 54, 59, 64, 67, 68, 69, 70, 71, 72, 74, 76, 78], "batch": [5, 57, 76], "bay": 1, "bayesian": [1, 62, 63, 64, 67, 68, 69, 70, 78, 79], "becaus": [44, 64, 65, 67, 68, 69, 73, 76, 77], "becom": 64, "been": [59, 64, 65, 66, 68, 69, 70, 71, 77, 78], "befor": [0, 20, 33, 59, 64, 65, 66, 69, 70, 71, 72, 76, 77], "beforehand": [32, 69, 78], "begin": [9, 13, 63, 64, 66, 70, 73, 78], "behav": [1, 67, 69, 73, 77], "behavior": [1, 78, 79], "behaviour": [5, 6, 62, 63, 64, 67, 69, 70, 71, 73, 74, 76], "behind": [63, 64, 77], "being": [64, 65, 67, 71, 73, 74, 78], "belief": [0, 6, 17, 20, 54, 57, 62, 63, 65, 66, 69, 70, 71, 72, 73, 77], "beliefs_propag": [17, 66, 76], "belong": [60, 66], "below": [0, 64, 67, 68, 70, 73, 76, 77, 78], "bernoulli": [9, 78], "best": [1, 53, 69, 73, 74, 78], "beta": [76, 78], "better": [31, 69, 70, 71, 72, 77], "between": [0, 1, 5, 6, 11, 16, 29, 30, 31, 32, 33, 35, 36, 37, 38, 40, 41, 42, 43, 45, 56, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 78], "beyond": 64, "bia": [71, 78, 79], "biased_random": 78, "biased_random_idata": 78, "biased_random_model": 78, "bibtex": 1, "big": 64, "binari": [2, 3, 4, 5, 6, 9, 10, 16, 21, 22, 23, 24, 29, 58, 59, 62, 63, 64, 66, 68, 69, 71, 72, 76], "binary_input_idx": 58, "binary_input_upd": 29, "binary_paramet": [58, 68], "binary_precis": [16, 21, 67], "binary_softmax": [70, 78], "binary_softmax_inverse_temperatur": [62, 71, 72], "binary_surpris": [70, 76], "bind": [62, 65], "binomi": [65, 70, 71, 72, 76], "biolog": 62, "bit": [69, 71], "bivariate_hgf": 66, "bla": [67, 68, 69, 70, 71, 72, 74, 76, 78], "blackjax": 70, "blank": 68, "block": [64, 67, 69, 76], "blog": 68, "blue": [70, 73], "bollmann": 62, "bool": [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 41, 42, 45, 50, 53, 54, 57], "bool_": [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 22, 23, 50, 53, 54, 57], "boolean": [29, 68, 69, 78], "boom": 79, "both": [1, 37, 62, 63, 64, 65, 68, 70, 71, 73, 75, 76, 77], "bottom": [62, 64, 77], "brain": 1, "branch": [52, 60, 62, 70, 76], "branch_list": 60, "break": 77, "briefli": 78, "broad": 68, "broadcast": [5, 71], "broader": 66, "brodersen": [1, 62, 79], "broke": 69, "brown": [76, 79], "bucklei": 79, "build": [63, 64, 67, 69, 73, 77], "built": [65, 67, 69, 77, 78], "burst": 65, "c": [1, 13, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 62, 67, 68, 69, 70, 71, 72, 74, 76, 78, 79], "c44e52": [64, 66, 70, 72, 78], "ca": 73, "calcul": [71, 73], "call": [0, 29, 64, 66, 67, 69, 70, 71, 76, 77, 78], "callabl": [0, 2, 3, 4, 5, 6, 34, 56, 57, 70], "cambridg": 79, "can": [0, 1, 2, 3, 4, 5, 6, 16, 32, 44, 56, 57, 59, 60, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "candid": [50, 52, 53, 54, 76], "cannot": [16, 65, 66, 76], "capabl": [64, 73], "capitalis": 64, "captur": [64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "capture_output": [64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "cardiac": [63, 69], "carlo": [1, 67, 69, 78], "carri": 78, "carryov": 57, "case": [9, 13, 64, 66, 68, 69, 70, 71, 73, 74, 76, 78], "categor": [16, 58, 59, 63, 66, 71, 76], "categori": [10, 66, 68, 76], "categorical_hgf": 68, "categorical_idata": 68, "categorical_surpris": 68, "caus": 31, "cbo9781139087759": 79, "cdot": 73, "cedric": 79, "cell": [64, 69, 77], "censor": 72, "censored_volatil": 72, "centr": [68, 69], "central": [64, 65, 69, 73, 78], "certain": [1, 64, 65], "chain": [1, 2, 67, 68, 69, 70, 71, 72, 74, 76, 77, 78], "cham": 79, "chanc": 76, "chance_conting": 76, "chang": [64, 65, 68, 69, 70, 71, 72, 73, 75, 76, 77, 78], "channel": 74, "chaotic": 76, "check": [69, 71], "chf": [20, 21], "child": [0, 20, 21, 32, 33, 43, 52, 64, 65, 66, 73, 77], "children": [0, 16, 17, 20, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 47, 51, 52, 55, 56, 59, 60, 62, 64, 65, 73], "children_idx": 56, "children_input": 20, "choic": 65, "cholinerg": 79, "choos": [66, 69, 76], "chose": [23, 52, 66, 70, 76], "chosen": [59, 76], "christoph": [1, 79], "chunck": 73, "ci": [20, 21], "circl": 70, "circumst": 31, "citi": 77, "clarifi": 71, "clariti": [69, 78], "class": [0, 2, 3, 4, 7, 8, 16, 17, 19, 20, 21, 34, 65, 66, 67, 68, 69, 70, 71, 76, 78], "classic": [69, 78], "cldtot": 77, "clear": [70, 77], "clearli": [65, 70], "clock": 73, "close": [70, 72], "closer": 73, "cloud": 77, "cloudi": 77, "cluster": [50, 51, 52, 53, 54, 55], "cm": 75, "cmap": [68, 72], "co": 66, "code": [17, 63, 64, 65, 66, 70, 71, 73, 77, 78], "coeffici": [64, 72], "cognit": [62, 74, 79], "colab": [63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "collect": [0, 68], "colleg": 11, "collin": [72, 79], "color": [20, 64, 66, 68, 70, 72, 73, 75, 76, 77, 78], "column": 57, "com": [62, 77], "combin": [1, 37, 64, 65], "come": [1, 64, 66, 70, 71, 73, 77], "command": 78, "common": [65, 68], "commonli": [70, 73], "commun": [13, 64], "compar": [1, 62, 69, 71, 78], "compare_df": 78, "comparison": [4, 63, 72], "compat": [2, 65, 67, 68, 69, 70, 71], "complet": [64, 77, 78], "complex": [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 22, 23, 50, 53, 54, 57, 63, 64, 65, 70, 77], "complexifi": 64, "compli": 70, "complic": 1, "compon": [64, 65, 69, 71, 76], "compromis": 65, "comput": [0, 1, 2, 3, 4, 5, 6, 10, 11, 13, 24, 25, 32, 33, 34, 37, 38, 40, 41, 44, 46, 48, 49, 59, 62, 63, 64, 65, 66, 67, 68, 69, 70, 74, 76, 77, 78, 79], "computation": 1, "concaten": 76, "conceiv": 62, "concentr": 11, "concept": [64, 71, 77], "concern": 64, "concis": 77, "cond": 73, "condit": 78, "connect": [1, 6, 16, 64, 65, 70, 73, 77], "consequ": [64, 65], "consid": [59, 64, 65, 67, 69, 70, 73, 76, 77, 78], "consider": 1, "consist": [17, 64, 65, 66, 68, 70, 72, 73, 76, 78], "constand": 73, "constant": [14, 64, 66, 73], "constitud": 64, "constitut": [73, 77], "constrained_layout": [64, 65, 66, 67, 69, 70, 71, 73, 74, 76, 78], "contain": [0, 1, 2, 3, 4, 16, 18, 22, 23, 37, 38, 52, 57, 62, 64, 65, 71, 74, 77], "context": [2, 4, 57, 66, 67, 69, 70, 76, 77, 78], "contextu": 1, "contin": 3, "conting": [65, 68, 70, 76, 78], "contingencylist": 65, "continu": [1, 2, 3, 4, 5, 6, 16, 20, 21, 25, 27, 28, 59, 62, 63, 64, 66, 67, 68, 70, 71, 73, 74, 75, 76, 77, 78], "continuous_input_prediction_error": [43, 44], "continuous_input_upd": 29, "continuous_input_value_prediction_error": [32, 33, 42, 44], "continuous_input_volatility_prediction_error": [32, 43], "continuous_node_prediction_error": [48, 49], "continuous_node_value_prediction_error": [32, 33, 47, 49], "continuous_node_volatility_prediction_error": [32, 47, 48], "continuous_precis": 16, "contrari": 65, "control": [1, 64, 65, 71, 77, 78], "conveni": [64, 70], "converg": [67, 69, 70, 71, 72, 74, 76, 78], "convert": [20, 21, 64, 68, 74, 76, 78], "core": [2, 17, 62, 65, 67, 69, 70, 71, 72, 74, 76, 78], "correct": [66, 79], "correctli": [19, 72], "correl": [0, 18, 72], "correspond": [16, 20, 21, 66, 67, 70, 71, 72, 73, 76, 77], "cost": 76, "could": [24, 25, 26, 65, 68, 69, 70, 73, 76, 78], "count": [13, 66, 71], "counterpart": [65, 67], "coupl": [0, 1, 5, 6, 16, 20, 21, 29, 32, 33, 36, 37, 38, 42, 47, 56, 59, 62, 63, 67, 75, 76, 78], "coupling_fn": [56, 65, 73], "coupling_strength": 56, "cours": [63, 77], "covari": 66, "cover": [64, 77, 78], "cpython": [64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "creat": [0, 2, 3, 4, 16, 20, 21, 51, 52, 62, 63, 66, 71, 72, 73, 74, 76, 77, 78], "create_belief_propagation_fn": 76, "creation": [65, 70, 77, 78], "crisi": 69, "critic": [1, 65, 70], "cross": [4, 71, 78, 79], "crucial": 71, "csv": 77, "cumsum": [64, 73, 77], "currenc": 69, "current": [0, 1, 20, 21, 29, 35, 36, 37, 38, 40, 41, 42, 43, 45, 56, 62, 64, 65, 66, 70, 77, 79], "current_belief": 78, "curv": 20, "custom": [16, 63, 67, 68, 71, 76, 78], "custom_op": [68, 76], "customdist": [71, 78], "customis": 63, "customop": [68, 76], "d": [1, 11, 62, 66, 79], "dai": 77, "dark": 77, "dash": 64, "data": [0, 1, 2, 3, 4, 5, 6, 20, 21, 24, 25, 26, 57, 61, 62, 64, 66, 68, 70, 71, 72, 73, 74, 75, 77, 78, 79], "data2": 66, "databas": 77, "datafram": 61, "dataset": [70, 74, 77, 78], "daunizeau": [1, 62, 79], "de": 79, "deadlock": 78, "deal": [1, 76], "debug": 77, "decid": [64, 69, 70, 78], "decis": [1, 6, 22, 23, 62, 67, 68, 71, 72, 78], "declar": [65, 71, 73], "decreas": 76, "dedic": 69, "deeper": 62, "def": [65, 66, 68, 70, 71, 73, 76, 78], "default": [2, 3, 4, 5, 6, 16, 20, 21, 24, 25, 33, 57, 59, 62, 64, 65, 66, 67, 69, 70, 71, 72, 73, 74, 76, 78], "defin": [12, 16, 17, 20, 57, 62, 64, 65, 66, 67, 68, 69, 70, 71, 73, 77, 78], "definit": [59, 70], "degre": [66, 67, 69, 73], "deliv": 77, "delta": [66, 73], "delta_j": [32, 33, 43, 48, 49], "demonstr": [1, 62, 66, 67, 70, 72, 74, 75], "denmark": 73, "denot": 64, "densiti": [0, 2, 11, 12, 13, 67, 69, 71, 75, 77], "depend": [5, 6, 32, 35, 64, 67, 69, 70, 71, 73, 77], "depict": [21, 64, 78], "deriv": [1, 62, 64, 66, 73], "describ": [0, 62, 63, 64, 65, 66, 67, 70, 77], "descript": [1, 64, 77], "design": [63, 65, 68, 70, 71, 76, 77, 78], "despin": [64, 65, 66, 68, 71, 72, 73, 75, 76, 77, 78], "detail": [64, 72, 76, 77], "detect": 74, "determin": 1, "determinist": [1, 71, 78], "develop": [62, 65, 78], "deviat": [20, 21, 50, 53, 54, 71, 74], "df": [66, 75], "diagnost": [67, 69, 70, 71, 72, 74, 76, 78], "dict": [16, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 55, 56, 57, 58], "dictionari": [16, 57, 62, 65, 67, 69, 77], "did": [69, 71], "differ": [1, 2, 3, 4, 5, 16, 27, 28, 30, 31, 56, 64, 65, 66, 67, 69, 70, 71, 73, 76, 77], "differenti": [66, 67, 69, 73], "difficult": [1, 66, 77], "diffus": [62, 65], "dimens": [3, 5, 6, 64, 65, 71], "dimension": [66, 76], "dir": 11, "direct": [64, 65], "directli": [29, 65, 67, 69, 70, 71, 73, 76], "dirichlet": [11, 29, 66, 68], "dirichlet_nod": 39, "disambigu": 65, "disappear": 73, "discrep": [67, 69], "discret": [1, 68, 78], "discuss": [1, 64, 76, 78], "displai": [66, 71, 73, 78], "dissoci": [0, 65], "dist": 72, "dist_mean": 75, "dist_std": 75, "distanc": 66, "distant": 66, "distinguish": [71, 77], "distribut": [7, 8, 9, 10, 11, 13, 14, 29, 34, 54, 62, 63, 64, 65, 67, 68, 69, 70, 72, 74, 75, 77, 78], "dive": [64, 65], "diverg": [0, 11, 68, 72, 78], "dk": 73, "do": [62, 65, 67, 68, 69, 70, 71, 73, 77, 78], "documatt": 65, "document": [62, 68, 77, 78], "doe": [66, 68, 70, 77, 78], "doesn": 73, "doi": [1, 13, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 62, 79], "dollar": 69, "domain": [69, 78], "don": [64, 77], "done": 65, "dopamin": 1, "dopaminerg": 79, "dot": 69, "down": [0, 62, 64, 66, 77], "download": [62, 74, 77], "drag": 69, "drai": 67, "draw": [1, 20, 21, 67, 69, 70, 71, 72, 74, 76, 78], "drift": [5, 6, 16, 37, 65, 73, 77], "dse": 78, "dtype": [9, 14, 54, 67, 68, 69, 70, 76, 77, 78], "due": 65, "duplic": [71, 72], "dure": [0, 17, 38, 54, 62, 65, 69, 71, 72, 73, 79], "dx": 79, "dynam": [17, 62, 63, 70, 73, 74, 77, 78], "e": [1, 2, 5, 6, 16, 20, 23, 27, 28, 30, 31, 32, 33, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 56, 60, 62, 63, 64, 65, 67, 69, 70, 71, 72, 74, 76, 77, 78, 79], "e49547": 79, "each": [2, 3, 4, 17, 20, 21, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 47, 50, 51, 52, 54, 55, 61, 62, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 77, 78], "easili": [65, 68, 70, 77, 78], "ecg": 74, "ecg_peak": 74, "ecosystem": 62, "edg": [17, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 47, 51, 52, 55, 56, 57, 59, 60, 62], "edgecolor": [66, 70, 72, 76, 78], "editor": 79, "ef": 66, "effect": [32, 33, 38, 44, 69, 72, 79], "effective_precis": 38, "effici": [1, 64], "ehgf": [31, 32, 59], "either": [52, 65, 70, 71, 73, 77], "ekaterina": [1, 79], "elaps": [30, 31, 33, 64, 76], "electrocardiographi": 74, "electron": 1, "element": 73, "elicit": 14, "elif": 79, "ellicit": 9, "elpd": 71, "elpd_diff": 78, "elpd_loo": [71, 78], "els": [72, 76], "emb": [67, 69], "embed": [0, 63, 67, 69, 71], "empir": 1, "empti": 17, "en": [7, 8], "enabl": 1, "encapsul": [68, 76], "encod": [1, 62, 64, 68, 70, 72, 77], "end": [9, 13, 64, 66, 70, 73], "endogen": 38, "energi": [1, 79], "enlarg": 66, "enno": 79, "enough": 62, "ensur": [59, 71, 72, 76, 77], "enter": 64, "entir": 65, "entri": 16, "enumer": [64, 66, 78], "environ": [1, 64, 65, 70, 71, 77, 78], "environment": [1, 65, 72], "epsilon_j": 44, "eq": 11, "equal": [1, 3, 31, 73], "equat": [1, 11, 64, 67, 68, 69, 70, 73, 76, 77], "equival": [44, 66, 70], "erdem": 79, "eric": 79, "error": [1, 32, 33, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 52, 59, 62, 65, 66, 69, 73, 74, 77, 78, 79], "especi": [64, 71, 76, 78], "ess": 72, "ess_bulk": [2, 70, 78], "ess_tail": [2, 70, 78], "estim": [0, 1, 2, 20, 21, 63, 64, 66, 70, 71, 72, 76, 77, 78], "et": [0, 62, 64, 65, 67, 70, 71, 77, 78], "eta": 66, "eta0": [10, 16, 21, 67], "eta1": [10, 16, 21, 67], "etc": 65, "euro": 69, "european": 79, "evalu": [13, 64, 68, 70, 76, 79], "even": [1, 64, 73], "event": [1, 69, 75], "everi": [63, 64, 65, 68, 71, 76, 77, 78], "everyth": 70, "evid": [6, 66, 78], "evidenc": 66, "evolut": [64, 67, 69, 70, 77, 78], "evolv": [63, 64, 76], "exact": [64, 70, 77], "exactli": [64, 68, 70, 71], "exampl": [1, 2, 9, 14, 20, 21, 62, 63, 64, 65, 67, 68, 69, 70, 71, 73, 77, 78], "excel": 70, "except": [32, 33, 43, 67, 69, 70, 78], "exchang": 69, "exclud": [60, 76], "exclus": 60, "execut": [0, 65], "exert": [64, 65], "exhibit": [67, 69], "exist": [50, 52, 53, 54, 55, 65], "exogen": 38, "exot": 68, "exp": [38, 64, 66, 71, 76, 77], "expect": [0, 5, 6, 9, 10, 14, 16, 20, 21, 23, 29, 31, 32, 33, 35, 36, 37, 38, 43, 53, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 76, 77, 78], "expected_mean": [9, 10, 14, 37, 50, 53, 54, 64, 65, 70, 71, 72, 76, 78], "expected_precis": [10, 14, 38, 65, 66, 75], "expected_sigma": [50, 53, 54], "experi": [70, 78], "experiment": [1, 63, 70, 71, 72, 76, 78], "explain": [71, 77, 78], "explan": 78, "explicit": 70, "explicitli": [1, 65, 71, 74], "explor": 78, "exponenti": [7, 8, 13, 63, 64, 66, 77], "exponential_famili": [7, 8], "export": [61, 70], "express": [1, 65, 66, 68, 69, 73, 76, 77], "extend": [65, 66, 67, 69, 71], "extens": [1, 63, 78], "extract": [67, 69, 74, 75, 78], "extrem": [1, 69, 76], "f": [37, 62, 64, 65, 73, 77], "f_1": 65, "f_i": 65, "f_n": 65, "f_x": 66, "facilit": [62, 65], "fact": [73, 76], "fail": 31, "fairli": 72, "fall": 69, "fals": [20, 21, 65, 73, 78], "famili": [7, 8, 13, 34, 63, 64, 66, 77], "familiar": 70, "far": [65, 69, 70, 77, 78], "fashion": 1, "fast": [73, 76, 78], "feasibl": 62, "featur": [20, 21, 65, 71, 74, 77], "februari": 79, "fed": 71, "feed": [20, 21, 76], "fewer": 75, "field": [1, 65, 70, 78], "fig": [66, 68, 72, 73, 75], "figsiz": [20, 21, 64, 65, 66, 68, 70, 72, 73, 75, 76, 77, 78], "figur": [20, 21, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 76, 77, 78], "fil": 11, "file": 1, "fill": 72, "fill_between": [68, 75, 76], "filter": [0, 1, 5, 6, 13, 16, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 65, 70, 71, 72, 75, 76, 78, 79], "final": [1, 77, 78], "find": [53, 62, 63, 65, 69, 70, 77], "finit": [10, 27, 40], "fir": 74, "firebrick": 76, "first": [0, 1, 3, 5, 6, 10, 16, 25, 30, 31, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 76, 77, 78], "first_level_binary_surpris": [67, 78], "first_level_gaussian_surpris": [69, 74, 77], "firt": 23, "fit": [2, 3, 4, 5, 6, 24, 25, 26, 70, 71, 72, 73, 76, 77], "fix": [2, 34, 44, 64, 70, 71, 73, 77, 78], "flatten": 71, "flexibl": [1, 62, 68, 77, 78], "flexibli": 66, "flight": 69, "float": [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 22, 23, 24, 25, 26, 29, 30, 31, 32, 33, 36, 37, 38, 40, 41, 42, 43, 45, 50, 53, 54, 56, 57, 71, 76], "float32": [9, 14, 67, 69, 70, 77, 78], "float64": [68, 76], "floor": 69, "fluctuat": 64, "flux": 77, "fn": 78, "fnhum": [1, 62, 79], "focu": 62, "focus": [65, 76], "folder": 62, "follow": [1, 11, 59, 62, 64, 65, 66, 67, 68, 69, 73, 76, 77, 78], "forc": 76, "fork": [67, 78], "form": [1, 64, 65, 66, 71, 73, 77], "formal": 64, "format": 1, "formul": 1, "forward": [62, 64, 67, 69, 71, 72, 76, 77, 78], "found": [1, 64, 65, 67, 69, 77], "foundat": [1, 62, 77, 79], "four": [1, 65, 76, 78], "fpsyt": 62, "frac": [11, 13, 14, 20, 23, 32, 33, 34, 35, 37, 38, 43, 44, 49, 64, 66, 68, 71, 76], "fraction": 77, "frame": [61, 64, 66, 74, 77], "framework": [1, 62, 63, 64, 65, 66], "franc": 69, "free": [1, 62, 67, 70, 72], "freedom": 66, "fri": [64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "friston": [1, 62, 79], "from": [0, 1, 2, 5, 6, 9, 11, 13, 14, 20, 21, 22, 23, 32, 33, 43, 44, 45, 59, 60, 62, 63, 64, 65, 67, 68, 69, 71, 73, 74, 75, 77, 78], "frontier": [1, 62, 79], "frontiersin": [1, 79], "fry": 54, "fr\u00e4ssle": 62, "full": [1, 6, 62, 66], "fulli": [64, 77], "func": 66, "funcanim": 66, "function": [1, 2, 3, 4, 5, 6, 15, 17, 19, 20, 21, 22, 23, 24, 25, 26, 29, 44, 56, 57, 59, 60, 62, 63, 64, 66, 67, 68, 69, 71, 72, 74, 76, 77, 78], "fundament": 64, "further": [64, 65, 71, 75, 76], "fusion": 70, "futur": [0, 64, 79], "g": [1, 5, 6, 32, 33, 62, 64, 70, 72, 73, 78], "g_": [66, 73], "gabri": 79, "gamma": [11, 13, 66, 68], "gamma_a": 38, "gamma_j": [32, 33, 44], "gaussian": [0, 1, 2, 5, 6, 12, 13, 14, 16, 20, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 65, 70, 71, 72, 73, 74, 75, 76, 78, 79], "gaussian_predictive_distribut": 66, "gcc": [64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "ge": 79, "gelman": 79, "gener": [1, 27, 28, 30, 31, 32, 33, 36, 37, 38, 40, 41, 42, 43, 44, 47, 48, 49, 58, 59, 63, 65, 66, 67, 68, 70, 71, 72, 73, 76, 78, 79], "generalis": [62, 63, 68, 70], "generalised_filt": 66, "get": [35, 65, 66, 69, 70, 71, 72, 75, 76, 77, 78], "get_legend_handles_label": [64, 78], "get_network": [66, 76], "get_update_sequ": 65, "ghgf": [62, 77, 78], "gif": 66, "git": 62, "github": [11, 62], "githubusercont": 77, "give": [67, 69, 70, 73, 76, 78], "given": [0, 6, 9, 11, 14, 20, 23, 24, 25, 26, 27, 28, 29, 32, 33, 34, 37, 38, 43, 44, 48, 49, 53, 54, 60, 62, 64, 65, 66, 67, 68, 69, 70, 72, 73, 76, 77, 78], "global": [1, 69], "go": [64, 67, 69, 70, 71, 76, 77], "goe": 68, "good": [70, 71, 72, 76], "googl": [63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "grad": [68, 76], "gradient": [3, 68, 76], "grai": 76, "grandpar": 65, "graph": [63, 65, 68, 76], "graphic": 62, "graphviz": [19, 67, 69], "greater": 65, "greatli": 66, "greec": 69, "green": [72, 73], "grei": [20, 64, 66, 69, 72, 75], "grid": [64, 66, 72, 73, 75, 77, 78], "ground": 77, "group": [63, 64, 72, 78], "grow": 68, "grw": [64, 77], "grw_1": 77, "grw_2": 77, "guid": 64, "gz": [68, 76], "h": [1, 27, 28, 30, 31, 32, 33, 36, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 62, 64, 66, 78, 79], "ha": [1, 17, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 47, 51, 52, 55, 56, 64, 65, 66, 67, 68, 69, 70, 71, 76, 77, 78], "had": [70, 71, 78], "halfnorm": 71, "hamiltonian": [67, 69, 78], "hand": [33, 63, 70], "handi": 73, "handl": [63, 64, 66, 68, 70, 71, 78], "happen": [64, 70, 73, 77], "harrison": [62, 79], "hat": [9, 14, 20, 23, 32, 33, 35, 37, 38, 43, 44, 48, 49, 64, 70, 71, 73], "have": [1, 29, 44, 59, 64, 65, 67, 68, 69, 70, 71, 73, 76, 77, 78], "hdi_3": [2, 70, 78], "hdi_97": [2, 70, 78], "he": 70, "head": [70, 77], "heart": [0, 64, 65], "heartbeat": 74, "heatmap": 18, "heavi": 65, "hedvig": 79, "height": [20, 21, 77], "heinzl": 62, "help": [69, 71, 77], "her": 70, "here": [1, 2, 22, 23, 24, 25, 26, 62, 64, 65, 66, 67, 68, 69, 70, 71, 72, 74, 76, 77, 78], "hgf": [0, 1, 2, 3, 4, 5, 6, 18, 20, 21, 22, 23, 24, 25, 26, 29, 30, 58, 62, 63, 64, 65, 66, 68, 71, 72, 73, 74, 75, 76, 77], "hgf_loglik": [67, 69, 70, 72, 74, 78], "hgf_logp_op": [2, 67, 69, 70, 71, 72, 74, 78], "hgf_logp_op_pointwis": [71, 78], "hgf_mcmc": [67, 69], "hgfdistribut": [67, 68, 69, 70, 71, 72, 74, 78], "hgfpointwis": [71, 78], "hhgf_loglik": 2, "hidden": [1, 64, 76, 77, 78], "hide": 76, "hierarch": [0, 1, 5, 6, 13, 16, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 65, 70, 72, 74, 75, 76, 78, 79], "hierarchi": [0, 1, 2, 3, 4, 16, 62, 64, 65, 67, 69, 77], "hierarchicalgaussianfilt": 70, "high": [75, 76], "high_nois": 73, "high_prob": 76, "higher": [64, 67, 69, 71, 72, 73, 77, 78], "highest": 1, "highli": [1, 69, 78], "hist": 76, "hold": [64, 70], "home": 1, "hood": 66, "hostedtoolcach": [67, 69, 70, 71, 72, 74, 76, 78], "hour": [63, 77], "hourli": [77, 79], "how": [63, 64, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "howev": [1, 64, 65, 66, 68, 69, 70, 71, 73, 74, 78], "html": 11, "http": [1, 7, 8, 11, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 62, 72, 77, 79], "human": [1, 62, 79], "hyper": 71, "hyperparamet": [13, 34, 66], "hyperprior": [71, 72], "i": [0, 1, 2, 3, 4, 5, 6, 9, 11, 13, 14, 16, 17, 20, 21, 23, 24, 25, 29, 30, 31, 32, 33, 34, 36, 37, 38, 42, 43, 44, 45, 47, 48, 49, 52, 56, 57, 59, 60, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79], "iain": 79, "idata": [2, 74, 76, 78], "idata_kwarg": 78, "idea": [64, 65, 69, 70, 72], "ident": 73, "identifi": 72, "idex": 58, "idx": [57, 68, 72], "iglesia": [1, 62, 67, 70, 78, 79], "ignor": [5, 6], "ii": 1, "iii": 1, "ilabcod": [62, 77], "illustr": [1, 64, 65, 68, 69, 70, 73, 74, 76, 77, 78], "iloc": 75, "imagin": 73, "impact": 76, "implement": [0, 16, 34, 37, 62, 64, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "impli": [29, 58, 64, 66, 68, 69, 76, 77], "implicitli": 70, "import": [2, 9, 14, 20, 21, 62, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "import_dataset1": 74, "importantli": [64, 65], "imposs": 59, "improv": [59, 78], "imshow": 68, "includ": [5, 6, 16, 57, 64, 65, 66, 67, 69, 70, 71, 73, 74], "incom": [64, 77], "incompat": 78, "incorpor": [16, 36, 42, 47, 66, 70, 71], "incorrect": 73, "increas": [66, 67, 69, 72, 73, 76, 77, 78], "increment": [57, 64], "inde": 71, "independ": [63, 66, 72], "index": [17, 20, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 47, 51, 52, 55, 56, 57, 58, 60, 62, 65], "indic": [56, 64, 69, 70, 71, 72, 73, 74, 76, 78], "individu": [1, 62, 72, 79], "inf": [5, 16, 21, 24, 25, 26, 67, 68, 70, 71, 76], "infer": [0, 1, 5, 6, 13, 34, 62, 63, 64, 65, 69, 70, 75, 78, 79], "inferred_paramet": 72, "infinit": [28, 41, 68, 76], "influenc": [0, 1, 37, 64, 65, 66, 67, 69, 71, 73, 76, 77, 78], "inform": [1, 13, 17, 57, 65, 66, 67, 68, 69, 71, 73, 76, 77, 78], "infti": 69, "ingredi": 70, "inherit": [5, 6, 62, 64, 77], "initi": [2, 3, 4, 16, 17, 65, 66, 67, 69, 70, 71, 72, 74, 76, 77, 78], "initial_belief": 78, "initial_mean": [16, 20, 21, 67, 69, 70, 71, 72, 74, 78], "initial_precis": [16, 20, 21, 67, 69, 70, 74, 78], "initv": 72, "inplac": 68, "input": [1, 2, 3, 4, 5, 6, 16, 17, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 33, 39, 47, 51, 52, 53, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 77, 78], "input_convers": 74, "input_data": [2, 3, 4, 5, 6, 20, 21, 57, 62, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "input_nodes_idx": 39, "input_precis": [5, 6, 65, 66, 73, 75], "input_typ": 74, "insert": 64, "insid": [70, 73, 76, 78], "inspir": [62, 64, 65], "instal": [19, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "instanc": [0, 6, 18, 19, 20, 21, 22, 23, 24, 25, 26, 58, 59, 62, 65, 67, 69, 70, 71, 77], "instanti": [68, 76], "instead": [2, 3, 4, 32, 33, 43, 69, 76, 77, 78], "instruct": 65, "instrument": 73, "int": [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 66, 73], "int32": 78, "integ": [2, 3, 4, 65], "integr": [1, 66, 78], "inter": 1, "interact": [63, 64, 78], "intercept": 64, "interest": [64, 71, 72, 76, 77], "interestingli": 66, "interfac": [62, 70], "interleav": 0, "intern": [34, 63, 68, 70, 71, 73, 77, 79], "interocept": 63, "interpol": 68, "interpret": 1, "intersect": 63, "interv": [29, 35, 36, 37, 38, 40, 41, 42, 43, 45, 66, 73, 74], "interven": 69, "intervent": 69, "introduc": [1, 63, 64, 68, 77, 78], "introduct": [62, 63], "introductori": 77, "intuit": [1, 63, 70], "invers": [1, 5, 6, 23, 62, 63, 64, 70, 71, 72, 76], "inverse_temperatur": [71, 72], "invert": [1, 77, 78], "involv": 1, "io": [11, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "ion": 11, "ipykernel_2273": 65, "ipykernel_3137": 69, "ipython": [64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "ipywidget": [67, 69, 70, 71, 72, 74, 76, 78], "irrespect": 54, "isbn": 1, "isnan": [68, 76], "issn": 1, "item": [2, 3, 4], "iter": [64, 67, 69, 70, 71, 72, 74, 75, 76, 78], "ith": 57, "its": [1, 35, 37, 45, 52, 56, 62, 63, 64, 65, 67, 69, 70, 71, 73, 74, 77, 78], "itself": [64, 65, 67, 73, 77], "iv": [64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "j": [1, 32, 33, 38, 43, 44, 49, 62, 79], "jacobian": [68, 76], "jan": 79, "jax": [0, 5, 17, 21, 22, 23, 54, 57, 62, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "jaxlib": [64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "jean": [1, 79], "jit": [62, 68, 76], "jitted_custom_op_jax": [68, 76], "jitted_vjp_custom_op_jax": [68, 76], "jitter": [67, 69, 70, 71, 72, 74, 76, 78], "jl": 70, "jnp": [16, 21, 24, 25, 26, 66, 67, 68, 69, 70, 72, 73, 76], "job": [67, 69, 70, 71, 72, 74, 76, 78], "joint": [65, 66], "jonah": 79, "journal": [1, 79], "julia": [62, 65, 70], "jump": 64, "jupyt": [67, 69, 70, 71, 72, 74, 76, 78], "just": [70, 71, 72, 73, 78], "k": [1, 11, 22, 23, 27, 28, 30, 31, 32, 33, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 62, 64, 65, 66, 68, 70, 71, 72, 73, 76, 77, 78], "kai": [1, 79], "kalman": [64, 70], "kappa": 64, "kappa_1": 64, "kappa_j": [32, 33, 38, 43], "karl": [1, 79], "kasper": [62, 79], "kdeplot": 72, "keep": [73, 77], "kei": [1, 54, 64, 65, 78], "keyword": [1, 65, 70], "kg": 77, "kind": [32, 56, 62, 64, 65, 66, 68, 69, 71, 73, 75, 76, 77, 78], "kl": [11, 68], "kl_diverg": 68, "klaa": [1, 79], "knew": [67, 69], "know": [64, 70, 73, 78], "knowledg": 77, "known": 73, "kora": 73, "kullback": [11, 68], "kwarg": [7, 8], "l": [13, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 62, 64, 78, 79], "l_a": 76, "l_b": 76, "label": [64, 65, 66, 68, 70, 71, 75, 76, 77, 78], "laew": 1, "lambda": [64, 71, 73], "lambda_1": 64, "lambda_2": [64, 73], "lambda_2x_2": 73, "lambda_3": [64, 73], "lambda_a": [37, 64, 73], "land": 77, "lanillo": 79, "lar": 79, "larg": [65, 66, 77], "larger": [65, 66, 72], "last": [57, 62, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "latent": 64, "later": [38, 62, 64, 71, 78], "latter": 76, "lax": [17, 57, 73, 76], "layer": [5, 64, 69, 77, 78], "layout": [65, 69], "lead": [64, 69, 78], "learn": [1, 62, 64, 68, 72, 73, 75, 77, 79], "learning_r": 78, "learnt": 73, "least": [0, 67, 69, 70, 71, 72, 74, 76, 78], "leav": [0, 64, 71, 77, 78, 79], "lee": [71, 79], "left": [11, 13, 32, 33, 37, 38, 44, 49, 64, 66, 68, 70, 77], "leftarrow": [34, 66], "legend": [64, 65, 66, 70, 71, 73, 75, 76, 77, 78], "legrand": [27, 28, 30, 31, 32, 33, 36, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 62, 73, 79], "leibler": [11, 68], "len": [68, 70, 76, 78], "length": [2, 3, 4, 17, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 47, 51, 52, 55, 57, 70, 71], "leq": 73, "less": [16, 65, 70], "let": [64, 65, 66, 68, 70, 73, 77, 78], "level": [0, 1, 2, 5, 6, 16, 20, 21, 23, 25, 62, 63, 64, 65, 66, 70, 72, 73, 74, 75, 76, 77], "leverag": 71, "li": 64, "lib": [67, 69, 70, 71, 72, 74, 76, 78], "librari": [0, 65, 67, 69, 78], "like": [54, 67, 68, 69, 70, 71, 73, 78], "likelihood": [50, 52, 69, 70, 71, 78], "lilian": 79, "limit": [1, 31, 64, 66, 70, 73, 76, 78], "line": [64, 65, 69, 70, 73], "linear": [32, 33, 56, 63], "linear_hgf": 73, "linearli": 66, "linestyl": [64, 65, 66, 70, 72, 73, 75, 78], "linewidth": [64, 66, 68, 77, 78], "link": [1, 56, 62, 65, 71], "linspac": [71, 72, 75], "list": [2, 3, 4, 5, 17, 20, 21, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 47, 51, 52, 55, 56, 58, 59, 60, 62, 65, 68, 70, 71, 76, 77], "lit": 1, "live": [67, 69, 70, 71, 72, 74, 76, 78], "ln": [11, 68], "load": [62, 77, 78], "load_data": [2, 20, 21, 62, 67, 69, 70, 71, 72, 77, 78], "load_ext": [64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "loc": [64, 66, 68, 75, 76, 77], "log": [2, 4, 5, 6, 9, 14, 20, 62, 67, 69, 70, 71, 76, 78], "log_likelihoo": 78, "log_likelihood": [71, 78], "log_prob": 5, "logist": 15, "logit": 78, "lognorm": 71, "logp": [5, 71, 78], "logp_fn": 76, "logp_pointwis": [71, 78], "lomakina": [1, 62, 79], "london": 11, "long": [73, 79], "loo": 71, "loo_hgf": 71, "look": [67, 68, 69, 73, 78], "loop": [64, 76, 77, 78], "loos": 76, "loss": 76, "loss_arm1": 76, "loss_arm2": 76, "lot": 67, "low": [75, 76], "low_nois": 73, "low_prob": 76, "lower": [64, 65, 66, 67, 68, 72], "lower_bound": 15, "lowest": 62, "luckili": 71, "m": [62, 64, 65], "m2": 77, "m3": 77, "m_1": 64, "m_a": 37, "made": [16, 65, 70, 71, 76, 77, 78], "magic": 77, "mai": [1, 68, 79], "main": [0, 19, 20, 21, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "major": 1, "make": [1, 62, 64, 65, 67, 68, 70, 71, 75, 76, 77], "make_nod": [68, 76], "manag": 73, "mani": [1, 2, 64, 65, 68, 70, 71], "manipul": [0, 17, 62, 63, 67, 70, 71, 76, 77], "manka": 79, "manual": [65, 66, 71, 73, 78], "many_binary_children_hgf": 65, "many_value_children_hgf": 65, "many_value_parents_hgf": 65, "many_volatility_children_hgf": 65, "many_volatility_parents_hgf": 65, "map": 71, "marker": 73, "market": 69, "markov": 1, "mask": 76, "master": 62, "match": [5, 57, 65, 73, 78], "math": [2, 34, 37, 48, 66, 72, 76], "mathcal": [2, 13, 64, 65, 66, 67, 70, 71, 77], "mathemat": [14, 64, 77], "mathi": [1, 13, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 62, 64, 65, 66, 77, 79], "matlab": [62, 64, 69], "matplotlib": [18, 20, 21, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "matrix": [71, 76], "matter": [57, 70, 78], "maxim": 69, "mayb": 71, "mcmc": [2, 63, 78], "mcse_mean": [2, 70, 78], "mcse_sd": [2, 70, 78], "mead": 1, "mean": [1, 2, 5, 6, 9, 12, 14, 16, 20, 21, 30, 31, 32, 33, 35, 36, 37, 43, 50, 53, 54, 59, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 77, 78], "mean_1": [2, 5, 6, 69], "mean_2": [5, 6], "mean_3": [5, 6], "mean_hgf": 75, "mean_mu_g0": 54, "mean_precision_hgf": 75, "measur": [68, 70, 72, 73, 74], "mechan": 1, "media": 62, "mention": 64, "mere": 70, "messag": 65, "meta": [65, 69], "meter": 77, "method": [1, 2, 3, 4, 7, 8, 16, 17, 24, 25, 34, 65, 67, 69, 70, 71, 74, 77], "metric": 70, "michael": 79, "might": [2, 3, 4, 16, 70, 78], "min": 68, "minim": [1, 65, 67, 69, 77], "minimis": 74, "miss": [73, 76], "missing_inputs_u": 76, "mix": 77, "mm": 77, "modal": 74, "model": [1, 2, 3, 4, 5, 6, 18, 20, 21, 22, 23, 24, 25, 26, 31, 58, 59, 63, 65, 66, 72, 73, 75, 76, 79], "model_to_graphviz": [67, 69, 71, 74, 78], "model_typ": [2, 3, 4, 16, 20, 21, 24, 65, 67, 69, 70, 71, 72, 74, 78], "modifi": 70, "modul": [0, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "modular": [62, 64, 65, 78], "mont": [1, 67, 69, 78], "montemagno": 73, "month": 77, "more": [63, 64, 65, 66, 67, 68, 69, 70, 72, 73, 77, 78], "moreov": 71, "most": [16, 64, 65, 66, 67, 68, 69, 70, 76, 77], "mostli": 76, "move": [64, 71, 78], "mu": [9, 14, 23, 32, 33, 35, 37, 48, 64, 67, 69, 70, 71, 77], "mu_": 44, "mu_1": [64, 69, 73, 77], "mu_2": [64, 73], "mu_3": 73, "mu_a": [37, 38, 43, 73], "mu_b": [32, 33, 73], "mu_i": 64, "mu_j": [32, 33, 43, 48], "mu_temperatur": 71, "mu_volatil": 71, "much": [65, 66, 69, 77, 78], "multi": [63, 71, 72], "multiarm": 63, "multilevel": [63, 71, 78], "multinomi": 68, "multipl": [1, 5, 20, 56, 65, 68, 70, 71, 73, 74, 76], "multipleloc": 66, "multipli": 65, "multiprocess": 78, "multithread": 78, "multivari": [7, 66], "multivariatenorm": 66, "must": [56, 73], "m\u00f8ller": [27, 28, 30, 31, 32, 33, 36, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 62, 79], "m\u00fcller": 62, "n": [2, 4, 27, 28, 30, 31, 32, 33, 36, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 62, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "n1662": 1, "n_": [32, 33, 38], "n_1": 65, "n_categori": 68, "n_j": 65, "n_level": [2, 3, 4, 5, 6, 16, 20, 21, 65, 67, 69, 70, 71, 72, 74, 78], "n_node": [65, 66, 73, 76], "n_sampl": [53, 54], "name": 64, "nan": [2, 3, 4, 5, 78], "nativ": [67, 69, 71, 73], "natur": [1, 64, 66], "ncol": [64, 72], "ndarrai": [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 22, 23, 50, 53, 54, 57], "necessarili": 1, "need": [27, 28, 29, 30, 31, 66, 68, 70, 71, 72, 73, 76, 77, 78], "neg": [5, 6, 20, 31, 67, 69, 70, 73, 76], "nelder": 1, "nest": [68, 70, 76, 77], "network": [0, 5, 6, 18, 19, 20, 21, 25, 26, 37, 38, 39, 51, 52, 55, 56, 57, 58, 59, 60, 61, 63, 66, 67, 69, 70, 72, 73, 74, 75, 76, 77, 78], "neural": [0, 17, 39, 51, 52, 55, 56, 59, 63, 64, 65, 73, 78], "neuroimag": 79, "neuromodel": 62, "neuromodul": 1, "neuromodulatori": 1, "neurosci": [1, 62, 67, 69, 71, 79], "new": [0, 20, 21, 32, 33, 35, 37, 38, 40, 41, 42, 45, 50, 51, 52, 53, 54, 57, 62, 64, 65, 66, 67, 68, 69, 71, 72, 73, 76, 77, 78], "new_attribut": 65, "new_belief": 78, "new_input_precision_1": 65, "new_input_precision_2": 65, "new_mean": 66, "new_mu": 54, "new_observ": 78, "new_sigma": 54, "newaxi": [2, 67, 69, 70, 71, 74, 78], "next": [1, 64, 67, 69, 70], "nicola": [73, 79], "nodal": 74, "nodalis": [62, 77], "node": [2, 3, 4, 5, 6, 16, 17, 19, 20, 21, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 69, 70, 71, 73, 74, 76, 78], "node_idx": [20, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 55, 58, 60, 65, 68, 76], "node_paramet": [65, 66], "node_precis": 32, "node_trajectori": [17, 68, 70, 71, 72, 76, 78], "node_typ": 65, "nois": [1, 44, 65, 73], "noisi": [65, 66, 73], "noisier": 73, "non": [32, 33, 51, 55, 63], "non_sequ": 78, "none": [2, 3, 4, 6, 16, 17, 20, 21, 24, 25, 26, 29, 56, 64, 65, 67, 68, 70, 73], "nonlinear_hgf": 73, "noon": 77, "nope": 44, "norm": [66, 75], "normal": [1, 2, 7, 10, 11, 34, 63, 64, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "note": [16, 19, 29, 32, 33, 36, 42, 43, 44, 47, 56, 64, 67, 69, 70, 71, 73, 76, 77, 78], "notebook": [63, 64, 65, 67, 69, 70, 71, 73, 75, 76, 78], "notic": 73, "notion": [64, 65], "nov": 79, "novel": 1, "novemb": 79, "now": [64, 65, 67, 69, 70, 71, 73, 76, 77, 78], "np": [2, 5, 13, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 78], "nrow": [64, 66, 68, 76], "nu": [13, 34], "nu_": 66, "num": 72, "num_sampl": 78, "number": [1, 2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 17, 20, 21, 22, 23, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 47, 50, 51, 52, 53, 54, 55, 57, 65, 66, 67, 68, 69, 70, 71, 72, 73, 76, 78], "numer": [1, 68, 76], "numpi": [2, 4, 5, 21, 22, 23, 54, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "nut": [67, 69, 70, 71, 72, 74, 76, 78], "nutshel": 70, "o": [62, 77, 78], "o_": 70, "object": [72, 78], "observ": [0, 9, 10, 13, 14, 20, 21, 29, 30, 31, 32, 33, 40, 41, 42, 43, 45, 50, 52, 53, 54, 57, 62, 63, 64, 65, 66, 67, 68, 69, 71, 73, 74, 76, 77, 78], "observation_input_0": 70, "observation_input_0_expected_precis": [70, 75], "observation_input_0_surpris": 70, "obtain": 70, "occur": [31, 68, 71], "octob": 79, "offer": [1, 64], "offici": [62, 68], "often": [31, 64, 65, 70, 71, 72], "omega": [67, 68, 69, 71, 74, 76, 77], "omega_": [67, 69, 71], "omega_1": [64, 69, 77], "omega_2": [2, 64, 67, 68, 69, 70, 74, 78], "omega_3": [67, 69], "omega_a": 38, "omega_j": [32, 33], "onc": [64, 65, 78], "one": [1, 2, 3, 4, 20, 30, 31, 32, 33, 34, 37, 43, 64, 65, 66, 70, 71, 76, 77, 78, 79], "ones": [66, 72, 73, 76], "onli": [0, 16, 21, 24, 64, 65, 67, 68, 70, 71, 73, 74, 76, 77], "onlin": 1, "oop": 77, "op": [3, 68, 76], "open": [62, 74], "oper": [62, 66, 68, 70, 76, 77], "operand": [51, 55], "opt": [67, 69, 70, 71, 72, 74, 76, 78], "optim": [1, 59, 62, 64, 65, 67, 69, 76], "optimis": [67, 69, 70], "option": [23, 37, 69, 70], "orang": 69, "order": [56, 57, 62, 64, 65, 66, 67, 69, 70, 73, 78], "org": [1, 7, 8, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 62, 72, 79], "organ": 0, "origin": [59, 62, 73], "orphan": 64, "oscil": 73, "oscillatori": 73, "other": [32, 33, 60, 62, 64, 65, 67, 69, 70, 73, 76, 77, 78], "otherwis": 76, "our": [1, 64, 66, 67, 69, 70, 71, 73, 74, 76, 78], "ourselv": [67, 69], "out": [64, 71, 78, 79], "outcom": [9, 14, 62, 63, 65, 67, 70, 71, 76, 78], "outcome_1": 78, "outcome_2": 78, "output": [68, 70, 76, 79], "output_gradi": [68, 76], "output_typ": 74, "outputs_info": 78, "outsid": 73, "over": [2, 5, 6, 13, 62, 63, 64, 65, 66, 67, 69, 70, 71, 73, 74, 76, 77, 78], "overal": [1, 69, 70], "overcom": 73, "overfit": [69, 76], "overlai": 54, "overtim": 75, "overview": 64, "own": [37, 64, 77], "p": [11, 23, 27, 28, 30, 31, 32, 33, 36, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 62, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "p1": 68, "p2": 68, "p3": 68, "p_a": [37, 73, 76], "p_loo": [71, 78], "pablo": 79, "packag": [1, 62, 65, 67, 69, 70, 71, 72, 74, 76, 78], "page": 1, "pair": 64, "pan": 74, "panda": [61, 70, 74, 77], "panel": [65, 69, 70], "paper": [1, 64], "paralel": 66, "parallel": [3, 5, 6, 71], "paramet": [0, 1, 2, 3, 4, 5, 6, 9, 10, 11, 13, 14, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 66, 71, 73, 74, 77], "parameter": [16, 64], "parameter_structur": 57, "parametr": [11, 13, 17, 23, 50, 52, 62, 64, 65, 66, 67, 68, 69, 70, 71, 72, 78], "parametris": [76, 77, 78], "paraticip": [22, 23], "parent": [0, 5, 6, 16, 17, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 51, 52, 55, 56, 59, 60, 62, 64, 65, 66, 67, 69, 73, 74, 75, 76, 77], "parent_idx": 56, "pareto": 71, "part": [5, 6, 16, 62, 64, 65, 68, 69, 70, 71, 73, 77, 78], "partial": [68, 72, 76], "particip": [70, 71, 72, 74, 78], "particular": [64, 77], "pass": [2, 3, 4, 5, 6, 17, 29, 45, 64, 65, 66, 67, 69, 70, 73, 76, 77], "past": [66, 70], "patholog": 1, "pattern": 79, "pct": 71, "pd": 77, "pdf": [1, 66, 75], "peak": 74, "penni": 11, "per": [71, 72], "percept": [1, 62, 79], "perceptu": [1, 2, 3, 4, 16, 70, 71, 72], "pereira": 62, "perform": [1, 5, 6, 31, 37, 57, 59, 63, 64, 65, 67, 68, 69, 70, 73, 74, 76, 77, 78], "perspect": [67, 69], "peter": 79, "petzschner": 62, "pfenning": [77, 79], "phasic": [5, 6, 16, 37, 38, 43, 64, 77], "phenomena": 65, "phenomenon": 73, "phi": 64, "physio_df": 74, "physiolog": [63, 69], "pi": [13, 14, 20, 32, 33, 35, 38, 43, 44, 49, 64, 66, 67, 69, 73], "pi_": 44, "pi_1": 64, "pi_a": 38, "pi_b": [32, 33], "pi_i": 64, "pi_j": [32, 33, 49], "pid": 78, "piec": 78, "pip": [62, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "pjitfunct": 5, "place": [64, 65, 71, 76], "plai": [1, 69], "plausibl": 62, "pleas": 71, "plot": [64, 65, 66, 68, 70, 72, 73, 75, 76, 77, 78], "plot_compar": 78, "plot_correl": 69, "plot_network": [65, 66, 67, 68, 69, 73, 75, 76, 77, 78], "plot_nod": [65, 68, 73, 76], "plot_posterior": [71, 76], "plot_raw": 74, "plot_trac": [67, 68, 69, 70, 74, 78], "plot_trajectori": [62, 65, 67, 69, 73, 74, 77, 78], "plt": [64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "plu": 76, "pm": [2, 67, 68, 69, 70, 71, 72, 74, 76, 78], "pmid": 1, "point": [13, 24, 25, 26, 29, 35, 36, 37, 38, 40, 41, 42, 43, 45, 57, 64, 65, 66, 67, 68, 69, 70, 71, 76, 77], "pointer": [27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 55], "pointwis": [4, 71, 78], "pointwise_loglikelihood": [71, 78], "pool": 72, "popen_fork": 78, "popul": 71, "popular": 78, "posit": [65, 70, 71, 77], "possess": 73, "possibl": [10, 37, 62, 63, 65, 66, 68, 70, 71, 73, 74, 78], "post": 68, "posterior": [1, 2, 44, 62, 63, 64, 66, 77], "posterior_mean": 32, "posterior_precis": 33, "posterior_update_mean_continuous_nod": [30, 31, 33], "posterior_update_precision_continuous_nod": [30, 31, 32], "posteriori": 71, "potenti": [2, 67, 68, 69, 70, 72, 74, 76, 78], "power": [78, 79], "pp": [13, 34], "ppg": 74, "pr": [67, 70], "practic": [63, 65, 66, 70, 79], "pre": [16, 17, 50, 52, 54, 67, 68, 69, 78], "precipit": 77, "precis": [1, 5, 6, 10, 12, 14, 16, 20, 21, 27, 28, 30, 31, 32, 33, 35, 36, 38, 40, 41, 43, 44, 46, 53, 59, 62, 63, 64, 65, 66, 67, 68, 69, 73, 76, 77], "precision_1": [2, 5, 6], "precision_2": [2, 5, 6], "precision_3": [5, 6], "precsnoland": 77, "prectotland": 77, "predict": [1, 13, 14, 17, 32, 33, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 52, 59, 63, 65, 66, 69, 70, 71, 74, 76, 77, 79], "predict_precis": 32, "prediction_error": [32, 33], "presenc": 72, "present": [62, 63, 64, 65, 67, 69, 70, 71, 76, 77], "press": 79, "previou": [0, 1, 29, 30, 31, 33, 35, 36, 37, 38, 40, 41, 42, 43, 45, 52, 53, 64, 65, 67, 68, 69, 70, 71, 73, 77, 78], "previous": [64, 70, 77], "principl": [1, 59, 64, 65, 66, 70, 77, 78], "print": [2, 62], "prior": [2, 63, 65, 66, 67, 69, 70, 71, 74, 77, 78], "probabilist": [0, 1, 2, 17, 20, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 55, 62, 63, 64, 66, 69, 70, 74, 76, 78], "probabl": [0, 1, 2, 4, 5, 6, 9, 10, 13, 20, 23, 29, 34, 50, 63, 64, 66, 67, 69, 70, 71, 72, 76, 78], "problem": [63, 72], "procedur": [65, 71, 78], "proceed": 71, "process": [1, 30, 31, 37, 39, 51, 52, 55, 62, 63, 65, 66, 73, 76, 77, 78], "produc": [71, 76, 78], "product": [68, 76], "programmat": 70, "progress": [65, 68, 73], "propag": [0, 17, 57, 65, 66, 70, 77, 78], "propens": [64, 71], "properti": [1, 65], "proport": 66, "propos": 59, "provid": [1, 2, 3, 4, 5, 16, 20, 23, 56, 62, 64, 65, 67, 68, 69, 70, 71, 73, 76, 77, 78], "proxim": 65, "pseudo": [13, 66, 71], "psi": [11, 29, 68], "psychiatri": [62, 63, 70, 71, 77], "psycholog": 70, "pt": [68, 71, 76, 78], "public": [1, 11, 68], "publish": [34, 79], "pulcu": [76, 79], "punish": [63, 79], "purpos": [64, 70, 75], "put": 69, "pv": 79, "pval": 68, "py": [65, 67, 69, 70, 71, 72, 74, 76, 78], "pyhgf": [1, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "pymc": [0, 2, 5, 6, 67, 68, 69, 70, 71, 72, 74, 76, 78], "pyplot": [64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "pytensor": [67, 68, 69, 70, 71, 72, 74, 76, 78], "python": [62, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "python3": [67, 69, 70, 71, 72, 74, 76, 78], "pytre": 65, "pytress": 65, "q": [11, 68], "qualiti": 71, "quantiti": [71, 75, 76, 77], "question": 66, "quickli": 69, "quit": 69, "r": [64, 66, 73, 74, 76], "r_a": 66, "r_hat": [2, 70, 78], "rain": 77, "raman": 62, "rand": 66, "randn": 66, "random": [1, 5, 6, 16, 37, 54, 65, 66, 68, 70, 71, 72, 73, 75, 76], "randomli": [64, 72, 78], "rang": [64, 66, 68, 70, 71, 72, 75, 76, 77], "rank": 78, "rate": [37, 62, 64, 66, 67, 69, 70, 75, 76, 77, 78], "rather": 78, "ratio": 66, "ration": 79, "raw": 77, "rcparam": [64, 65, 66, 67, 69, 70, 71, 73, 74, 76, 78], "reach": 65, "react": 69, "read": [20, 21, 77, 78], "read_csv": 77, "reader": 64, "readi": [76, 78], "real": [1, 43, 65, 66, 67, 69, 70, 73, 74, 77, 78], "reanalysi": 79, "reason": [65, 67, 69, 70, 71], "recap": 78, "receiv": [0, 20, 21, 29, 37, 45, 52, 62, 64, 65, 66, 68, 70, 71, 73, 76, 78], "recent": 1, "recommend": [67, 69, 70, 71, 72, 74, 76, 78], "reconstruct": 78, "record": [63, 76, 77], "recov": [0, 63, 76], "recoveri": [63, 70, 78], "recurs": [60, 62], "red": 72, "reduc": 59, "ref": 72, "ref_val": 71, "refer": [7, 8, 11, 13, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 64, 65, 66, 68, 70, 71, 72, 76, 77], "reflect": [65, 77], "regist": [65, 73, 78], "regular": [31, 64, 67, 78], "reinforc": [1, 62, 63, 64, 67, 68], "relat": [1, 70, 74], "relationship": 56, "relax": 75, "releas": 62, "relev": [16, 67, 69, 73], "reli": [64, 66, 71], "reliabl": 72, "remain": 76, "remot": 64, "remov": 77, "reparameter": [72, 78], "repeat": [64, 71, 76, 77], "replac": [68, 76], "report": [1, 72], "repres": [1, 5, 6, 16, 37, 64, 65, 66, 68, 70, 71, 73, 77], "requier": [68, 76], "requir": [4, 19, 22, 24, 25, 26, 37, 65, 66, 70, 71, 76, 77, 78], "rescorla": [64, 67, 72], "research": [1, 70], "resembl": 70, "resolut": 1, "respect": [11, 64, 65, 69, 78], "respir": 74, "respond": 78, "respons": [2, 3, 4, 5, 6, 62, 63, 67, 69, 71, 72, 74, 77, 78, 79], "response_funct": [2, 3, 4, 6, 62, 67, 69, 70, 71, 72, 74, 77, 78], "response_function_input": [2, 3, 4, 5, 6, 22, 23, 24, 25, 26, 62, 70, 71, 72, 78], "response_function_paramet": [5, 6, 22, 23, 24, 25, 26, 62, 67, 70, 71, 72], "rest": 1, "restrict": [65, 69], "result": [1, 2, 62, 65, 67, 68, 69, 70, 71, 74, 76, 77, 78], "retriev": [65, 69, 74, 78], "return": [0, 4, 5, 6, 9, 10, 11, 13, 14, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 65, 66, 67, 68, 69, 70, 71, 73, 74, 76, 78], "revert": [37, 64], "review": [64, 77], "reward": [63, 70, 78, 79], "rf": [66, 71], "rhat": 72, "rho": [64, 73], "rho_1": 64, "rho_2": 73, "rho_3": 73, "rho_a": [37, 73], "rhoa": 77, "rich": [67, 69, 70, 71, 72, 74, 76, 78], "right": [11, 13, 32, 33, 37, 38, 44, 49, 64, 66, 68, 70, 76], "rise": 69, "rl": 1, "robert": 79, "robust": [67, 69, 70, 71, 72, 74, 76, 78], "rocket": 71, "role": [0, 1, 69], "root": [0, 60, 64, 65, 77], "row": 20, "rr": 74, "rr_": 74, "rule": [78, 79], "run": [63, 64, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 77, 78], "runtimewarn": 78, "rust": 62, "rw": 78, "rw_idata": 78, "rw_model": 78, "rw_updat": 78, "s11222": 79, "s_0": 70, "s_1": 70, "sa": 62, "sake": 70, "salient": 69, "same": [1, 2, 3, 4, 17, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 47, 51, 52, 55, 56, 64, 68, 69, 70, 71, 72, 73, 75, 76, 77, 78], "sampl": [1, 2, 53, 54, 59, 62, 63, 64, 65, 66, 70, 72, 74, 75, 76], "sampler": [67, 69, 70, 71, 72, 74, 76, 78], "samuel": 79, "sandra": [1, 79], "satellit": 79, "save": [38, 66, 71, 72, 78], "scalar": 66, "scale": [64, 66, 75, 77, 78], "scall": 64, "scan": [17, 57, 76, 78], "scan_fn": 17, "scat": 66, "scat2": 66, "scatter": [66, 70, 72, 76, 78], "scatterplot": 72, "scheme": [1, 65], "schrader": 62, "sch\u00f6bi": 62, "scienc": 13, "scipi": [66, 75], "scope": 64, "scratch": 62, "sd": [2, 70, 78], "se": [71, 78], "seaborn": [64, 65, 66, 68, 71, 72, 73, 75, 76, 77, 78], "seagreen": 76, "search": 60, "second": [0, 1, 2, 5, 6, 10, 16, 63, 64, 65, 67, 69, 70, 71, 72, 73, 74, 76, 77, 78], "section": [63, 64, 67, 68, 69, 71, 77, 78], "see": [64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 76, 77, 78], "seed": [64, 65, 66, 70, 71, 72, 73, 75, 76, 77], "seen": [64, 77, 78], "select": [70, 76, 77], "self": [68, 76, 78], "send": [64, 65, 69], "sens": [1, 64, 68, 70], "sensori": [1, 64, 77, 78, 79], "sensory_precis": 53, "sep": [64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "separ": [66, 71, 72, 78], "septemb": 69, "sequenc": [17, 57, 59, 62, 64, 66, 68, 70, 71, 76, 78], "sequenti": [67, 68, 69, 70, 71, 72, 74, 76, 78], "seri": [1, 2, 3, 4, 5, 6, 13, 24, 34, 61, 62, 64, 65, 66, 67, 68, 69, 71, 74, 77, 79], "serotonin": 1, "serv": 62, "session": 63, "set": [16, 20, 21, 56, 58, 60, 62, 64, 65, 66, 67, 69, 70, 71, 72, 73, 75, 76, 78], "set_minor_loc": 66, "set_offset": 66, "set_palett": 71, "set_titl": [66, 68, 72], "set_update_sequ": 75, "set_xdata": 66, "set_xlabel": [66, 72, 75], "set_ydata": 66, "set_ylabel": [66, 68, 72, 75, 76], "sever": [1, 69, 78], "sfreq": 74, "shad": 20, "shape": [0, 1, 3, 65, 66, 68, 71, 72, 73, 76, 77], "share": [65, 67], "sharei": 76, "sharex": [64, 68, 76], "she": 70, "shoot": 69, "shortwav": 77, "should": [0, 2, 4, 5, 20, 21, 29, 34, 37, 38, 44, 53, 56, 65, 66, 68, 70, 71, 76, 78], "show": [20, 21, 65, 69, 78], "show_current_st": [20, 21], "show_heart_r": 74, "show_observ": [20, 21, 65, 73], "show_surpris": [20, 21, 73], "shown": [64, 66, 73], "side": [65, 70, 71], "sidecar": 78, "sigma": [53, 64, 65, 71, 77], "sigma_1": [64, 77], "sigma_2": [64, 77], "sigma_mu_g0": 54, "sigma_pi_g0": 54, "sigma_temperatur": 71, "sigma_volatil": 71, "sigmoid": [64, 71, 72, 76, 78], "sigmoid_hgf": 70, "sigmoid_hgf_idata": 70, "sigmoid_inverse_temperatur": 72, "signal": [0, 62, 63, 73], "sim": [2, 64, 71, 73, 77], "similar": [32, 33, 43, 62, 67, 69, 74, 76, 78], "similarli": [65, 69], "simpl": [2, 64, 65, 66, 70, 72, 76, 77, 78, 79], "simpler": [64, 65, 78], "simplest": [64, 70], "simplex": 1, "simpli": [0, 65, 66, 71, 72, 77, 78], "simplifi": [73, 77], "simpul": 64, "simul": [1, 53, 54, 64, 65, 66, 70, 73, 77, 78, 79], "simultan": 71, "sin": [65, 66, 73], "sinc": [64, 73], "singl": [6, 57, 65, 76, 78], "sinusoid": [65, 73], "sinusoid_linear_hgf": 73, "sinusoid_nonlinear_hgf": 73, "site": [67, 69, 70, 71, 72, 74, 76, 78], "situat": [1, 20, 21, 64, 65, 68, 70, 71, 76], "size": [1, 5, 62, 64, 65, 67, 69, 72, 75, 77], "skew": 68, "slightli": [69, 70, 78], "slope": [64, 73], "slow": 76, "smaller": 72, "smooth": 63, "smoother": 66, "smoothli": 62, "sn": [64, 65, 66, 68, 71, 72, 73, 75, 76, 77, 78], "snoma": 77, "snow": 77, "so": [44, 57, 62, 65, 67, 69, 70, 73, 77, 78], "sofmax": [22, 23], "softmax": [5, 6, 62, 70, 76], "softwar": 62, "solar": 77, "sole": 76, "solid": 78, "solut": 66, "some": [31, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 76, 77], "someth": [64, 65, 70, 73, 75, 78], "sometim": [65, 69, 70, 77, 78], "sort": 66, "sourc": [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62], "space": [43, 59, 69, 71, 73], "sparsiti": 70, "special": 76, "specif": [1, 37, 62, 63, 64, 65, 66, 67, 68, 70, 71, 73, 76], "specifi": [2, 56, 64, 68, 73, 74, 76], "spike": 69, "spiral": 66, "split": [65, 70], "springer": [34, 79], "sqrt": [13, 20, 66, 75], "squar": 71, "stabil": 1, "stabl": 69, "stable_conting": 76, "stack": 66, "staffel": [77, 79], "standard": [0, 20, 21, 30, 32, 50, 53, 54, 59, 63, 64, 65, 67, 68, 69, 70, 71, 75, 77, 78], "start": [2, 3, 4, 59, 64, 66, 68, 70, 71, 76, 77, 78], "stat": [66, 75], "state": [1, 20, 32, 33, 35, 37, 38, 43, 46, 48, 49, 54, 56, 58, 62, 64, 65, 66, 70, 71, 73, 76, 77, 78], "static": [39, 51, 55], "statist": [0, 13, 18, 20, 21, 34, 61, 64, 65, 70, 72, 75, 79], "statproofbook": 11, "std": [73, 75], "steep": 73, "steeper": 73, "stefan": 79, "step": [1, 5, 6, 17, 30, 31, 32, 33, 38, 43, 57, 59, 63, 64, 65, 66, 67, 70, 71, 72, 73, 76, 77, 78], "stephan": [1, 27, 28, 30, 31, 32, 33, 36, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 62, 79], "still": [68, 76], "stim_1": 78, "stim_2": 78, "stimuli": [70, 71, 78], "stimulu": [70, 71, 78], "stochast": [64, 66, 68, 73, 77], "storag": 77, "store": [38, 42, 43, 44, 47, 62, 65, 70, 71], "str": [2, 3, 4, 16, 20, 59], "straight": 64, "straightforward": [64, 66, 76], "strength": [16, 29, 32, 33, 36, 37, 38, 42, 47, 56, 64, 67, 73], "string": 65, "structur": [0, 16, 17, 20, 21, 29, 36, 42, 47, 57, 59, 60, 61, 62, 64, 65, 66, 67, 68, 69, 70, 72, 73, 77, 78], "student": 66, "studi": [1, 63, 69, 71], "sub": [0, 65, 67], "subject": [1, 78], "subplot": [64, 66, 68, 72, 73, 75, 76, 78], "subtl": 78, "success": 72, "suffici": [0, 13, 18, 20, 21, 34, 61, 64, 65, 70, 75, 79], "sufficient_statist": 66, "sufficient_stats_fn": 34, "suggest": [66, 78], "suitabl": 76, "sum": [5, 24, 26, 37, 38, 43, 62, 67, 68, 69, 70, 71, 74, 76, 77, 78], "sum_": [11, 32, 33, 38, 68, 70], "summari": [2, 67, 69, 70, 72, 74, 78], "summer": 77, "support": [5, 20, 21, 62, 64, 65, 67, 69, 70, 71, 72, 74, 76, 78], "suppos": 73, "sure": [68, 70, 76, 78], "surfac": 77, "surpris": [0, 2, 3, 4, 5, 6, 9, 10, 14, 20, 21, 22, 23, 24, 25, 26, 61, 62, 65, 68, 74, 76, 77, 78], "surprise_fn": 68, "suspect": 69, "swgdn": 77, "swiss": 69, "switch": [66, 67], "swtdn": 77, "sy": [64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "system": 62, "systol": 74, "t": [23, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 57, 62, 64, 65, 66, 67, 68, 70, 71, 73, 76, 77, 78], "t2m": 77, "tailor": [67, 68], "take": [0, 1, 64, 67, 70, 71, 77, 78], "tapa": 62, "target": [62, 66, 77], "target_accept": [72, 78], "task": [62, 63, 65, 67, 70, 71, 74, 78], "techniqu": 72, "tediou": 69, "temp": 71, "temperatur": [5, 6, 23, 62, 70, 71, 72, 76, 77], "temporari": 52, "ten": 79, "tensor": [67, 68, 69, 70, 71, 72, 74, 76, 78], "term": [1, 38, 64, 65, 70, 73, 79], "terminologi": [68, 71], "test": [71, 72], "text": [9, 70, 73], "th": 71, "than": [16, 31, 64, 66, 68, 69, 71, 72, 73], "thank": [71, 78], "thecomput": 63, "thei": [0, 65, 66, 67, 68, 69, 70, 71, 72, 78], "them": [64, 70, 76, 77], "theoret": [63, 77], "theori": [1, 64, 78], "therefor": [24, 44, 64, 65, 66, 68, 69, 70, 71, 73, 76, 77, 78], "thestrup": 79, "theta": [65, 66, 73], "theta_": 65, "theta_1": [65, 73], "theta_2": 73, "thi": [0, 1, 2, 4, 5, 6, 13, 16, 17, 19, 20, 21, 24, 29, 30, 31, 32, 33, 34, 38, 43, 44, 52, 57, 59, 60, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "thing": [68, 71, 77], "think": [64, 70], "third": [1, 5, 6, 65, 67, 69], "those": [62, 65, 66, 67, 70, 71], "three": [0, 5, 6, 16, 20, 21, 64, 65, 68, 75, 76], "three_level_hgf": [69, 74], "three_level_hgf_idata": [67, 69], "three_level_trajectori": 78, "three_levels_binary_hgf": [67, 78], "three_levels_continuous_hgf": 69, "three_levels_continuous_hgf_bi": 69, "three_levels_hgf": [21, 67], "three_levels_idata": 78, "threshold": 73, "through": [0, 62, 63, 64, 65, 70, 71, 73, 77, 78], "thu": [1, 77], "ticker": 66, "tight": [65, 69], "tight_layout": [65, 66, 69], "tile": [64, 76, 77], "tim": 79, "time": [1, 2, 3, 4, 5, 6, 13, 22, 23, 24, 25, 26, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 45, 57, 61, 62, 64, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79], "time_step": [2, 3, 4, 5, 6, 29, 30, 31, 33, 35, 36, 37, 38, 40, 41, 42, 43, 45, 70, 76], "timeseri": [2, 20, 21, 69, 77], "timestep": 73, "titl": [1, 64, 66, 68, 71, 73, 75, 78], "tmp": [65, 69], "to_numpi": [77, 78], "to_panda": [66, 70, 75], "toa": 77, "togeth": [21, 67, 69, 70, 78], "tolist": 72, "tomkin": 74, "tonic": [2, 5, 6, 16, 37, 38, 43, 64, 69, 71, 72, 73, 75, 76, 77, 78], "tonic_drift": [16, 20, 21, 67, 73, 74], "tonic_drift_1": [5, 6], "tonic_drift_2": [5, 6], "tonic_drift_3": [5, 6], "tonic_volatil": [16, 20, 21, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "tonic_volatility_1": [5, 6, 69, 74], "tonic_volatility_2": [2, 5, 6, 67, 68, 69, 70, 71, 72, 74, 78], "tonic_volatility_3": [5, 6, 67, 69], "too": 76, "took": [67, 69, 70, 71, 72, 74, 76, 78], "tool": 71, "toolbox": [62, 64, 69, 70], "top": [0, 20, 21, 62, 64, 67, 69, 70, 75, 77], "total": [37, 38, 64, 67, 69, 70, 71, 72, 73, 74, 76, 77, 78], "total_gaussian_surpris": [2, 74], "total_surpris": 70, "toussaint": 62, "toward": [76, 78], "trace": 73, "track": [64, 65, 66, 67, 70, 75, 77], "tradition": 70, "trajectori": [0, 6, 18, 20, 21, 61, 62, 66, 70, 71, 72, 74, 75, 76, 77], "trajectories_df": 61, "transform": [64, 65, 70, 71, 73, 78], "transit": [58, 63, 66], "translat": 62, "transmiss": 77, "transpar": 65, "treat": 71, "tree": 65, "tree_util": [68, 76], "tri": [65, 67, 70, 78], "trial": [1, 64, 69, 70, 76, 78], "trigger": [0, 57, 62, 64, 77], "tristan": 73, "trivial": 70, "true": [9, 14, 20, 21, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 78], "try": [69, 70, 73, 75, 76, 77, 78], "tune": [2, 67, 69, 70, 71, 72, 74, 76, 78], "tupl": [2, 3, 4, 17, 20, 21, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 47, 51, 52, 53, 54, 55, 56, 57, 60, 62, 65, 70, 73], "turn": [63, 64, 77], "tutori": [62, 64, 67, 70, 71, 72, 73, 76, 77, 78], "two": [0, 1, 5, 6, 11, 16, 20, 21, 30, 31, 57, 62, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77], "two_armed_bandit_hgf": 76, "two_armed_bandit_missing_inputs_hgf": 76, "two_bandits_logp": 76, "two_level_hgf": 69, "two_level_hgf_idata": [67, 69, 71, 72, 78], "two_level_trajectori": 78, "two_levels_binary_hgf": [67, 71, 72, 78], "two_levels_continuous_hgf": [69, 77], "two_levels_hgf": [67, 78], "two_levels_idata": 78, "type": [2, 3, 4, 5, 6, 16, 17, 22, 23, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 47, 51, 52, 54, 55, 56, 57, 59, 65, 66, 68, 70, 71, 76, 78], "typic": 65, "u": [21, 43, 44, 62, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "u1": 73, "u2": 73, "u_0": 65, "u_0_prob": 65, "u_1": [64, 65, 73], "u_1_prob": 65, "u_2": [64, 73], "u_loss_arm1": 76, "u_loss_arm2": 76, "u_win_arm1": 76, "u_win_arm2": 76, "ucl": 11, "uk": 11, "uncertain": [1, 65], "uncertainti": [1, 20, 21, 62, 63, 64, 76, 77, 78, 79], "under": [1, 6, 9, 10, 14, 22, 23, 31, 50, 52, 54, 62, 64, 66, 67, 69, 70, 71, 78, 79], "undergo": [70, 71], "underli": [10, 65, 67, 68, 69, 70, 72, 73], "underpin": [64, 66], "understand": [1, 64, 73, 78], "underw": 70, "unexpect": [66, 67, 69], "uniform": [67, 72, 78], "union": [22, 23, 54, 56], "uniqu": [64, 65, 78], "unit": [2, 3, 4, 57, 71], "univari": [8, 34], "univariate_hgf": 66, "univers": [11, 73, 79], "unlik": [64, 69], "unobserv": 76, "until": [68, 73], "up": [20, 21, 62, 64, 69, 77], "updat": [1, 13, 17, 57, 58, 59, 62, 63, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 77, 78], "update_binary_input_par": 36, "update_continuous_input_par": 36, "update_fn": 65, "update_fn1": 65, "update_fn2": 65, "update_sequ": [17, 57, 65, 66, 76], "update_typ": [59, 75], "upon": 64, "upper": [64, 65, 72, 76], "upper_bound": 15, "url": [1, 11, 79], "us": [0, 1, 2, 3, 4, 5, 6, 16, 19, 20, 29, 30, 31, 32, 33, 37, 38, 43, 44, 54, 57, 62, 64, 65, 71, 72, 73, 74, 75, 76, 77, 78, 79], "usd": [20, 21], "user": [62, 64, 70], "userwarn": [65, 67, 69, 70, 71, 72, 74, 76, 78], "usual": [0, 64, 65, 72, 75], "util": [64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "v": [64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "valid": [4, 13, 24, 65, 71, 78, 79], "valu": [0, 2, 5, 6, 10, 16, 17, 20, 21, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 55, 56, 57, 62, 63, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78], "valuat": 69, "value_children": [62, 65, 66, 73, 75, 76, 77], "value_coupling_children": [16, 36, 42, 47], "value_coupling_par": [16, 36, 42, 47], "value_par": 65, "vapa": 44, "vape": 64, "var_nam": [2, 67, 70, 71, 72, 78], "vari": [64, 66, 70, 71, 73], "variabl": [1, 13, 37, 57, 62, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 76, 77, 78], "varianc": [5, 6, 16, 62, 63, 64, 65, 69, 77], "variat": [0, 1, 65, 66], "varieti": 65, "variou": [1, 65, 77], "vartheta": 66, "vector": [2, 3, 4, 5, 16, 54, 57, 66, 68, 70, 71, 72, 76, 78], "vectorized_logp": 5, "vehtari": [71, 79], "verbelen": 79, "veri": [1, 64, 69, 71, 74, 77], "versatil": 77, "version": [17, 27, 28, 30, 31, 32, 33, 36, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 62, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "via": [64, 65], "view": 76, "visibl": 69, "visual": [0, 19, 20, 21, 62, 66, 75, 77, 78], "vizualis": 66, "vjp": [68, 76], "vjp_custom_op": [68, 76], "vjp_custom_op_jax": [68, 76], "vjp_fn": [68, 76], "vjpcustomop": [68, 76], "vol": 62, "volatil": [0, 1, 2, 5, 6, 16, 17, 20, 21, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 47, 49, 51, 52, 55, 56, 59, 62, 63, 66, 67, 69, 70, 71, 72, 73, 75, 76, 78], "volatile_conting": 76, "volatility_children": [65, 66, 75, 77], "volatility_coupl": [16, 20, 21, 29, 67, 74], "volatility_coupling_1": [5, 6], "volatility_coupling_2": [5, 6], "volatility_coupling_children": [16, 36, 42, 47], "volatility_coupling_par": [16, 36, 42, 47], "volatility_par": 65, "volum": 1, "vopa": 38, "vope": [44, 64], "vstack": 68, "w": [64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "w_a": 76, "w_b": 76, "wa": [32, 33, 41, 42, 45, 59, 62, 65, 67, 68, 69, 70, 73, 76, 78], "waad": [27, 28, 30, 31, 32, 33, 36, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 62, 79], "wagenmak": [71, 79], "wagner": [64, 67, 72], "wai": [1, 44, 57, 64, 65, 66, 67, 68, 69, 70, 71, 73, 76, 77, 78], "waic": 79, "walk": [1, 5, 6, 16, 37, 73, 76], "want": [2, 65, 67, 69, 70, 71, 73, 74, 75, 76, 77, 78], "warmup": 2, "warn": [67, 68, 69, 70, 71, 72, 74, 76, 78], "watermark": [64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "wave": [65, 73], "we": [0, 1, 2, 44, 62, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "weak_typ": [9, 14], "weber": [0, 13, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 62, 64, 65, 66, 77, 79], "weigh": [66, 77], "weight": [1, 54, 62, 64, 65, 66, 78], "weigth": 54, "well": [1, 57, 65, 72, 77, 78], "were": [64, 67, 70, 71, 72, 76, 78], "what": [65, 68, 69, 70, 73, 76, 77, 78], "when": [2, 4, 5, 6, 24, 37, 52, 64, 65, 66, 67, 68, 69, 70, 71, 73, 76, 77, 78], "whenev": 62, "where": [0, 3, 4, 5, 6, 14, 20, 21, 23, 32, 33, 37, 38, 43, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 75, 76, 77], "wherea": 74, "whether": [20, 41, 42, 45], "which": [1, 5, 6, 13, 37, 43, 59, 64, 65, 66, 67, 68, 69, 70, 71, 73, 76, 77, 78], "while": [62, 64, 65, 66, 70, 71, 73, 74, 76, 77, 78], "whole": [64, 66, 76], "wide": [16, 67], "width": [20, 21], "wiki": [7, 8], "wikipedia": [7, 8], "william": 11, "wilson": [72, 79], "win": 76, "win_arm1": 76, "win_arm2": 76, "wind": 79, "wine": 76, "wishart": 11, "within": 1, "without": [1, 37, 63, 65, 66, 70, 71, 73], "won": 67, "word": [65, 67, 69, 78], "work": [19, 44, 63, 68, 70, 71, 76, 78], "workflow": [71, 78], "workshop": 77, "world": [64, 66, 70, 78], "worri": [67, 69], "worth": 71, "would": [67, 69, 71, 73, 76, 77], "wpenni": 11, "wrap": [0, 67, 68, 69, 76], "write": [68, 70, 73, 77, 78], "written": [62, 66], "www": [1, 11, 79], "x": [9, 12, 13, 14, 15, 34, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 77], "x1": [64, 73], "x2": [64, 73], "x3": 73, "x64": [67, 69, 70, 71, 72, 74, 76, 78], "x_": [64, 67, 77], "x_1": [64, 66, 73, 77], "x_1_1": 64, "x_1_2": 64, "x_1_3": 64, "x_1_expected_mean": [70, 75], "x_1_expected_precis": 70, "x_1_mean": 70, "x_1_precis": 70, "x_1_surpris": 70, "x_1_xis_0": 66, "x_2": [64, 66, 73, 77], "x_2_1": 64, "x_2_2": 64, "x_2_3": 64, "x_2_expected_mean": 70, "x_2_expected_precis": 70, "x_2_mean": 70, "x_2_precis": 70, "x_2_surpris": 70, "x_3": 73, "x_b": 37, "x_i": 66, "xaxi": 66, "xflr6": 19, "xi": [13, 34, 65, 66, 68], "xi_": [13, 65, 66], "xi_1": 65, "xi_k": 65, "xi_x": [13, 66], "xlabel": [64, 66, 68, 70, 73, 77, 78], "xlim": 66, "y": [13, 62, 66, 70, 72, 76, 78], "y1": 68, "y2": 68, "yaxi": 66, "ye": 73, "year": [1, 77, 79], "yet": 76, "ylabel": [64, 66, 68, 73, 77, 78], "ylim": 66, "you": [1, 62, 63, 65, 68, 70, 73, 76, 77, 78], "your": [1, 77, 78], "z": [66, 71], "z_": 71, "zero": 73, "zeta": 43, "zip": [64, 66, 72, 75, 76, 78], "zoom": 73, "zorder": [68, 72], "zurich": [63, 77], "\u03c9_2": 2}, "titles": ["API", "How to cite?", "pyhgf.distribution.HGFDistribution", "pyhgf.distribution.HGFLogpGradOp", "pyhgf.distribution.HGFPointwise", "pyhgf.distribution.hgf_logp", "pyhgf.distribution.logp", "pyhgf.math.MultivariateNormal", "pyhgf.math.Normal", "pyhgf.math.binary_surprise", "pyhgf.math.binary_surprise_finite_precision", "pyhgf.math.dirichlet_kullback_leibler", "pyhgf.math.gaussian_density", "pyhgf.math.gaussian_predictive_distribution", "pyhgf.math.gaussian_surprise", "pyhgf.math.sigmoid", "pyhgf.model.HGF", "pyhgf.model.Network", "pyhgf.plots.plot_correlations", "pyhgf.plots.plot_network", "pyhgf.plots.plot_nodes", "pyhgf.plots.plot_trajectories", "pyhgf.response.binary_softmax", "pyhgf.response.binary_softmax_inverse_temperature", "pyhgf.response.first_level_binary_surprise", "pyhgf.response.first_level_gaussian_surprise", "pyhgf.response.total_gaussian_surprise", "pyhgf.updates.posterior.binary.binary_node_update_finite", "pyhgf.updates.posterior.binary.binary_node_update_infinite", "pyhgf.updates.posterior.categorical.categorical_input_update", "pyhgf.updates.posterior.continuous.continuous_node_update", "pyhgf.updates.posterior.continuous.continuous_node_update_ehgf", "pyhgf.updates.posterior.continuous.posterior_update_mean_continuous_node", "pyhgf.updates.posterior.continuous.posterior_update_precision_continuous_node", "pyhgf.updates.posterior.exponential.posterior_update_exponential_family", "pyhgf.updates.prediction.binary.binary_state_node_prediction", "pyhgf.updates.prediction.continuous.continuous_node_prediction", "pyhgf.updates.prediction.continuous.predict_mean", "pyhgf.updates.prediction.continuous.predict_precision", "pyhgf.updates.prediction.dirichlet.dirichlet_node_prediction", "pyhgf.updates.prediction_error.inputs.binary.binary_input_prediction_error_finite_precision", "pyhgf.updates.prediction_error.inputs.binary.binary_input_prediction_error_infinite_precision", "pyhgf.updates.prediction_error.inputs.continuous.continuous_input_prediction_error", "pyhgf.updates.prediction_error.inputs.continuous.continuous_input_value_prediction_error", "pyhgf.updates.prediction_error.inputs.continuous.continuous_input_volatility_prediction_error", "pyhgf.updates.prediction_error.inputs.generic.generic_input_prediction_error", "pyhgf.updates.prediction_error.nodes.binary.binary_state_node_prediction_error", "pyhgf.updates.prediction_error.nodes.continuous.continuous_node_prediction_error", "pyhgf.updates.prediction_error.nodes.continuous.continuous_node_value_prediction_error", "pyhgf.updates.prediction_error.nodes.continuous.continuous_node_volatility_prediction_error", "pyhgf.updates.prediction_error.nodes.dirichlet.clusters_likelihood", "pyhgf.updates.prediction_error.nodes.dirichlet.create_cluster", "pyhgf.updates.prediction_error.nodes.dirichlet.dirichlet_node_prediction_error", "pyhgf.updates.prediction_error.nodes.dirichlet.get_candidate", "pyhgf.updates.prediction_error.nodes.dirichlet.likely_cluster_proposal", "pyhgf.updates.prediction_error.nodes.dirichlet.update_cluster", "pyhgf.utils.add_edges", "pyhgf.utils.beliefs_propagation", "pyhgf.utils.fill_categorical_state_node", "pyhgf.utils.get_update_sequence", "pyhgf.utils.list_branches", "pyhgf.utils.to_pandas", "PyHGF: A Neural Network Library for Predictive Coding", "Learn", "Introduction to the Generalised Hierarchical Gaussian Filter", "Creating and manipulating networks of probabilistic nodes", "From Reinforcement Learning to Generalised Bayesian Filtering", "The binary Hierarchical Gaussian Filter", "The categorical Hierarchical Gaussian Filter", "The continuous Hierarchical Gaussian Filter", "Using custom response models", "Hierarchical Bayesian modelling with probabilistic neural networks", "Recovering computational parameters from observed behaviours", "Non-linear value coupling", "Example 1: Bayesian filtering of cardiac volatility", "Example 2: Estimating the mean and precision of an input node", "Example 3: A multi-armed bandit task with independent rewards and punishments", "Introduction to the generalised Hierarchical Gaussian Filter", "Application to reinforcement learning", "References"], "titleterms": {"1": [74, 77], "2": [75, 77], "3": [76, 77], "4": 77, "A": [62, 76], "The": [62, 63, 64, 65, 67, 68, 69, 77, 78], "acknowledg": 62, "activ": 73, "ad": 64, "adapt": 66, "add": [67, 69], "add_edg": 56, "an": 75, "api": 0, "applic": 78, "arm": [72, 76], "ascend": 65, "assign": 65, "attribut": 65, "autoregress": 64, "bandit": [72, 76], "bayesian": [66, 71, 74, 76], "behavior": 70, "behaviour": [72, 78], "belief": [64, 76, 78], "beliefs_propag": 57, "between": 77, "bias": 78, "binari": [0, 27, 28, 35, 40, 41, 46, 65, 67, 70, 78], "binary_input_prediction_error_finite_precis": 40, "binary_input_prediction_error_infinite_precis": 41, "binary_node_update_finit": 27, "binary_node_update_infinit": 28, "binary_softmax": 22, "binary_softmax_inverse_temperatur": 23, "binary_state_node_predict": 35, "binary_state_node_prediction_error": 46, "binary_surpris": 9, "binary_surprise_finite_precis": 10, "bivari": 66, "cardiac": 74, "case": [63, 65], "categor": [0, 29, 68], "categorical_input_upd": 29, "cite": 1, "clusters_likelihood": 50, "code": 62, "collect": 66, "comparison": [71, 78], "comput": [71, 72], "configur": [64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "content": 0, "continu": [0, 30, 31, 32, 33, 36, 37, 38, 42, 43, 44, 47, 48, 49, 65, 69], "continuous_input_prediction_error": 42, "continuous_input_value_prediction_error": 43, "continuous_input_volatility_prediction_error": 44, "continuous_node_predict": 36, "continuous_node_prediction_error": 47, "continuous_node_upd": 30, "continuous_node_update_ehgf": 31, "continuous_node_value_prediction_error": 48, "continuous_node_volatility_prediction_error": 49, "correl": 69, "coupl": [64, 65, 73, 77], "creat": [65, 67, 68, 69, 70], "create_clust": 51, "custom": [65, 70], "data": [67, 69], "dataset": [68, 71, 76], "decis": [70, 76], "deriv": 74, "descend": 65, "detail": 65, "differ": 78, "dirichlet": [0, 39, 50, 51, 52, 53, 54, 55], "dirichlet_kullback_leibl": 11, "dirichlet_node_predict": 39, "dirichlet_node_prediction_error": 52, "distribut": [0, 2, 3, 4, 5, 6, 66, 71], "doe": 62, "drift": 64, "dynam": [64, 65, 66], "edg": 65, "error": [0, 64], "estim": 75, "exampl": [74, 75, 76], "exercis": [63, 77], "exponenti": [0, 34], "famili": 0, "fill_categorical_state_nod": 58, "filter": [62, 63, 64, 66, 67, 68, 69, 74, 77], "first_level_binary_surpris": 24, "first_level_gaussian_surpris": 25, "fit": [62, 67, 68, 69, 78], "fix": [66, 67, 69], "forward": 68, "frequenc": 73, "from": [66, 70, 72, 76], "function": [0, 65, 70, 73], "gaussian": [62, 63, 64, 66, 67, 68, 69, 77], "gaussian_dens": 12, "gaussian_predictive_distribut": 13, "gaussian_surpris": 14, "gener": [0, 45, 62, 64, 77], "generalis": [64, 66, 77], "generic_input_prediction_error": 45, "get": 62, "get_candid": 53, "get_update_sequ": 59, "glossari": [64, 70], "go": 78, "graph": 71, "group": 71, "heart": 74, "hgf": [16, 67, 69, 70, 78], "hgf_logp": 5, "hgfdistribut": 2, "hgflogpgradop": 3, "hgfpointwis": 4, "hierarch": [62, 63, 64, 66, 67, 68, 69, 71, 77], "how": [1, 62], "implement": 65, "import": 67, "independ": 76, "infer": [68, 71, 72, 76], "input": [0, 40, 41, 42, 43, 44, 45, 65, 75], "instal": 62, "instantan": 74, "introduct": [64, 77], "invers": 77, "known": 75, "kown": 75, "learn": [63, 66, 67, 69, 78], "level": [67, 69, 71, 78], "librari": 62, "likely_cluster_propos": 54, "linear": 73, "list_branch": 60, "load": 74, "logp": 6, "manipul": 65, "math": [0, 7, 8, 9, 10, 11, 12, 13, 14, 15], "mcmc": [67, 68, 69], "mean": 75, "miss": 65, "model": [0, 16, 17, 62, 64, 67, 68, 69, 70, 71, 74, 77, 78], "modifi": 65, "multi": 76, "multivari": 65, "multivariatenorm": 7, "network": [17, 62, 64, 65, 68, 71], "neural": [62, 71], "new": 70, "next": 78, "node": [0, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 64, 65, 68, 75, 77], "non": [66, 73], "normal": [8, 66], "nu": 66, "observ": [70, 72], "one": 72, "optim": 78, "paramet": [67, 69, 70, 72, 76, 78], "particip": 76, "physiolog": 74, "plot": [0, 18, 19, 20, 21, 67, 69, 71, 74], "plot_correl": 18, "plot_network": 19, "plot_nod": 20, "plot_trajectori": 21, "posterior": [0, 27, 28, 29, 30, 31, 32, 33, 34, 71, 78], "posterior_update_exponential_famili": 34, "posterior_update_mean_continuous_nod": 32, "posterior_update_precision_continuous_nod": 33, "practic": 77, "precis": 75, "predict": [0, 35, 36, 37, 38, 39, 62, 64, 73, 78], "predict_mean": 37, "predict_precis": 38, "prediction_error": [40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55], "preprocess": 74, "probabilist": [65, 68, 71, 77], "process": [0, 64], "propag": 64, "punish": 76, "pyhgf": [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62], "random": [64, 77, 78], "rate": 74, "real": 76, "record": 74, "recov": [70, 72], "recoveri": [72, 76], "rectifi": 73, "refer": [62, 79], "reinforc": [66, 78], "relu": 73, "rescorla": 78, "respons": [0, 22, 23, 24, 25, 26, 70, 76], "reward": 76, "rl": 78, "rule": [70, 76], "sampl": [67, 68, 69, 71, 78], "sequenc": 65, "sigmoid": 15, "signal": 74, "simul": [68, 71, 72, 76], "solut": [77, 78], "start": 62, "state": [0, 68], "static": 65, "stationari": 66, "statist": 66, "step": 0, "structur": 76, "suffici": 66, "surpris": [67, 69, 70], "system": [64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "tabl": 0, "task": [72, 76], "theori": [63, 65], "three": [67, 69, 78], "through": 66, "time": [65, 76], "to_panda": 61, "total_gaussian_surpris": 26, "track": 73, "trajectori": [67, 69, 78], "transit": 68, "tutori": 63, "two": [67, 69, 78], "unit": 73, "univari": 66, "unknown": 75, "unkown": 75, "unobserv": 65, "updat": [0, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 64, 65, 76], "update_clust": 55, "us": [63, 66, 67, 68, 69, 70], "util": [0, 56, 57, 58, 59, 60, 61], "valu": [64, 65, 73, 77], "vari": 65, "visual": [65, 67, 69, 71, 72], "volatil": [64, 65, 74, 77], "wagner": 78, "walk": [64, 77], "weather": 77, "where": 78, "work": [62, 65], "world": 77}}) \ No newline at end of file +Search.setIndex({"alltitles": {"": [[77, "exercise1"], [77, "exercise2"], [77, "exercise3"], [77, "exercise4"], [77, "exercise5"]], "API": [[0, "api"]], "Acknowledgments": [[62, "acknowledgments"]], "Add data": [[67, "add-data"], [67, "id4"], [69, "add-data"], [69, "id3"]], "Adding a drift to the random walk": [[64, "adding-a-drift-to-the-random-walk"]], "Application to reinforcement learning": [[78, null]], "Autoregressive processes": [[64, "autoregressive-processes"]], "Bayesian inference": [[76, "bayesian-inference"]], "Beliefs trajectories": [[78, "beliefs-trajectories"]], "Biased random": [[78, "biased-random"]], "Binary inputs": [[0, "binary-inputs"]], "Binary nodes": [[0, "binary-nodes"], [0, "id1"]], "Binary state nodes": [[0, "binary-state-nodes"]], "Bivariate normal distribution": [[66, "bivariate-normal-distribution"]], "Categorical nodes": [[0, "categorical-nodes"]], "Continuous inputs": [[0, "continuous-inputs"]], "Continuous nodes": [[0, "continuous-nodes"], [0, "id2"]], "Continuous state nodes": [[0, "continuous-state-nodes"]], "Continuous value coupling": [[65, "continuous-value-coupling"]], "Continuous volatility coupling": [[65, "continuous-volatility-coupling"]], "Coupling with binary nodes": [[65, "coupling-with-binary-nodes"]], "Create the model": [[67, "create-the-model"], [67, "id3"], [69, "create-the-model"], [69, "id2"]], "Creating a new response function": [[70, "creating-a-new-response-function"]], "Creating a new response function: the binary surprise": [[70, "creating-a-new-response-function-the-binary-surprise"]], "Creating and manipulating networks of probabilistic nodes": [[65, null]], "Creating custom update functions": [[65, "creating-custom-update-functions"]], "Creating custom update sequences": [[65, "creating-custom-update-sequences"]], "Creating probabilistic nodes": [[65, "creating-probabilistic-nodes"]], "Creating the decision rule": [[70, "creating-the-decision-rule"]], "Creating the model": [[67, "creating-the-model"], [67, "id7"], [69, "creating-the-model"], [69, "id5"]], "Creating the probabilistic network": [[68, "creating-the-probabilistic-network"]], "Decision rule": [[76, "decision-rule"]], "Dirichlet processes": [[0, "dirichlet-processes"], [0, "id3"]], "Distribution": [[0, "distribution"]], "Dynamic assignation of update sequences": [[65, "dynamic-assignation-of-update-sequences"]], "Dynamic beliefs updating": [[64, "dynamic-beliefs-updating"]], "Example 1: Bayesian filtering of cardiac volatility": [[74, null]], "Example 2: Estimating the mean and precision of an input node": [[75, null]], "Example 3: A multi-armed bandit task with independent rewards and punishments": [[76, null]], "Exercises": [[63, "exercises"]], "Exponential family": [[0, "exponential-family"]], "Filtering the Sufficient Statistics of a Non-Stationary Distribution": [[66, "filtering-the-sufficient-statistics-of-a-non-stationary-distribution"]], "Filtering the Sufficient Statistics of a Stationary Distribution": [[66, "filtering-the-sufficient-statistics-of-a-stationary-distribution"]], "Fitting behaviours to different RL models": [[78, "fitting-behaviours-to-different-rl-models"]], "Fitting the binary HGF with fixed parameters": [[67, "fitting-the-binary-hgf-with-fixed-parameters"]], "Fitting the continuous HGF with fixed parameters": [[69, "fitting-the-continuous-hgf-with-fixed-parameters"]], "Fitting the model forwards": [[68, "fitting-the-model-forwards"]], "Frequency tracking": [[73, "frequency-tracking"]], "From Reinforcement Learning to Generalised Bayesian Filtering": [[66, null]], "Gaussian Random Walks": [[64, "gaussian-random-walks"], [77, "gaussian-random-walks"]], "Generic input": [[0, "generic-input"]], "Getting started": [[62, "getting-started"]], "Glossary": [[64, "glossary"], [70, "glossary"]], "Group-level inference": [[71, "group-level-inference"]], "Hierarchical Bayesian modelling with probabilistic neural networks": [[71, null]], "How does it work?": [[62, "how-does-it-work"]], "How to cite?": [[1, null]], "Imports": [[67, "imports"]], "Inference from the simulated behaviours": [[72, "inference-from-the-simulated-behaviours"]], "Inference using MCMC sampling": [[68, "inference-using-mcmc-sampling"]], "Inputs": [[0, "inputs"]], "Installation": [[62, "installation"]], "Introduction to the Generalised Hierarchical Gaussian Filter": [[64, null]], "Introduction to the generalised Hierarchical Gaussian Filter": [[77, null]], "Kown mean, unknown precision": [[75, "kown-mean-unknown-precision"]], "Learn": [[63, null]], "Learning parameters with MCMC sampling": [[67, "learning-parameters-with-mcmc-sampling"], [69, "learning-parameters-with-mcmc-sampling"]], "Loading and preprocessing physiological recording": [[74, "loading-and-preprocessing-physiological-recording"]], "Math": [[0, "math"]], "Model": [[0, "model"], [74, "model"]], "Model comparison": [[71, "model-comparison"], [78, "model-comparison"]], "Model fitting": [[62, "model-fitting"]], "Model inversion: the generalized Hierarchical Gaussian Filter": [[77, "model-inversion-the-generalized-hierarchical-gaussian-filter"]], "Modifying the attributes": [[65, "modifying-the-attributes"]], "Modifying the edges": [[65, "modifying-the-edges"]], "Multivariate coupling": [[65, "multivariate-coupling"]], "Non-linear predictions": [[73, "non-linear-predictions"]], "Non-linear value coupling": [[73, null]], "Parameter recovery": [[76, "parameter-recovery"]], "Parameters optimization": [[78, "parameters-optimization"]], "Plot correlation": [[69, "plot-correlation"]], "Plot the computational graph": [[71, "plot-the-computational-graph"]], "Plot the signal with instantaneous heart rate derivations": [[74, "plot-the-signal-with-instantaneous-heart-rate-derivations"]], "Plot trajectories": [[67, "plot-trajectories"], [67, "id5"], [69, "plot-trajectories"], [69, "id4"]], "Plots": [[0, "plots"]], "Posterior predictive sampling": [[78, "posterior-predictive-sampling"]], "Posterior updates": [[0, "posterior-updates"]], "Practice: Filtering the worlds weather": [[77, "practice-filtering-the-worlds-weather"]], "Prediction error steps": [[0, "prediction-error-steps"]], "Prediction steps": [[0, "prediction-steps"]], "Preprocessing": [[74, "preprocessing"]], "Probabilistic coupling between nodes": [[77, "probabilistic-coupling-between-nodes"]], "PyHGF: A Neural Network Library for Predictive Coding": [[62, null]], "ReLU (rectified linear unit) activation function": [[73, "relu-rectified-linear-unit-activation-function"]], "Real-time decision and belief updating": [[76, "real-time-decision-and-belief-updating"]], "Recovering HGF parameters from the observed behaviors": [[70, "recovering-hgf-parameters-from-the-observed-behaviors"]], "Recovering computational parameters from observed behaviours": [[72, null]], "References": [[62, "references"], [79, null]], "Rescorla-Wagner": [[78, "rescorla-wagner"]], "Response": [[0, "response"]], "Sampling": [[67, "sampling"], [67, "id9"], [69, "sampling"], [69, "id7"], [71, "sampling"]], "Simulate a dataset": [[71, "simulate-a-dataset"], [76, "simulate-a-dataset"]], "Simulate behaviours from a one-armed bandit task": [[72, "simulate-behaviours-from-a-one-armed-bandit-task"]], "Simulate responses from a participant": [[76, "simulate-responses-from-a-participant"]], "Simulating a dataset": [[68, "simulating-a-dataset"]], "Solution to Exercise 1": [[77, "solution-exercise1"]], "Solution to Exercise 2": [[77, "solution-exercise2"]], "Solution to Exercise 3": [[77, "solution-exercise3"]], "Solution to Exercise 4": [[77, "solution-exercise4"]], "Solutions": [[77, "solutions"], [78, "solutions"]], "State nodes": [[0, "state-nodes"]], "Static assignation of update sequences": [[65, "static-assignation-of-update-sequences"]], "Surprise": [[67, "surprise"], [67, "id6"], [69, "surprise"]], "System configuration": [[64, "system-configuration"], [65, "system-configuration"], [66, "system-configuration"], [67, "system-configuration"], [68, "system-configuration"], [69, "system-configuration"], [70, "system-configuration"], [71, "system-configuration"], [72, "system-configuration"], [73, "system-configuration"], [74, "system-configuration"], [75, "system-configuration"], [76, "system-configuration"], [77, "system-configuration"], [78, "system-configuration"]], "Table of Contents": [[0, null]], "Task structure": [[76, "task-structure"]], "The Generalized Hierarchical Gaussian Filter": [[62, "the-generalized-hierarchical-gaussian-filter"]], "The Hierarchical Gaussian Filter": [[63, "the-hierarchical-gaussian-filter"]], "The Hierarchical Gaussian Filter in a network of predictive nodes": [[64, "the-hierarchical-gaussian-filter-in-a-network-of-predictive-nodes"]], "The binary HGF": [[78, "the-binary-hgf"]], "The binary Hierarchical Gaussian Filter": [[67, null]], "The case of multivariate ascendency": [[65, "the-case-of-multivariate-ascendency"]], "The case of multivariate descendency": [[65, "the-case-of-multivariate-descendency"]], "The categorical Hierarchical Gaussian Filter": [[68, null]], "The categorical state node": [[68, "the-categorical-state-node"]], "The categorical state-transition node": [[68, "the-categorical-state-transition-node"]], "The continuous Hierarchical Gaussian Filter": [[69, null]], "The generative model": [[64, "the-generative-model"], [77, "the-generative-model"]], "The propagation of prediction and prediction errors": [[64, "the-propagation-of-prediction-and-prediction-errors"]], "The three-level binary Hierarchical Gaussian Filter": [[67, "the-three-level-binary-hierarchical-gaussian-filter"]], "The three-level continuous Hierarchical Gaussian Filter": [[69, "the-three-level-continuous-hierarchical-gaussian-filter"]], "The two-level binary Hierarchical Gaussian Filter": [[67, "the-two-level-binary-hierarchical-gaussian-filter"]], "The two-level continuous Hierarchical Gaussian Filter": [[69, "the-two-level-continuous-hierarchical-gaussian-filter"]], "Theory": [[63, "theory"]], "Theory and implementation details": [[65, "theory-and-implementation-details"]], "Three-level HGF": [[78, "three-level-hgf"]], "Three-level model": [[67, "three-level-model"], [69, "three-level-model"]], "Time-varying update sequences": [[65, "time-varying-update-sequences"]], "Tutorials": [[63, "tutorials"]], "Two-level HGF": [[78, "two-level-hgf"]], "Two-level model": [[67, "two-level-model"], [69, "two-level-model"]], "Univariate normal distribution": [[66, "univariate-normal-distribution"]], "Unkown mean, known precision": [[75, "unkown-mean-known-precision"]], "Unkown mean, unknown precision": [[75, "unkown-mean-unknown-precision"]], "Update functions": [[65, "update-functions"]], "Updates functions": [[0, "updates-functions"]], "Use cases": [[63, "use-cases"]], "Using a dynamically adapted \\nu through a collection of Hierarchical Gaussian Filters": [[66, "using-a-dynamically-adapted-nu-through-a-collection-of-hierarchical-gaussian-filters"]], "Using a fixed \\nu": [[66, "using-a-fixed-nu"]], "Using custom response models": [[70, null]], "Using the learned parameters": [[67, "using-the-learned-parameters"], [67, "id10"], [69, "using-the-learned-parameters"], [69, "id8"]], "Utils": [[0, "utils"]], "Value coupling": [[64, "value-coupling"], [65, "value-coupling"], [77, "value-coupling"]], "Visualization of the posterior distributions": [[71, "visualization-of-the-posterior-distributions"]], "Visualizing parameters recovery": [[72, "visualizing-parameters-recovery"]], "Visualizing probabilistic networks": [[65, "visualizing-probabilistic-networks"]], "Visualizing the model": [[67, "visualizing-the-model"], [67, "id8"], [69, "visualizing-the-model"], [69, "id6"]], "Volatility coupling": [[64, "volatility-coupling"], [65, "volatility-coupling"], [77, "volatility-coupling"]], "Where to go next?": [[78, "where-to-go-next"]], "Working with missing or unobserved input sequences": [[65, "working-with-missing-or-unobserved-input-sequences"]], "pyhgf.distribution.HGFDistribution": [[2, null]], "pyhgf.distribution.HGFLogpGradOp": [[3, null]], "pyhgf.distribution.HGFPointwise": [[4, null]], "pyhgf.distribution.hgf_logp": [[5, null]], "pyhgf.distribution.logp": [[6, null]], "pyhgf.math.MultivariateNormal": [[7, null]], "pyhgf.math.Normal": [[8, null]], "pyhgf.math.binary_surprise": [[9, null]], "pyhgf.math.binary_surprise_finite_precision": [[10, null]], "pyhgf.math.dirichlet_kullback_leibler": [[11, null]], "pyhgf.math.gaussian_density": [[12, null]], "pyhgf.math.gaussian_predictive_distribution": [[13, null]], "pyhgf.math.gaussian_surprise": [[14, null]], "pyhgf.math.sigmoid": [[15, null]], "pyhgf.model.HGF": [[16, null]], "pyhgf.model.Network": [[17, null]], "pyhgf.plots.plot_correlations": [[18, null]], "pyhgf.plots.plot_network": [[19, null]], "pyhgf.plots.plot_nodes": [[20, null]], "pyhgf.plots.plot_trajectories": [[21, null]], "pyhgf.response.binary_softmax": [[22, null]], "pyhgf.response.binary_softmax_inverse_temperature": [[23, null]], "pyhgf.response.first_level_binary_surprise": [[24, null]], "pyhgf.response.first_level_gaussian_surprise": [[25, null]], "pyhgf.response.total_gaussian_surprise": [[26, null]], "pyhgf.updates.posterior.binary.binary_node_update_finite": [[27, null]], "pyhgf.updates.posterior.binary.binary_node_update_infinite": [[28, null]], "pyhgf.updates.posterior.categorical.categorical_input_update": [[29, null]], "pyhgf.updates.posterior.continuous.continuous_node_update": [[30, null]], "pyhgf.updates.posterior.continuous.continuous_node_update_ehgf": [[31, null]], "pyhgf.updates.posterior.continuous.posterior_update_mean_continuous_node": [[32, null]], "pyhgf.updates.posterior.continuous.posterior_update_precision_continuous_node": [[33, null]], "pyhgf.updates.posterior.exponential.posterior_update_exponential_family": [[34, null]], "pyhgf.updates.prediction.binary.binary_state_node_prediction": [[35, null]], "pyhgf.updates.prediction.continuous.continuous_node_prediction": [[36, null]], "pyhgf.updates.prediction.continuous.predict_mean": [[37, null]], "pyhgf.updates.prediction.continuous.predict_precision": [[38, null]], "pyhgf.updates.prediction.dirichlet.dirichlet_node_prediction": [[39, null]], "pyhgf.updates.prediction_error.inputs.binary.binary_input_prediction_error_finite_precision": [[40, null]], "pyhgf.updates.prediction_error.inputs.binary.binary_input_prediction_error_infinite_precision": [[41, null]], "pyhgf.updates.prediction_error.inputs.continuous.continuous_input_prediction_error": [[42, null]], "pyhgf.updates.prediction_error.inputs.continuous.continuous_input_value_prediction_error": [[43, null]], "pyhgf.updates.prediction_error.inputs.continuous.continuous_input_volatility_prediction_error": [[44, null]], "pyhgf.updates.prediction_error.inputs.generic.generic_input_prediction_error": [[45, null]], "pyhgf.updates.prediction_error.nodes.binary.binary_state_node_prediction_error": [[46, null]], "pyhgf.updates.prediction_error.nodes.continuous.continuous_node_prediction_error": [[47, null]], "pyhgf.updates.prediction_error.nodes.continuous.continuous_node_value_prediction_error": [[48, null]], "pyhgf.updates.prediction_error.nodes.continuous.continuous_node_volatility_prediction_error": [[49, null]], "pyhgf.updates.prediction_error.nodes.dirichlet.clusters_likelihood": [[50, null]], "pyhgf.updates.prediction_error.nodes.dirichlet.create_cluster": [[51, null]], "pyhgf.updates.prediction_error.nodes.dirichlet.dirichlet_node_prediction_error": [[52, null]], "pyhgf.updates.prediction_error.nodes.dirichlet.get_candidate": [[53, null]], "pyhgf.updates.prediction_error.nodes.dirichlet.likely_cluster_proposal": [[54, null]], "pyhgf.updates.prediction_error.nodes.dirichlet.update_cluster": [[55, null]], "pyhgf.utils.add_edges": [[56, null]], "pyhgf.utils.beliefs_propagation": [[57, null]], "pyhgf.utils.fill_categorical_state_node": [[58, null]], "pyhgf.utils.get_update_sequence": [[59, null]], "pyhgf.utils.list_branches": [[60, null]], "pyhgf.utils.to_pandas": [[61, null]]}, "docnames": ["api", "cite", "generated/pyhgf.distribution/pyhgf.distribution.HGFDistribution", "generated/pyhgf.distribution/pyhgf.distribution.HGFLogpGradOp", "generated/pyhgf.distribution/pyhgf.distribution.HGFPointwise", "generated/pyhgf.distribution/pyhgf.distribution.hgf_logp", "generated/pyhgf.distribution/pyhgf.distribution.logp", "generated/pyhgf.math/pyhgf.math.MultivariateNormal", "generated/pyhgf.math/pyhgf.math.Normal", "generated/pyhgf.math/pyhgf.math.binary_surprise", "generated/pyhgf.math/pyhgf.math.binary_surprise_finite_precision", "generated/pyhgf.math/pyhgf.math.dirichlet_kullback_leibler", "generated/pyhgf.math/pyhgf.math.gaussian_density", "generated/pyhgf.math/pyhgf.math.gaussian_predictive_distribution", "generated/pyhgf.math/pyhgf.math.gaussian_surprise", "generated/pyhgf.math/pyhgf.math.sigmoid", "generated/pyhgf.model/pyhgf.model.HGF", "generated/pyhgf.model/pyhgf.model.Network", "generated/pyhgf.plots/pyhgf.plots.plot_correlations", "generated/pyhgf.plots/pyhgf.plots.plot_network", "generated/pyhgf.plots/pyhgf.plots.plot_nodes", "generated/pyhgf.plots/pyhgf.plots.plot_trajectories", "generated/pyhgf.response/pyhgf.response.binary_softmax", "generated/pyhgf.response/pyhgf.response.binary_softmax_inverse_temperature", "generated/pyhgf.response/pyhgf.response.first_level_binary_surprise", "generated/pyhgf.response/pyhgf.response.first_level_gaussian_surprise", "generated/pyhgf.response/pyhgf.response.total_gaussian_surprise", "generated/pyhgf.updates.posterior.binary/pyhgf.updates.posterior.binary.binary_node_update_finite", "generated/pyhgf.updates.posterior.binary/pyhgf.updates.posterior.binary.binary_node_update_infinite", "generated/pyhgf.updates.posterior.categorical/pyhgf.updates.posterior.categorical.categorical_input_update", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.continuous_node_update", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.continuous_node_update_ehgf", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.posterior_update_mean_continuous_node", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.posterior_update_precision_continuous_node", "generated/pyhgf.updates.posterior.exponential/pyhgf.updates.posterior.exponential.posterior_update_exponential_family", "generated/pyhgf.updates.prediction.binary/pyhgf.updates.prediction.binary.binary_state_node_prediction", "generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.continuous_node_prediction", "generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.predict_mean", "generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.predict_precision", "generated/pyhgf.updates.prediction.dirichlet/pyhgf.updates.prediction.dirichlet.dirichlet_node_prediction", "generated/pyhgf.updates.prediction_error.inputs.binary/pyhgf.updates.prediction_error.inputs.binary.binary_input_prediction_error_finite_precision", "generated/pyhgf.updates.prediction_error.inputs.binary/pyhgf.updates.prediction_error.inputs.binary.binary_input_prediction_error_infinite_precision", "generated/pyhgf.updates.prediction_error.inputs.continuous/pyhgf.updates.prediction_error.inputs.continuous.continuous_input_prediction_error", "generated/pyhgf.updates.prediction_error.inputs.continuous/pyhgf.updates.prediction_error.inputs.continuous.continuous_input_value_prediction_error", "generated/pyhgf.updates.prediction_error.inputs.continuous/pyhgf.updates.prediction_error.inputs.continuous.continuous_input_volatility_prediction_error", "generated/pyhgf.updates.prediction_error.inputs.generic/pyhgf.updates.prediction_error.inputs.generic.generic_input_prediction_error", "generated/pyhgf.updates.prediction_error.nodes.binary/pyhgf.updates.prediction_error.nodes.binary.binary_state_node_prediction_error", "generated/pyhgf.updates.prediction_error.nodes.continuous/pyhgf.updates.prediction_error.nodes.continuous.continuous_node_prediction_error", "generated/pyhgf.updates.prediction_error.nodes.continuous/pyhgf.updates.prediction_error.nodes.continuous.continuous_node_value_prediction_error", "generated/pyhgf.updates.prediction_error.nodes.continuous/pyhgf.updates.prediction_error.nodes.continuous.continuous_node_volatility_prediction_error", "generated/pyhgf.updates.prediction_error.nodes.dirichlet/pyhgf.updates.prediction_error.nodes.dirichlet.clusters_likelihood", "generated/pyhgf.updates.prediction_error.nodes.dirichlet/pyhgf.updates.prediction_error.nodes.dirichlet.create_cluster", "generated/pyhgf.updates.prediction_error.nodes.dirichlet/pyhgf.updates.prediction_error.nodes.dirichlet.dirichlet_node_prediction_error", "generated/pyhgf.updates.prediction_error.nodes.dirichlet/pyhgf.updates.prediction_error.nodes.dirichlet.get_candidate", "generated/pyhgf.updates.prediction_error.nodes.dirichlet/pyhgf.updates.prediction_error.nodes.dirichlet.likely_cluster_proposal", "generated/pyhgf.updates.prediction_error.nodes.dirichlet/pyhgf.updates.prediction_error.nodes.dirichlet.update_cluster", "generated/pyhgf.utils/pyhgf.utils.add_edges", "generated/pyhgf.utils/pyhgf.utils.beliefs_propagation", "generated/pyhgf.utils/pyhgf.utils.fill_categorical_state_node", "generated/pyhgf.utils/pyhgf.utils.get_update_sequence", "generated/pyhgf.utils/pyhgf.utils.list_branches", "generated/pyhgf.utils/pyhgf.utils.to_pandas", "index", "learn", "notebooks/0.1-Theory", "notebooks/0.2-Creating_networks", "notebooks/0.3-Generalised_filtering", "notebooks/1.1-Binary_HGF", "notebooks/1.2-Categorical_HGF", "notebooks/1.3-Continuous_HGF", "notebooks/2-Using_custom_response_functions", "notebooks/3-Multilevel_HGF", "notebooks/4-Parameter_recovery", "notebooks/5-Non_linear_value_coupling", "notebooks/Example_1_Heart_rate_variability", "notebooks/Example_2_Input_node_volatility_coupling", "notebooks/Example_3_Multi_armed_bandit", "notebooks/Exercise_1_Introduction_to_the_generalised_hierarchical_gaussian_filter", "notebooks/Exercise_2_Bayesian_reinforcement_learning", "references"], "envversion": {"sphinx": 63, "sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.viewcode": 1, "sphinxcontrib.bibtex": 9}, "filenames": ["api.rst", "cite.md", "generated/pyhgf.distribution/pyhgf.distribution.HGFDistribution.rst", "generated/pyhgf.distribution/pyhgf.distribution.HGFLogpGradOp.rst", "generated/pyhgf.distribution/pyhgf.distribution.HGFPointwise.rst", "generated/pyhgf.distribution/pyhgf.distribution.hgf_logp.rst", "generated/pyhgf.distribution/pyhgf.distribution.logp.rst", "generated/pyhgf.math/pyhgf.math.MultivariateNormal.rst", "generated/pyhgf.math/pyhgf.math.Normal.rst", "generated/pyhgf.math/pyhgf.math.binary_surprise.rst", "generated/pyhgf.math/pyhgf.math.binary_surprise_finite_precision.rst", "generated/pyhgf.math/pyhgf.math.dirichlet_kullback_leibler.rst", "generated/pyhgf.math/pyhgf.math.gaussian_density.rst", "generated/pyhgf.math/pyhgf.math.gaussian_predictive_distribution.rst", "generated/pyhgf.math/pyhgf.math.gaussian_surprise.rst", "generated/pyhgf.math/pyhgf.math.sigmoid.rst", "generated/pyhgf.model/pyhgf.model.HGF.rst", "generated/pyhgf.model/pyhgf.model.Network.rst", "generated/pyhgf.plots/pyhgf.plots.plot_correlations.rst", "generated/pyhgf.plots/pyhgf.plots.plot_network.rst", "generated/pyhgf.plots/pyhgf.plots.plot_nodes.rst", "generated/pyhgf.plots/pyhgf.plots.plot_trajectories.rst", "generated/pyhgf.response/pyhgf.response.binary_softmax.rst", "generated/pyhgf.response/pyhgf.response.binary_softmax_inverse_temperature.rst", "generated/pyhgf.response/pyhgf.response.first_level_binary_surprise.rst", "generated/pyhgf.response/pyhgf.response.first_level_gaussian_surprise.rst", "generated/pyhgf.response/pyhgf.response.total_gaussian_surprise.rst", "generated/pyhgf.updates.posterior.binary/pyhgf.updates.posterior.binary.binary_node_update_finite.rst", "generated/pyhgf.updates.posterior.binary/pyhgf.updates.posterior.binary.binary_node_update_infinite.rst", "generated/pyhgf.updates.posterior.categorical/pyhgf.updates.posterior.categorical.categorical_input_update.rst", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.continuous_node_update.rst", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.continuous_node_update_ehgf.rst", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.posterior_update_mean_continuous_node.rst", "generated/pyhgf.updates.posterior.continuous/pyhgf.updates.posterior.continuous.posterior_update_precision_continuous_node.rst", "generated/pyhgf.updates.posterior.exponential/pyhgf.updates.posterior.exponential.posterior_update_exponential_family.rst", "generated/pyhgf.updates.prediction.binary/pyhgf.updates.prediction.binary.binary_state_node_prediction.rst", "generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.continuous_node_prediction.rst", "generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.predict_mean.rst", "generated/pyhgf.updates.prediction.continuous/pyhgf.updates.prediction.continuous.predict_precision.rst", "generated/pyhgf.updates.prediction.dirichlet/pyhgf.updates.prediction.dirichlet.dirichlet_node_prediction.rst", "generated/pyhgf.updates.prediction_error.inputs.binary/pyhgf.updates.prediction_error.inputs.binary.binary_input_prediction_error_finite_precision.rst", "generated/pyhgf.updates.prediction_error.inputs.binary/pyhgf.updates.prediction_error.inputs.binary.binary_input_prediction_error_infinite_precision.rst", "generated/pyhgf.updates.prediction_error.inputs.continuous/pyhgf.updates.prediction_error.inputs.continuous.continuous_input_prediction_error.rst", "generated/pyhgf.updates.prediction_error.inputs.continuous/pyhgf.updates.prediction_error.inputs.continuous.continuous_input_value_prediction_error.rst", "generated/pyhgf.updates.prediction_error.inputs.continuous/pyhgf.updates.prediction_error.inputs.continuous.continuous_input_volatility_prediction_error.rst", "generated/pyhgf.updates.prediction_error.inputs.generic/pyhgf.updates.prediction_error.inputs.generic.generic_input_prediction_error.rst", "generated/pyhgf.updates.prediction_error.nodes.binary/pyhgf.updates.prediction_error.nodes.binary.binary_state_node_prediction_error.rst", "generated/pyhgf.updates.prediction_error.nodes.continuous/pyhgf.updates.prediction_error.nodes.continuous.continuous_node_prediction_error.rst", "generated/pyhgf.updates.prediction_error.nodes.continuous/pyhgf.updates.prediction_error.nodes.continuous.continuous_node_value_prediction_error.rst", "generated/pyhgf.updates.prediction_error.nodes.continuous/pyhgf.updates.prediction_error.nodes.continuous.continuous_node_volatility_prediction_error.rst", "generated/pyhgf.updates.prediction_error.nodes.dirichlet/pyhgf.updates.prediction_error.nodes.dirichlet.clusters_likelihood.rst", "generated/pyhgf.updates.prediction_error.nodes.dirichlet/pyhgf.updates.prediction_error.nodes.dirichlet.create_cluster.rst", "generated/pyhgf.updates.prediction_error.nodes.dirichlet/pyhgf.updates.prediction_error.nodes.dirichlet.dirichlet_node_prediction_error.rst", "generated/pyhgf.updates.prediction_error.nodes.dirichlet/pyhgf.updates.prediction_error.nodes.dirichlet.get_candidate.rst", "generated/pyhgf.updates.prediction_error.nodes.dirichlet/pyhgf.updates.prediction_error.nodes.dirichlet.likely_cluster_proposal.rst", "generated/pyhgf.updates.prediction_error.nodes.dirichlet/pyhgf.updates.prediction_error.nodes.dirichlet.update_cluster.rst", "generated/pyhgf.utils/pyhgf.utils.add_edges.rst", "generated/pyhgf.utils/pyhgf.utils.beliefs_propagation.rst", "generated/pyhgf.utils/pyhgf.utils.fill_categorical_state_node.rst", "generated/pyhgf.utils/pyhgf.utils.get_update_sequence.rst", "generated/pyhgf.utils/pyhgf.utils.list_branches.rst", "generated/pyhgf.utils/pyhgf.utils.to_pandas.rst", "index.md", "learn.md", "notebooks/0.1-Theory.ipynb", "notebooks/0.2-Creating_networks.ipynb", "notebooks/0.3-Generalised_filtering.ipynb", "notebooks/1.1-Binary_HGF.ipynb", "notebooks/1.2-Categorical_HGF.ipynb", "notebooks/1.3-Continuous_HGF.ipynb", "notebooks/2-Using_custom_response_functions.ipynb", "notebooks/3-Multilevel_HGF.ipynb", "notebooks/4-Parameter_recovery.ipynb", "notebooks/5-Non_linear_value_coupling.ipynb", "notebooks/Example_1_Heart_rate_variability.ipynb", "notebooks/Example_2_Input_node_volatility_coupling.ipynb", "notebooks/Example_3_Multi_armed_bandit.ipynb", "notebooks/Exercise_1_Introduction_to_the_generalised_hierarchical_gaussian_filter.ipynb", "notebooks/Exercise_2_Bayesian_reinforcement_learning.ipynb", "references.md"], "indexentries": {"__init__() (pyhgf.distribution.hgfdistribution method)": [[2, "pyhgf.distribution.HGFDistribution.__init__", false]], "__init__() (pyhgf.distribution.hgflogpgradop method)": [[3, "pyhgf.distribution.HGFLogpGradOp.__init__", false]], "__init__() (pyhgf.distribution.hgfpointwise method)": [[4, "pyhgf.distribution.HGFPointwise.__init__", false]], "__init__() (pyhgf.math.multivariatenormal method)": [[7, "pyhgf.math.MultivariateNormal.__init__", false]], "__init__() (pyhgf.math.normal method)": [[8, "pyhgf.math.Normal.__init__", false]], "__init__() (pyhgf.model.hgf method)": [[16, "pyhgf.model.HGF.__init__", false]], "__init__() (pyhgf.model.network method)": [[17, "pyhgf.model.Network.__init__", false]], "add_edges() (in module pyhgf.utils)": [[56, "pyhgf.utils.add_edges", false]], "beliefs_propagation() (in module pyhgf.utils)": [[57, "pyhgf.utils.beliefs_propagation", false]], "binary_input_prediction_error_finite_precision() (in module pyhgf.updates.prediction_error.inputs.binary)": [[40, "pyhgf.updates.prediction_error.inputs.binary.binary_input_prediction_error_finite_precision", false]], "binary_input_prediction_error_infinite_precision() (in module pyhgf.updates.prediction_error.inputs.binary)": [[41, "pyhgf.updates.prediction_error.inputs.binary.binary_input_prediction_error_infinite_precision", false]], "binary_node_update_finite() (in module pyhgf.updates.posterior.binary)": [[27, "pyhgf.updates.posterior.binary.binary_node_update_finite", false]], "binary_node_update_infinite() (in module pyhgf.updates.posterior.binary)": [[28, "pyhgf.updates.posterior.binary.binary_node_update_infinite", false]], "binary_softmax() (in module pyhgf.response)": [[22, "pyhgf.response.binary_softmax", false]], "binary_softmax_inverse_temperature() (in module pyhgf.response)": [[23, "pyhgf.response.binary_softmax_inverse_temperature", false]], "binary_state_node_prediction() (in module pyhgf.updates.prediction.binary)": [[35, "pyhgf.updates.prediction.binary.binary_state_node_prediction", false]], "binary_state_node_prediction_error() (in module pyhgf.updates.prediction_error.nodes.binary)": [[46, "pyhgf.updates.prediction_error.nodes.binary.binary_state_node_prediction_error", false]], "binary_surprise() (in module pyhgf.math)": [[9, "pyhgf.math.binary_surprise", false]], "binary_surprise_finite_precision() (in module pyhgf.math)": [[10, "pyhgf.math.binary_surprise_finite_precision", false]], "categorical_input_update() (in module pyhgf.updates.posterior.categorical)": [[29, "pyhgf.updates.posterior.categorical.categorical_input_update", false]], "clusters_likelihood() (in module pyhgf.updates.prediction_error.nodes.dirichlet)": [[50, "pyhgf.updates.prediction_error.nodes.dirichlet.clusters_likelihood", false]], "continuous_input_prediction_error() (in module pyhgf.updates.prediction_error.inputs.continuous)": [[42, "pyhgf.updates.prediction_error.inputs.continuous.continuous_input_prediction_error", false]], "continuous_input_value_prediction_error() (in module pyhgf.updates.prediction_error.inputs.continuous)": [[43, "pyhgf.updates.prediction_error.inputs.continuous.continuous_input_value_prediction_error", false]], "continuous_input_volatility_prediction_error() (in module pyhgf.updates.prediction_error.inputs.continuous)": [[44, "pyhgf.updates.prediction_error.inputs.continuous.continuous_input_volatility_prediction_error", false]], "continuous_node_prediction() (in module pyhgf.updates.prediction.continuous)": [[36, "pyhgf.updates.prediction.continuous.continuous_node_prediction", false]], "continuous_node_prediction_error() (in module pyhgf.updates.prediction_error.nodes.continuous)": [[47, "pyhgf.updates.prediction_error.nodes.continuous.continuous_node_prediction_error", false]], "continuous_node_update() (in module pyhgf.updates.posterior.continuous)": [[30, "pyhgf.updates.posterior.continuous.continuous_node_update", false]], "continuous_node_update_ehgf() (in module pyhgf.updates.posterior.continuous)": [[31, "pyhgf.updates.posterior.continuous.continuous_node_update_ehgf", false]], "continuous_node_value_prediction_error() (in module pyhgf.updates.prediction_error.nodes.continuous)": [[48, "pyhgf.updates.prediction_error.nodes.continuous.continuous_node_value_prediction_error", false]], "continuous_node_volatility_prediction_error() (in module pyhgf.updates.prediction_error.nodes.continuous)": [[49, "pyhgf.updates.prediction_error.nodes.continuous.continuous_node_volatility_prediction_error", false]], "create_cluster() (in module pyhgf.updates.prediction_error.nodes.dirichlet)": [[51, "pyhgf.updates.prediction_error.nodes.dirichlet.create_cluster", false]], "decision rule": [[70, "term-Decision-rule", true]], "dirichlet_kullback_leibler() (in module pyhgf.math)": [[11, "pyhgf.math.dirichlet_kullback_leibler", false]], "dirichlet_node_prediction() (in module pyhgf.updates.prediction.dirichlet)": [[39, "pyhgf.updates.prediction.dirichlet.dirichlet_node_prediction", false]], "dirichlet_node_prediction_error() (in module pyhgf.updates.prediction_error.nodes.dirichlet)": [[52, "pyhgf.updates.prediction_error.nodes.dirichlet.dirichlet_node_prediction_error", false]], "fill_categorical_state_node() (in module pyhgf.utils)": [[58, "pyhgf.utils.fill_categorical_state_node", false]], "first_level_binary_surprise() (in module pyhgf.response)": [[24, "pyhgf.response.first_level_binary_surprise", false]], "first_level_gaussian_surprise() (in module pyhgf.response)": [[25, "pyhgf.response.first_level_gaussian_surprise", false]], "gaussian random walk": [[64, "term-Gaussian-Random-Walk", true]], "gaussian_density() (in module pyhgf.math)": [[12, "pyhgf.math.gaussian_density", false]], "gaussian_predictive_distribution() (in module pyhgf.math)": [[13, "pyhgf.math.gaussian_predictive_distribution", false]], "gaussian_surprise() (in module pyhgf.math)": [[14, "pyhgf.math.gaussian_surprise", false]], "generic_input_prediction_error() (in module pyhgf.updates.prediction_error.inputs.generic)": [[45, "pyhgf.updates.prediction_error.inputs.generic.generic_input_prediction_error", false]], "get_candidate() (in module pyhgf.updates.prediction_error.nodes.dirichlet)": [[53, "pyhgf.updates.prediction_error.nodes.dirichlet.get_candidate", false]], "get_update_sequence() (in module pyhgf.utils)": [[59, "pyhgf.utils.get_update_sequence", false]], "hgf (class in pyhgf.model)": [[16, "pyhgf.model.HGF", false]], "hgf_logp() (in module pyhgf.distribution)": [[5, "pyhgf.distribution.hgf_logp", false]], "hgfdistribution (class in pyhgf.distribution)": [[2, "pyhgf.distribution.HGFDistribution", false]], "hgflogpgradop (class in pyhgf.distribution)": [[3, "pyhgf.distribution.HGFLogpGradOp", false]], "hgfpointwise (class in pyhgf.distribution)": [[4, "pyhgf.distribution.HGFPointwise", false]], "likely_cluster_proposal() (in module pyhgf.updates.prediction_error.nodes.dirichlet)": [[54, "pyhgf.updates.prediction_error.nodes.dirichlet.likely_cluster_proposal", false]], "list_branches() (in module pyhgf.utils)": [[60, "pyhgf.utils.list_branches", false]], "logp() (in module pyhgf.distribution)": [[6, "pyhgf.distribution.logp", false]], "multivariatenormal (class in pyhgf.math)": [[7, "pyhgf.math.MultivariateNormal", false]], "network (class in pyhgf.model)": [[17, "pyhgf.model.Network", false]], "node": [[64, "term-Node", true]], "normal (class in pyhgf.math)": [[8, "pyhgf.math.Normal", false]], "perceptual model": [[70, "term-Perceptual-model", true]], "plot_correlations() (in module pyhgf.plots)": [[18, "pyhgf.plots.plot_correlations", false]], "plot_network() (in module pyhgf.plots)": [[19, "pyhgf.plots.plot_network", false]], "plot_nodes() (in module pyhgf.plots)": [[20, "pyhgf.plots.plot_nodes", false]], "plot_trajectories() (in module pyhgf.plots)": [[21, "pyhgf.plots.plot_trajectories", false]], "posterior_update_exponential_family() (in module pyhgf.updates.posterior.exponential)": [[34, "pyhgf.updates.posterior.exponential.posterior_update_exponential_family", false]], "posterior_update_mean_continuous_node() (in module pyhgf.updates.posterior.continuous)": [[32, "pyhgf.updates.posterior.continuous.posterior_update_mean_continuous_node", false]], "posterior_update_precision_continuous_node() (in module pyhgf.updates.posterior.continuous)": [[33, "pyhgf.updates.posterior.continuous.posterior_update_precision_continuous_node", false]], "predict_mean() (in module pyhgf.updates.prediction.continuous)": [[37, "pyhgf.updates.prediction.continuous.predict_mean", false]], "predict_precision() (in module pyhgf.updates.prediction.continuous)": [[38, "pyhgf.updates.prediction.continuous.predict_precision", false]], "prediction": [[64, "term-Prediction", true]], "prediction error": [[64, "term-Prediction-error", true]], "response function": [[70, "term-Response-function", true]], "response model": [[70, "term-Response-model", true]], "sigmoid() (in module pyhgf.math)": [[15, "pyhgf.math.sigmoid", false]], "to_pandas() (in module pyhgf.utils)": [[61, "pyhgf.utils.to_pandas", false]], "total_gaussian_surprise() (in module pyhgf.response)": [[26, "pyhgf.response.total_gaussian_surprise", false]], "update": [[64, "term-Update", true]], "update_cluster() (in module pyhgf.updates.prediction_error.nodes.dirichlet)": [[55, "pyhgf.updates.prediction_error.nodes.dirichlet.update_cluster", false]], "vape": [[64, "term-VAPE", true]], "vope": [[64, "term-VOPE", true]]}, "objects": {"pyhgf.distribution": [[2, 0, 1, "", "HGFDistribution"], [3, 0, 1, "", "HGFLogpGradOp"], [4, 0, 1, "", "HGFPointwise"], [5, 2, 1, "", "hgf_logp"], [6, 2, 1, "", "logp"]], "pyhgf.distribution.HGFDistribution": [[2, 1, 1, "", "__init__"]], "pyhgf.distribution.HGFLogpGradOp": [[3, 1, 1, "", "__init__"]], "pyhgf.distribution.HGFPointwise": [[4, 1, 1, "", "__init__"]], "pyhgf.math": [[7, 0, 1, "", "MultivariateNormal"], [8, 0, 1, "", "Normal"], [9, 2, 1, "", "binary_surprise"], [10, 2, 1, "", "binary_surprise_finite_precision"], [11, 2, 1, "", "dirichlet_kullback_leibler"], [12, 2, 1, "", "gaussian_density"], [13, 2, 1, "", "gaussian_predictive_distribution"], [14, 2, 1, "", "gaussian_surprise"], [15, 2, 1, "", "sigmoid"]], "pyhgf.math.MultivariateNormal": [[7, 1, 1, "", "__init__"]], "pyhgf.math.Normal": [[8, 1, 1, "", "__init__"]], "pyhgf.model": [[16, 0, 1, "", "HGF"], [17, 0, 1, "", "Network"]], "pyhgf.model.HGF": [[16, 1, 1, "", "__init__"]], "pyhgf.model.Network": [[17, 1, 1, "", "__init__"]], "pyhgf.plots": [[18, 2, 1, "", "plot_correlations"], [19, 2, 1, "", "plot_network"], [20, 2, 1, "", "plot_nodes"], [21, 2, 1, "", "plot_trajectories"]], "pyhgf.response": [[22, 2, 1, "", "binary_softmax"], [23, 2, 1, "", "binary_softmax_inverse_temperature"], [24, 2, 1, "", "first_level_binary_surprise"], [25, 2, 1, "", "first_level_gaussian_surprise"], [26, 2, 1, "", "total_gaussian_surprise"]], "pyhgf.updates.posterior.binary": [[27, 2, 1, "", "binary_node_update_finite"], [28, 2, 1, "", "binary_node_update_infinite"]], "pyhgf.updates.posterior.categorical": [[29, 2, 1, "", "categorical_input_update"]], "pyhgf.updates.posterior.continuous": [[30, 2, 1, "", "continuous_node_update"], [31, 2, 1, "", "continuous_node_update_ehgf"], [32, 2, 1, "", "posterior_update_mean_continuous_node"], [33, 2, 1, "", "posterior_update_precision_continuous_node"]], "pyhgf.updates.posterior.exponential": [[34, 2, 1, "", "posterior_update_exponential_family"]], "pyhgf.updates.prediction.binary": [[35, 2, 1, "", "binary_state_node_prediction"]], "pyhgf.updates.prediction.continuous": [[36, 2, 1, "", "continuous_node_prediction"], [37, 2, 1, "", "predict_mean"], [38, 2, 1, "", "predict_precision"]], "pyhgf.updates.prediction.dirichlet": [[39, 2, 1, "", "dirichlet_node_prediction"]], "pyhgf.updates.prediction_error.inputs.binary": [[40, 2, 1, "", "binary_input_prediction_error_finite_precision"], [41, 2, 1, "", "binary_input_prediction_error_infinite_precision"]], "pyhgf.updates.prediction_error.inputs.continuous": [[42, 2, 1, "", "continuous_input_prediction_error"], [43, 2, 1, "", "continuous_input_value_prediction_error"], [44, 2, 1, "", "continuous_input_volatility_prediction_error"]], "pyhgf.updates.prediction_error.inputs.generic": [[45, 2, 1, "", "generic_input_prediction_error"]], "pyhgf.updates.prediction_error.nodes.binary": [[46, 2, 1, "", "binary_state_node_prediction_error"]], "pyhgf.updates.prediction_error.nodes.continuous": [[47, 2, 1, "", "continuous_node_prediction_error"], [48, 2, 1, "", "continuous_node_value_prediction_error"], [49, 2, 1, "", "continuous_node_volatility_prediction_error"]], "pyhgf.updates.prediction_error.nodes.dirichlet": [[50, 2, 1, "", "clusters_likelihood"], [51, 2, 1, "", "create_cluster"], [52, 2, 1, "", "dirichlet_node_prediction_error"], [53, 2, 1, "", "get_candidate"], [54, 2, 1, "", "likely_cluster_proposal"], [55, 2, 1, "", "update_cluster"]], "pyhgf.utils": [[56, 2, 1, "", "add_edges"], [57, 2, 1, "", "beliefs_propagation"], [58, 2, 1, "", "fill_categorical_state_node"], [59, 2, 1, "", "get_update_sequence"], [60, 2, 1, "", "list_branches"], [61, 2, 1, "", "to_pandas"]]}, "objnames": {"0": ["py", "class", "Python class"], "1": ["py", "method", "Python method"], "2": ["py", "function", "Python function"]}, "objtypes": {"0": "py:class", "1": "py:method", "2": "py:function"}, "terms": {"": [1, 2, 17, 20, 21, 24, 25, 26, 37, 44, 56, 57, 59, 62, 64, 65, 66, 67, 69, 70, 72, 73, 74, 76, 77, 78], "0": [0, 2, 3, 4, 5, 6, 9, 10, 14, 15, 16, 20, 21, 22, 23, 37, 54, 56, 62, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "00": [74, 77, 78], "000000": 78, "000000e": 78, "00039": [1, 62, 79], "002230": 78, "004": 70, "00825": [1, 62, 79], "01": [66, 72, 73, 74, 75, 77, 78], "01193": 67, "013": 70, "014": 78, "016": 79, "016216": 70, "018": [70, 77], "019486": 78, "02": [66, 77], "0265": 69, "027": 2, "03": [73, 77], "030": [13, 34], "031221": 78, "038": 2, "04": [20, 21, 69, 77], "044987": 78, "05": [73, 76, 78], "056803": 70, "060": 79, "061": 77, "062239": 78, "065": 2, "067450": 70, "068": 79, "077038": 70, "08": 79, "08008": 72, "1": [1, 2, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 20, 21, 22, 23, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 52, 56, 59, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 75, 76, 78, 79], "10": [1, 13, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 62, 64, 65, 66, 68, 69, 71, 73, 74, 75, 76, 78, 79], "100": [66, 72, 74], "1000": [2, 64, 65, 66, 73, 74, 75, 77], "10000": [16, 64], "1007": [13, 34, 79], "1016": 79, "1017": 79, "103979": 78, "109": 78, "10937": [27, 28, 30, 31, 32, 33, 36, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 62, 79], "11": [2, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79], "1106": 69, "1118": 69, "112": 78, "113": 78, "114": 79, "117590": 79, "1195": 69, "12": [2, 20, 21, 62, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "1224": 79, "123": [64, 65, 66, 71, 72, 75, 76, 77, 78], "1239": 79, "124": 77, "125": [64, 77], "1251": 79, "1265": 79, "128": [66, 77], "13": [20, 21, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "1359": 70, "138": 62, "14": [2, 70], "1413": 79, "1432": 79, "147": 77, "15": 75, "150": [68, 75], "1500": 65, "15it": 74, "16": [2, 66, 67, 69, 70, 71, 72, 74, 76, 78], "161498": 78, "1662": 1, "16625161": 1, "1684": 71, "17": 68, "1724106460": 65, "18": [20, 21, 70, 71], "185465": 70, "19": [64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "1903": 72, "196": 77, "1_000": [67, 69, 70, 71, 72, 74, 76, 78], "1d": [2, 4], "1e1": [20, 21, 67, 69, 74], "1e2": 77, "1e4": [16, 20, 21, 67, 69, 70, 74], "1i": [11, 68], "1rst": 67, "2": [2, 3, 4, 5, 6, 11, 13, 14, 16, 17, 20, 21, 30, 31, 32, 33, 44, 49, 52, 59, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 78, 79], "20": [1, 72, 73, 78, 79], "200": [64, 65, 66, 77], "2000": [65, 71, 72], "20000": [53, 54], "2001": 11, "2010": 69, "2011": [1, 62, 64, 65, 69, 79], "2013": 62, "2014": [1, 62, 64, 65, 71, 77, 79], "2016": [71, 77, 79], "2017": [76, 79], "2019": [72, 77, 79], "202": 67, "2020": [13, 34, 66, 79], "2021": [62, 67, 70, 78, 79], "2023": [0, 27, 28, 30, 31, 32, 33, 36, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 62, 64, 65, 77, 79], "2024": [62, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "203": 67, "205": 70, "21": 68, "21596": 67, "21629826": 1, "222": 78, "222371": 78, "224": 77, "226": 79, "23": 78, "2305": [27, 28, 30, 31, 32, 33, 36, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 62, 79], "230946": 70, "231": [67, 69, 70, 71, 72, 74, 76, 78], "232583": 70, "233799": 70, "234603": 70, "235004": 70, "24": 77, "244": 77, "245": 77, "247": 77, "249": 77, "25": [64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "250": [64, 65, 68, 73, 77], "250715": 78, "2516081684": 69, "256": 66, "26": [64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 78], "27": [64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79], "270900": 70, "27879": 79, "282": 78, "283697": 70, "296556": 70, "2_000": [67, 69, 70, 71, 72, 74, 76, 78], "2_i": 71, "2a2a2a": 68, "2i": [11, 68], "2nd": 67, "3": [2, 3, 4, 5, 13, 16, 17, 20, 21, 34, 59, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 78, 79], "30": [64, 65, 66, 68, 77, 79], "301674": 70, "308": 77, "31": [64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "3187": 71, "31it": 74, "32": 66, "3200": 71, "3389": [1, 62, 79], "345082": 78, "345825": 78, "35": [66, 68], "350": 73, "35667497": 9, "35it": 74, "38": 71, "385": 78, "387": 77, "388934e": 78, "389923": 70, "4": [59, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 78, 79], "40": 76, "400": [65, 66, 73], "400254": 70, "4093": 69, "41": [64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "416410": 70, "42": [54, 73], "43": 73, "438202": 78, "444049": 70, "446138": 78, "45": [65, 71], "458906": 70, "466356": 70, "471469": 70, "472": 77, "474077": 70, "48550": [27, 28, 30, 31, 32, 33, 36, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 62], "49": 70, "494": 78, "49547": 79, "4c72b0": [64, 70, 77, 78], "5": [0, 1, 2, 20, 21, 62, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79], "50": [74, 75], "500": [71, 75], "500000": 70, "506923": 70, "510971": 70, "511908": 78, "512": 66, "5161": 1, "518301": 70, "52": [13, 34, 79], "520583": 70, "530355": 70, "530717": 70, "53107": 67, "536678": 70, "5377": 77, "54": [70, 72], "540697": 70, "550": 73, "55a868": [64, 72, 78], "566859": 70, "573348": 78, "578": 78, "58": [13, 34, 78, 79], "582766": [66, 75], "597464": 70, "5d1e51": 78, "6": [21, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79], "60": [72, 74], "600": [65, 66, 73], "6174": 69, "622459": 70, "624085": 70, "627284": 70, "631975": 70, "635": 77, "635588": 78, "638038": 70, "64": [66, 71], "64919": [13, 34], "650": 73, "659764": 70, "66": 78, "660445": 70, "661825": 70, "663944": 70, "680811": 62, "683090": 78, "698": 69, "698733": 70, "7": [9, 66, 69, 72, 76, 77, 78, 79], "70": 71, "701": 77, "731660": 70, "732927": 70, "743": 78, "747": 70, "750": 65, "7554": 79, "766": 2, "776": 2, "7_7": [13, 34], "7f7f7f": 68, "8": [1, 11, 62, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79], "80": 76, "800": [65, 66], "806": 2, "828": 69, "829": 70, "834867": 70, "847962": 78, "850": 73, "864853": 78, "865": 77, "876": 78, "87854": 70, "886": 69, "889946": 78, "8992462158203": 62, "9": [11, 20, 21, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79], "90": 65, "900": 65, "903": 69, "910": 69, "9189386": 14, "931": 77, "938": 2, "939": 70, "944": 2, "950": 73, "964": 69, "965": 69, "9696": 79, "97632": 67, "978": [13, 34], "99": 71, "999": 66, "A": [0, 1, 2, 3, 4, 5, 16, 17, 20, 21, 23, 27, 28, 30, 31, 32, 33, 36, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 54, 57, 59, 60, 63, 64, 65, 67, 69, 70, 71, 72, 73, 77, 78, 79], "And": 70, "As": [65, 71, 76], "At": [63, 64, 77], "Being": 70, "But": [65, 69, 70, 71, 77], "By": [2, 3, 4, 31, 37, 62, 69, 70], "For": [1, 17, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 47, 51, 52, 55, 64, 65, 66, 70, 72, 73, 77, 78], "If": [1, 2, 3, 4, 16, 20, 21, 32, 33, 37, 56, 60, 64, 68, 70, 71, 73, 76, 78], "In": [1, 13, 20, 21, 34, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79], "It": [1, 16, 29, 56, 62, 64, 65, 66, 69, 70, 72, 73, 75, 76, 78], "NOT": 78, "OR": 77, "On": 70, "One": [65, 67, 69, 78], "Or": 77, "Such": [64, 66, 78], "That": 78, "The": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 66, 70, 71, 72, 73, 74, 75, 76, 79], "Then": [73, 77], "There": [69, 70, 71, 72, 78], "These": [1, 62, 64, 67], "To": [64, 67, 69, 70, 71, 73, 77, 78], "With": [64, 73], "_": [21, 23, 32, 33, 64, 65, 66, 67, 68, 70, 71, 72, 73, 74, 76, 77, 78], "_1": [70, 71], "__init__": [2, 3, 4, 7, 8, 16, 17], "_a": [35, 37, 38], "_b": [32, 33, 35], "_i": 64, "_j": [32, 33, 43, 44, 48, 49], "a_custom_hgf": 65, "aarhu": [73, 77], "aarhus_weather_df": 77, "ab": 72, "aberr": 69, "abil": 72, "abl": [62, 67, 70, 71, 73], "about": [1, 63, 64, 65, 66, 67, 68, 69, 70, 76, 77, 78], "abov": [60, 64, 65, 66, 69, 70, 73, 76, 77], "absenc": [72, 76], "abstract": [1, 66, 79], "ac": 11, "acceler": 69, "accept": [67, 69, 73], "access": [2, 3, 4, 65, 70], "accommod": 1, "accord": [0, 70, 73], "accordingli": [5, 64, 67, 69, 76, 77], "account": [1, 64, 65, 76], "accumul": 57, "accur": 72, "acetylcholin": 1, "achiev": 66, "across": [26, 64, 66, 67, 69, 76], "act": [67, 69, 70, 71], "action": [62, 70, 71, 78], "actionmodel": 70, "activ": [13, 34, 62, 70, 78, 79], "actual": [62, 65, 68, 76], "acycl": 65, "ad": [67, 68, 69, 73, 75, 76, 77], "adapt": [1, 63, 64, 69, 70, 78], "adapt_diag": [67, 69, 70, 71, 72, 74, 76, 78], "add": [56, 62, 64, 73, 76, 77, 78], "add_group": [71, 78], "add_nod": [2, 3, 4, 62, 65, 66, 68, 73, 75, 76, 77], "addit": [2, 3, 4, 5, 6, 65, 66, 69, 70], "addition": [72, 78], "additionn": [22, 23, 24, 25, 26], "adjac": 65, "adjacencylist": [17, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 47, 51, 52, 55, 56, 57, 65], "adjust": 78, "adopt": [67, 69], "advanc": 63, "advantag": [64, 65, 78], "aesara": [67, 69], "affect": [5, 6, 16, 69, 76, 79], "after": [0, 17, 20, 27, 28, 29, 30, 31, 57, 66, 67, 69, 71, 72, 77, 78], "afterward": [2, 3, 4, 16], "again": [68, 69], "against": 69, "agent": [1, 62, 63, 65, 66, 67, 69, 70, 71, 72, 74, 76, 77, 78], "agnost": 1, "aim": [62, 69], "air": 77, "aki": 79, "al": [0, 62, 64, 65, 67, 70, 71, 77, 78], "algorithm": [1, 62, 64, 67, 74], "align": [64, 66, 70], "alin": 79, "all": [0, 1, 2, 5, 16, 56, 59, 60, 67, 69, 70, 71, 72, 73, 74, 76, 77, 78], "alloc": 52, "allow": [1, 65, 69, 70, 73, 76, 77], "alon": 77, "along": [5, 24, 78], "alpha": [66, 68, 70, 72, 73, 75, 76, 77, 78], "alpha_": [11, 68, 73], "alpha_1": 11, "alpha_2": 11, "alreadi": [60, 65, 70, 71], "also": [16, 20, 36, 38, 42, 47, 60, 62, 64, 65, 67, 69, 70, 71, 73, 75, 76, 77, 78], "altern": [59, 65, 69, 70, 76, 78], "alternative\u00e6li": 71, "alwai": [52, 68, 71, 72, 76, 77, 78], "among": 70, "amount": 69, "an": [1, 2, 3, 4, 5, 6, 7, 8, 14, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 29, 32, 33, 34, 41, 42, 43, 44, 45, 47, 53, 55, 57, 59, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 77, 78], "analys": [1, 78], "analyt": 1, "andrew": 79, "ani": [0, 1, 27, 28, 30, 31, 60, 62, 63, 64, 66, 67, 68, 69, 70, 71, 73], "anim": 66, "ann": 79, "anna": 79, "anoth": [64, 68, 69, 73, 75, 77, 78], "another_custom_hgf": 65, "answer": 72, "anymor": [37, 64, 66], "anyth": [64, 68], "api": [62, 67, 68, 69, 70, 71, 72, 74, 76, 78], "apont": 62, "appar": 64, "appear": [65, 73], "append": [20, 64, 66, 71, 72, 76, 77, 78], "appli": [17, 44, 57, 59, 63, 65, 66, 68, 70, 71, 72, 76, 77, 78], "applic": [1, 63, 65, 66, 69, 70, 72], "apply_along_axi": 66, "approach": [64, 66, 67, 68, 71, 72], "appropri": 75, "approxim": [1, 31, 62, 64, 65, 77], "april": [69, 79], "ar": [0, 1, 2, 4, 5, 16, 17, 20, 29, 44, 56, 57, 60, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "ar1": [64, 76], "arang": [65, 66, 68, 70, 73, 76, 78], "arbitrari": [2, 65, 70, 73, 77], "arbitrarili": 62, "area": [20, 77], "arg": [7, 8, 27, 28, 29, 30, 31, 34, 35, 36, 39, 40, 41, 45, 46, 47, 52], "argument": [2, 3, 4, 65, 67, 69, 70, 73], "arm": [63, 70, 71, 78], "around": [20, 21, 63, 64, 65, 69, 70, 78], "arrai": [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 22, 23, 29, 37, 38, 46, 48, 50, 53, 54, 57, 65, 66, 67, 68, 69, 70, 71, 72, 73, 76, 77, 78], "arrang": 77, "arriv": 64, "articl": [1, 79], "artifici": 73, "arviz": [2, 67, 69, 70, 71, 72, 74, 76, 78], "arxiv": [27, 28, 30, 31, 32, 33, 36, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 62, 72, 79], "as_tensor_vari": [68, 76, 78], "asarrai": [68, 76], "ask": [1, 69], "aspect": 68, "assert": 65, "assess": [52, 67, 69, 78], "assign": [67, 68, 69, 70, 71, 72, 74, 76, 78], "associ": [2, 3, 4, 5, 6, 59, 62, 68, 70, 71, 72, 73, 76, 78, 79], "assum": [1, 30, 31, 34, 40, 41, 56, 64, 65, 67, 69, 70, 71, 72, 73, 75, 76, 77, 78], "assumpt": [75, 78], "astyp": [73, 76], "atmospher": 77, "attribut": [2, 3, 4, 16, 17, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 55, 56, 57, 62, 66, 68, 71, 72, 75, 76], "au": 73, "aug": [64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "august": [69, 79], "author": [1, 73], "auto": [67, 68, 69, 70, 71, 72, 74, 76, 78], "autoconnect": [37, 64, 73], "autoconnection_strength": 73, "autocorrel": 73, "autom": 77, "automat": [65, 67, 69, 71], "autoregress": 37, "avail": [0, 62, 77], "averag": [67, 77], "avoid": 72, "awai": 66, "ax": [18, 20, 21, 64, 65, 66, 68, 72, 73, 75, 76, 78], "axi": [5, 64, 66, 71], "axvlin": 76, "az": [2, 67, 68, 69, 70, 71, 72, 74, 76, 78], "b": [32, 33, 35, 37, 62, 66, 67, 73, 76], "back": [37, 64, 71], "backgroud": 20, "backslash": 1, "backward": 65, "bad": 71, "badg": 63, "bandit": [63, 70, 71, 78], "bank": 69, "base": [1, 54, 59, 64, 67, 68, 69, 70, 71, 72, 74, 76, 78], "batch": [5, 57, 76], "bay": 1, "bayesian": [1, 62, 63, 64, 67, 68, 69, 70, 78, 79], "becaus": [44, 64, 65, 67, 68, 69, 73, 76, 77], "becom": 64, "been": [59, 64, 65, 66, 68, 69, 70, 71, 77, 78], "befor": [0, 20, 33, 59, 64, 65, 66, 69, 70, 71, 72, 76, 77], "beforehand": [32, 69, 78], "begin": [9, 13, 63, 64, 66, 70, 73, 78], "behav": [1, 67, 69, 73, 77], "behavior": [1, 78, 79], "behaviour": [5, 6, 62, 63, 64, 67, 69, 70, 71, 73, 74, 76], "behind": [63, 64, 77], "being": [64, 65, 67, 71, 73, 74, 78], "belief": [0, 6, 17, 20, 54, 57, 62, 63, 65, 66, 69, 70, 71, 72, 73, 77], "beliefs_propag": [17, 66, 76], "belong": [60, 66], "below": [0, 64, 67, 68, 70, 73, 76, 77, 78], "bernoulli": [9, 78], "best": [1, 53, 69, 73, 74, 78], "beta": [76, 78], "better": [31, 69, 70, 71, 72, 77], "between": [0, 1, 5, 6, 11, 16, 29, 30, 31, 32, 33, 35, 36, 37, 38, 40, 41, 42, 43, 45, 56, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 78], "beyond": 64, "bia": [71, 78, 79], "biased_random": 78, "biased_random_idata": 78, "biased_random_model": 78, "bibtex": 1, "big": 64, "binari": [2, 3, 4, 5, 6, 9, 10, 16, 21, 22, 23, 24, 29, 58, 59, 62, 63, 64, 66, 68, 69, 71, 72, 76], "binary_input_idx": 58, "binary_input_upd": 29, "binary_paramet": [58, 68], "binary_precis": [16, 21, 67], "binary_softmax": [70, 78], "binary_softmax_inverse_temperatur": [62, 71, 72], "binary_surpris": [70, 76], "bind": [62, 65], "binomi": [65, 70, 71, 72, 76], "biolog": 62, "bit": [69, 71], "bivariate_hgf": 66, "bla": [67, 68, 69, 70, 71, 72, 74, 76, 78], "blackjax": 70, "blank": 68, "block": [64, 67, 69, 76], "blog": 68, "blue": [70, 73], "bollmann": 62, "bool": [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 41, 42, 45, 50, 53, 54, 57], "bool_": [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 22, 23, 50, 53, 54, 57], "boolean": [29, 68, 69, 78], "boom": 79, "both": [1, 37, 62, 63, 64, 65, 68, 70, 71, 73, 75, 76, 77], "bottom": [62, 64, 77], "brain": 1, "branch": [52, 60, 62, 70, 76], "branch_list": 60, "break": 77, "briefli": 78, "broad": 68, "broadcast": [5, 71], "broader": 66, "brodersen": [1, 62, 79], "broke": 69, "brown": [76, 79], "bucklei": 79, "build": [63, 64, 67, 69, 73, 77], "built": [65, 67, 69, 77, 78], "burst": 65, "c": [1, 13, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 62, 67, 68, 69, 70, 71, 72, 74, 76, 78, 79], "c44e52": [64, 66, 70, 72, 78], "ca": 73, "calcul": [71, 73], "call": [0, 29, 64, 66, 67, 69, 70, 71, 76, 77, 78], "callabl": [0, 2, 3, 4, 5, 6, 34, 56, 57, 70], "cambridg": 79, "can": [0, 1, 2, 3, 4, 5, 6, 16, 32, 44, 56, 57, 59, 60, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "candid": [50, 52, 53, 54, 76], "cannot": [16, 65, 66, 76], "capabl": [64, 73], "capitalis": 64, "captur": [64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "capture_output": [64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "cardiac": [63, 69], "carlo": [1, 67, 69, 78], "carri": 78, "carryov": 57, "case": [9, 13, 64, 66, 68, 69, 70, 71, 73, 74, 76, 78], "categor": [16, 58, 59, 63, 66, 71, 76], "categori": [10, 66, 68, 76], "categorical_hgf": 68, "categorical_idata": 68, "categorical_surpris": 68, "caus": 31, "cbo9781139087759": 79, "cdot": 73, "cedric": 79, "cell": [64, 69, 77], "censor": 72, "censored_volatil": 72, "centr": [68, 69], "central": [64, 65, 69, 73, 78], "certain": [1, 64, 65], "chain": [1, 2, 67, 68, 69, 70, 71, 72, 74, 76, 77, 78], "cham": 79, "chanc": 76, "chance_conting": 76, "chang": [64, 65, 68, 69, 70, 71, 72, 73, 75, 76, 77, 78], "channel": 74, "chaotic": 76, "check": [69, 71], "chf": [20, 21], "child": [0, 20, 21, 32, 33, 43, 52, 64, 65, 66, 73, 77], "children": [0, 16, 17, 20, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 47, 51, 52, 55, 56, 59, 60, 62, 64, 65, 73], "children_idx": 56, "children_input": 20, "choic": 65, "cholinerg": 79, "choos": [66, 69, 76], "chose": [23, 52, 66, 70, 76], "chosen": [59, 76], "christoph": [1, 79], "chunck": 73, "ci": [20, 21], "circl": 70, "circumst": 31, "citi": 77, "clarifi": 71, "clariti": [69, 78], "class": [0, 2, 3, 4, 7, 8, 16, 17, 19, 20, 21, 34, 65, 66, 67, 68, 69, 70, 71, 76, 78], "classic": [69, 78], "cldtot": 77, "clear": [70, 77], "clearli": [65, 70], "clock": 73, "close": [70, 72], "closer": 73, "cloud": 77, "cloudi": 77, "cluster": [50, 51, 52, 53, 54, 55], "cm": 75, "cmap": [68, 72], "co": 66, "code": [17, 63, 64, 65, 66, 70, 71, 73, 77, 78], "coeffici": [64, 72], "cognit": [62, 74, 79], "colab": [63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "collect": [0, 68], "colleg": 11, "collin": [72, 79], "color": [20, 64, 66, 68, 70, 72, 73, 75, 76, 77, 78], "column": 57, "com": [62, 77], "combin": [1, 37, 64, 65], "come": [1, 64, 66, 70, 71, 73, 77], "command": 78, "common": [65, 68], "commonli": [70, 73], "commun": [13, 64], "compar": [1, 62, 69, 71, 78], "compare_df": 78, "comparison": [4, 63, 72], "compat": [2, 65, 67, 68, 69, 70, 71], "complet": [64, 77, 78], "complex": [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 22, 23, 50, 53, 54, 57, 63, 64, 65, 70, 77], "complexifi": 64, "compli": 70, "complic": 1, "compon": [64, 65, 69, 71, 76], "compromis": 65, "comput": [0, 1, 2, 3, 4, 5, 6, 10, 11, 13, 24, 25, 32, 33, 34, 37, 38, 40, 41, 44, 46, 48, 49, 59, 62, 63, 64, 65, 66, 67, 68, 69, 70, 74, 76, 77, 78, 79], "computation": 1, "concaten": 76, "conceiv": 62, "concentr": 11, "concept": [64, 71, 77], "concern": 64, "concis": 77, "cond": 73, "condit": 78, "connect": [1, 6, 16, 64, 65, 70, 73, 77], "consequ": [64, 65], "consid": [59, 64, 65, 67, 69, 70, 73, 76, 77, 78], "consider": 1, "consist": [17, 64, 65, 66, 68, 70, 72, 73, 76, 78], "constand": 73, "constant": [14, 64, 66, 73], "constitud": 64, "constitut": [73, 77], "constrained_layout": [64, 65, 66, 67, 69, 70, 71, 73, 74, 76, 78], "contain": [0, 1, 2, 3, 4, 16, 18, 22, 23, 37, 38, 52, 57, 62, 64, 65, 71, 74, 77], "context": [2, 4, 57, 66, 67, 69, 70, 76, 77, 78], "contextu": 1, "contin": 3, "conting": [65, 68, 70, 76, 78], "contingencylist": 65, "continu": [1, 2, 3, 4, 5, 6, 16, 20, 21, 25, 27, 28, 59, 62, 63, 64, 66, 67, 68, 70, 71, 73, 74, 75, 76, 77, 78], "continuous_input_prediction_error": [43, 44], "continuous_input_upd": 29, "continuous_input_value_prediction_error": [32, 33, 42, 44], "continuous_input_volatility_prediction_error": [32, 43], "continuous_node_prediction_error": [48, 49], "continuous_node_value_prediction_error": [32, 33, 47, 49], "continuous_node_volatility_prediction_error": [32, 47, 48], "continuous_precis": 16, "contrari": 65, "control": [1, 64, 65, 71, 77, 78], "conveni": [64, 70], "converg": [67, 69, 70, 71, 72, 74, 76, 78], "convert": [20, 21, 64, 68, 74, 76, 78], "core": [2, 17, 62, 65, 67, 69, 70, 71, 72, 74, 76, 78], "correct": [66, 79], "correctli": [19, 72], "correl": [0, 18, 72], "correspond": [16, 20, 21, 66, 67, 70, 71, 72, 73, 76, 77], "cost": 76, "could": [24, 25, 26, 65, 68, 69, 70, 73, 76, 78], "count": [13, 66, 71], "counterpart": [65, 67], "coupl": [0, 1, 5, 6, 16, 20, 21, 29, 32, 33, 36, 37, 38, 42, 47, 56, 59, 62, 63, 67, 75, 76, 78], "coupling_fn": [56, 65, 73], "coupling_strength": 56, "cours": [63, 77], "covari": 66, "cover": [64, 77, 78], "cpython": [64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "creat": [0, 2, 3, 4, 16, 20, 21, 51, 52, 62, 63, 66, 71, 72, 73, 74, 76, 77, 78], "create_belief_propagation_fn": 76, "creation": [65, 70, 77, 78], "crisi": 69, "critic": [1, 65, 70], "cross": [4, 71, 78, 79], "crucial": 71, "csv": 77, "cumsum": [64, 73, 77], "currenc": 69, "current": [0, 1, 20, 21, 29, 35, 36, 37, 38, 40, 41, 42, 43, 45, 56, 62, 64, 65, 66, 70, 77, 79], "current_belief": 78, "curv": 20, "custom": [16, 63, 67, 68, 71, 76, 78], "custom_op": [68, 76], "customdist": [71, 78], "customis": 63, "customop": [68, 76], "d": [1, 11, 62, 66, 79], "dai": 77, "dark": 77, "dash": 64, "data": [0, 1, 2, 3, 4, 5, 6, 20, 21, 24, 25, 26, 57, 61, 62, 64, 66, 68, 70, 71, 72, 73, 74, 75, 77, 78, 79], "data2": 66, "databas": 77, "datafram": 61, "dataset": [70, 74, 77, 78], "daunizeau": [1, 62, 79], "de": 79, "deadlock": 78, "deal": [1, 76], "debug": 77, "decid": [64, 69, 70, 78], "decis": [1, 6, 22, 23, 62, 67, 68, 71, 72, 78], "declar": [65, 71, 73], "decreas": 76, "dedic": 69, "deeper": 62, "def": [65, 66, 68, 70, 71, 73, 76, 78], "default": [2, 3, 4, 5, 6, 16, 20, 21, 24, 25, 33, 57, 59, 62, 64, 65, 66, 67, 69, 70, 71, 72, 73, 74, 76, 78], "defin": [12, 16, 17, 20, 57, 62, 64, 65, 66, 67, 68, 69, 70, 71, 73, 77, 78], "definit": [59, 70], "degre": [66, 67, 69, 73], "deliv": 77, "delta": [66, 73], "delta_j": [32, 33, 43, 48, 49], "demonstr": [1, 62, 66, 67, 70, 72, 74, 75], "denmark": 73, "denot": 64, "densiti": [0, 2, 11, 12, 13, 67, 69, 71, 75, 77], "depend": [5, 6, 32, 35, 64, 67, 69, 70, 71, 73, 77], "depict": [21, 64, 78], "deriv": [1, 62, 64, 66, 73], "describ": [0, 62, 63, 64, 65, 66, 67, 70, 77], "descript": [1, 64, 77], "design": [63, 65, 68, 70, 71, 76, 77, 78], "despin": [64, 65, 66, 68, 71, 72, 73, 75, 76, 77, 78], "detail": [64, 72, 76, 77], "detect": 74, "determin": 1, "determinist": [1, 71, 78], "develop": [62, 65, 78], "deviat": [20, 21, 50, 53, 54, 71, 74], "df": [66, 75], "diagnost": [67, 69, 70, 71, 72, 74, 76, 78], "dict": [16, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 55, 56, 57, 58], "dictionari": [16, 57, 62, 65, 67, 69, 77], "did": [69, 71], "differ": [1, 2, 3, 4, 5, 16, 27, 28, 30, 31, 56, 64, 65, 66, 67, 69, 70, 71, 73, 76, 77], "differenti": [66, 67, 69, 73], "difficult": [1, 66, 77], "diffus": [62, 65], "dimens": [3, 5, 6, 64, 65, 71], "dimension": [66, 76], "dir": 11, "direct": [64, 65], "directli": [29, 65, 67, 69, 70, 71, 73, 76], "dirichlet": [11, 29, 66, 68], "dirichlet_nod": 39, "disambigu": 65, "disappear": 73, "discrep": [67, 69], "discret": [1, 68, 78], "discuss": [1, 64, 76, 78], "displai": [66, 71, 73, 78], "dissoci": [0, 65], "dist": 72, "dist_mean": 75, "dist_std": 75, "distanc": 66, "distant": 66, "distinguish": [71, 77], "distribut": [7, 8, 9, 10, 11, 13, 14, 29, 34, 54, 62, 63, 64, 65, 67, 68, 69, 70, 72, 74, 75, 77, 78], "dive": [64, 65], "diverg": [0, 11, 68, 69, 71, 72, 78], "dk": 73, "do": [62, 65, 67, 68, 69, 70, 71, 73, 77, 78], "documatt": 65, "document": [62, 68, 77, 78], "doe": [66, 68, 70, 77, 78], "doesn": 73, "doi": [1, 13, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 62, 79], "dollar": 69, "domain": [69, 78], "don": [64, 77], "done": 65, "dopamin": 1, "dopaminerg": 79, "dot": 69, "down": [0, 62, 64, 66, 77], "download": [62, 74, 77], "drag": 69, "drai": 67, "draw": [1, 20, 21, 67, 69, 70, 71, 72, 74, 76, 78], "drift": [5, 6, 16, 37, 65, 73, 77], "dse": 78, "dtype": [9, 14, 54, 67, 68, 69, 70, 76, 77, 78], "due": 65, "duplic": [71, 72], "dure": [0, 17, 38, 54, 62, 65, 69, 71, 72, 73, 79], "dx": 79, "dynam": [17, 62, 63, 70, 73, 74, 77, 78], "e": [1, 2, 5, 6, 16, 20, 23, 27, 28, 30, 31, 32, 33, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 56, 60, 62, 63, 64, 65, 67, 69, 70, 71, 72, 74, 76, 77, 78, 79], "e49547": 79, "each": [2, 3, 4, 17, 20, 21, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 47, 50, 51, 52, 54, 55, 61, 62, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 77, 78], "easili": [65, 68, 70, 77, 78], "ecg": 74, "ecg_peak": 74, "ecosystem": 62, "edg": [17, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 47, 51, 52, 55, 56, 57, 59, 60, 62], "edgecolor": [66, 70, 72, 76, 78], "editor": 79, "ef": 66, "effect": [32, 33, 38, 44, 69, 72, 79], "effective_precis": 38, "effici": [1, 64], "ehgf": [31, 32, 59], "either": [52, 65, 70, 71, 73, 77], "ekaterina": [1, 79], "elaps": [30, 31, 33, 64, 76], "electrocardiographi": 74, "electron": 1, "element": 73, "elicit": 14, "elif": 79, "ellicit": 9, "elpd": 71, "elpd_diff": 78, "elpd_loo": [71, 78], "els": [72, 76], "emb": [67, 69], "embed": [0, 63, 67, 69, 71], "empir": 1, "empti": 17, "en": [7, 8], "enabl": 1, "encapsul": [68, 76], "encod": [1, 62, 64, 68, 70, 72, 77], "end": [9, 13, 64, 66, 70, 73], "endogen": 38, "energi": [1, 79], "enlarg": 66, "enno": 79, "enough": 62, "ensur": [59, 71, 72, 76, 77], "enter": 64, "entir": 65, "entri": 16, "enumer": [64, 66, 78], "environ": [1, 64, 65, 70, 71, 77, 78], "environment": [1, 65, 72], "epsilon_j": 44, "eq": 11, "equal": [1, 3, 31, 73], "equat": [1, 11, 64, 67, 68, 69, 70, 73, 76, 77], "equival": [44, 66, 70], "erdem": 79, "eric": 79, "error": [1, 32, 33, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 52, 59, 62, 65, 66, 69, 73, 74, 77, 78, 79], "especi": [64, 71, 76, 78], "ess": 72, "ess_bulk": [2, 70, 78], "ess_tail": [2, 70, 78], "estim": [0, 1, 2, 20, 21, 63, 64, 66, 70, 71, 72, 76, 77, 78], "et": [0, 62, 64, 65, 67, 70, 71, 77, 78], "eta": 66, "eta0": [10, 16, 21, 67], "eta1": [10, 16, 21, 67], "etc": 65, "euro": 69, "european": 79, "evalu": [13, 64, 68, 70, 76, 79], "even": [1, 64, 73], "event": [1, 69, 75], "everi": [63, 64, 65, 68, 71, 76, 77, 78], "everyth": 70, "evid": [6, 66, 78], "evidenc": 66, "evolut": [64, 67, 69, 70, 77, 78], "evolv": [63, 64, 76], "exact": [64, 70, 77], "exactli": [64, 68, 70, 71], "exampl": [1, 2, 9, 14, 20, 21, 62, 63, 64, 65, 67, 68, 69, 70, 71, 73, 77, 78], "excel": 70, "except": [32, 33, 43, 67, 69, 70, 78], "exchang": 69, "exclud": [60, 76], "exclus": 60, "execut": [0, 65], "exert": [64, 65], "exhibit": [67, 69], "exist": [50, 52, 53, 54, 55, 65], "exogen": 38, "exot": 68, "exp": [38, 64, 66, 71, 76, 77], "expect": [0, 5, 6, 9, 10, 14, 16, 20, 21, 23, 29, 31, 32, 33, 35, 36, 37, 38, 43, 53, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 76, 77, 78], "expected_mean": [9, 10, 14, 37, 50, 53, 54, 64, 65, 70, 71, 72, 76, 78], "expected_precis": [10, 14, 38, 65, 66, 75], "expected_sigma": [50, 53, 54], "experi": [70, 78], "experiment": [1, 63, 70, 71, 72, 76, 78], "explain": [71, 77, 78], "explan": 78, "explicit": 70, "explicitli": [1, 65, 71, 74], "explor": 78, "exponenti": [7, 8, 13, 63, 64, 66, 77], "exponential_famili": [7, 8], "export": [61, 70], "express": [1, 65, 66, 68, 69, 73, 76, 77], "extend": [65, 66, 67, 69, 71], "extens": [1, 63, 78], "extract": [67, 69, 74, 75, 78], "extrem": [1, 69, 76], "f": [37, 62, 64, 65, 73, 77], "f_1": 65, "f_i": 65, "f_n": 65, "f_x": 66, "facilit": [62, 65], "fact": [73, 76], "fail": 31, "fairli": 72, "fall": 69, "fals": [20, 21, 65, 73, 78], "famili": [7, 8, 13, 34, 63, 64, 66, 77], "familiar": 70, "far": [65, 69, 70, 77, 78], "fashion": 1, "fast": [73, 76, 78], "feasibl": 62, "featur": [20, 21, 65, 71, 74, 77], "februari": 79, "fed": 71, "feed": [20, 21, 76], "fewer": 75, "field": [1, 65, 70, 78], "fig": [66, 68, 72, 73, 75], "figsiz": [20, 21, 64, 65, 66, 68, 70, 72, 73, 75, 76, 77, 78], "figur": [20, 21, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 76, 77, 78], "fil": 11, "file": 1, "fill": 72, "fill_between": [68, 75, 76], "filter": [0, 1, 5, 6, 13, 16, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 65, 70, 71, 72, 75, 76, 78, 79], "final": [1, 77, 78], "find": [53, 62, 63, 65, 69, 70, 77], "finit": [10, 27, 40], "fir": 74, "firebrick": 76, "first": [0, 1, 3, 5, 6, 10, 16, 25, 30, 31, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 76, 77, 78], "first_level_binary_surpris": [67, 78], "first_level_gaussian_surpris": [69, 74, 77], "firt": 23, "fit": [2, 3, 4, 5, 6, 24, 25, 26, 70, 71, 72, 73, 76, 77], "fix": [2, 34, 44, 64, 70, 71, 73, 77, 78], "flatten": 71, "flexibl": [1, 62, 68, 77, 78], "flexibli": 66, "flight": 69, "float": [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 22, 23, 24, 25, 26, 29, 30, 31, 32, 33, 36, 37, 38, 40, 41, 42, 43, 45, 50, 53, 54, 56, 57, 71, 76], "float32": [9, 14, 67, 69, 70, 77, 78], "float64": [68, 76], "floor": 69, "fluctuat": 64, "flux": 77, "fn": 78, "fnhum": [1, 62, 79], "focu": 62, "focus": [65, 76], "folder": 62, "follow": [1, 11, 59, 62, 64, 65, 66, 67, 68, 69, 73, 76, 77, 78], "forc": 76, "fork": [67, 78], "form": [1, 64, 65, 66, 71, 73, 77], "formal": 64, "format": 1, "formul": 1, "forward": [62, 64, 67, 69, 71, 72, 76, 77, 78], "found": [1, 64, 65, 67, 69, 77], "foundat": [1, 62, 77, 79], "four": [1, 65, 76, 78], "fpsyt": 62, "frac": [11, 13, 14, 20, 23, 32, 33, 34, 35, 37, 38, 43, 44, 49, 64, 66, 68, 71, 76], "fraction": 77, "frame": [61, 64, 66, 74, 77], "framework": [1, 62, 63, 64, 65, 66], "franc": 69, "free": [1, 62, 67, 70, 72], "freedom": 66, "fri": [64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "friston": [1, 62, 79], "from": [0, 1, 2, 5, 6, 9, 11, 13, 14, 20, 21, 22, 23, 32, 33, 43, 44, 45, 59, 60, 62, 63, 64, 65, 67, 68, 69, 71, 73, 74, 75, 77, 78], "frontier": [1, 62, 79], "frontiersin": [1, 79], "fry": 54, "fr\u00e4ssle": 62, "full": [1, 6, 62, 66], "fulli": [64, 77], "func": 66, "funcanim": 66, "function": [1, 2, 3, 4, 5, 6, 15, 17, 19, 20, 21, 22, 23, 24, 25, 26, 29, 44, 56, 57, 59, 60, 62, 63, 64, 66, 67, 68, 69, 71, 72, 74, 76, 77, 78], "fundament": 64, "further": [64, 65, 71, 75, 76], "fusion": 70, "futur": [0, 64, 79], "g": [1, 5, 6, 32, 33, 62, 64, 70, 72, 73, 78], "g_": [66, 73], "gabri": 79, "gamma": [11, 13, 66, 68], "gamma_a": 38, "gamma_j": [32, 33, 44], "gaussian": [0, 1, 2, 5, 6, 12, 13, 14, 16, 20, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 65, 70, 71, 72, 73, 74, 75, 76, 78, 79], "gaussian_predictive_distribut": 66, "gcc": [64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "ge": 79, "gelman": 79, "gener": [1, 27, 28, 30, 31, 32, 33, 36, 37, 38, 40, 41, 42, 43, 44, 47, 48, 49, 58, 59, 63, 65, 66, 67, 68, 70, 71, 72, 73, 76, 78, 79], "generalis": [62, 63, 68, 70], "generalised_filt": 66, "get": [35, 65, 66, 69, 70, 71, 72, 75, 76, 77, 78], "get_legend_handles_label": [64, 78], "get_network": [66, 76], "get_update_sequ": 65, "ghgf": [62, 77, 78], "gif": 66, "git": 62, "github": [11, 62], "githubusercont": 77, "give": [67, 69, 70, 73, 76, 78], "given": [0, 6, 9, 11, 14, 20, 23, 24, 25, 26, 27, 28, 29, 32, 33, 34, 37, 38, 43, 44, 48, 49, 53, 54, 60, 62, 64, 65, 66, 67, 68, 69, 70, 72, 73, 76, 77, 78], "global": [1, 69], "go": [64, 67, 69, 70, 71, 76, 77], "goe": 68, "good": [70, 71, 72, 76], "googl": [63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "grad": [68, 76], "gradient": [3, 68, 76], "grai": 76, "grandpar": 65, "graph": [63, 65, 68, 76], "graphic": 62, "graphviz": [19, 67, 69], "greater": 65, "greatli": 66, "greec": 69, "green": [72, 73], "grei": [20, 64, 66, 69, 72, 75], "grid": [64, 66, 72, 73, 75, 77, 78], "ground": 77, "group": [63, 64, 72, 78], "grow": 68, "grw": [64, 77], "grw_1": 77, "grw_2": 77, "guid": 64, "gz": [68, 76], "h": [1, 27, 28, 30, 31, 32, 33, 36, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 62, 64, 66, 78, 79], "ha": [1, 17, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 47, 51, 52, 55, 56, 64, 65, 66, 67, 68, 69, 70, 71, 76, 77, 78], "had": [70, 71, 78], "halfnorm": 71, "hamiltonian": [67, 69, 78], "hand": [33, 63, 70], "handi": 73, "handl": [63, 64, 66, 68, 70, 71, 78], "happen": [64, 70, 73, 77], "harrison": [62, 79], "hat": [9, 14, 20, 23, 32, 33, 35, 37, 38, 43, 44, 48, 49, 64, 70, 71, 73], "have": [1, 29, 44, 59, 64, 65, 67, 68, 69, 70, 71, 73, 76, 77, 78], "hdi_3": [2, 70, 78], "hdi_97": [2, 70, 78], "he": 70, "head": [70, 77], "heart": [0, 64, 65], "heartbeat": 74, "heatmap": 18, "heavi": 65, "hedvig": 79, "height": [20, 21, 77], "heinzl": 62, "help": [69, 71, 77], "her": 70, "here": [1, 2, 22, 23, 24, 25, 26, 62, 64, 65, 66, 67, 68, 69, 70, 71, 72, 74, 76, 77, 78], "hgf": [0, 1, 2, 3, 4, 5, 6, 18, 20, 21, 22, 23, 24, 25, 26, 29, 30, 58, 62, 63, 64, 65, 66, 68, 71, 72, 73, 74, 75, 76, 77], "hgf_loglik": [67, 69, 70, 72, 74, 78], "hgf_logp_op": [2, 67, 69, 70, 71, 72, 74, 78], "hgf_logp_op_pointwis": [71, 78], "hgf_mcmc": [67, 69], "hgfdistribut": [67, 68, 69, 70, 71, 72, 74, 78], "hgfpointwis": [71, 78], "hhgf_loglik": 2, "hidden": [1, 64, 76, 77, 78], "hide": 76, "hierarch": [0, 1, 5, 6, 13, 16, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 65, 70, 72, 74, 75, 76, 78, 79], "hierarchi": [0, 1, 2, 3, 4, 16, 62, 64, 65, 67, 69, 77], "hierarchicalgaussianfilt": 70, "high": [75, 76], "high_nois": 73, "high_prob": 76, "higher": [64, 67, 69, 71, 72, 73, 77, 78], "highest": 1, "highli": [1, 69, 78], "hist": 76, "hold": [64, 70], "home": 1, "hood": 66, "hostedtoolcach": [67, 69, 70, 71, 72, 74, 76, 78], "hour": [63, 77], "hourli": [77, 79], "how": [63, 64, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "howev": [1, 64, 65, 66, 68, 69, 70, 71, 73, 74, 78], "html": 11, "http": [1, 7, 8, 11, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 62, 72, 77, 79], "human": [1, 62, 79], "hyper": 71, "hyperparamet": [13, 34, 66], "hyperprior": [71, 72], "i": [0, 1, 2, 3, 4, 5, 6, 9, 11, 13, 14, 16, 17, 20, 21, 23, 24, 25, 29, 30, 31, 32, 33, 34, 36, 37, 38, 42, 43, 44, 45, 47, 48, 49, 52, 56, 57, 59, 60, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79], "iain": 79, "idata": [2, 74, 76, 78], "idata_kwarg": 78, "idea": [64, 65, 69, 70, 72], "ident": 73, "identifi": 72, "idex": 58, "idx": [57, 68, 72], "iglesia": [1, 62, 67, 70, 78, 79], "ignor": [5, 6], "ii": 1, "iii": 1, "ilabcod": [62, 77], "illustr": [1, 64, 65, 68, 69, 70, 73, 74, 76, 77, 78], "iloc": 75, "imagin": 73, "impact": 76, "implement": [0, 16, 34, 37, 62, 64, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "impli": [29, 58, 64, 66, 68, 69, 76, 77], "implicitli": 70, "import": [2, 9, 14, 20, 21, 62, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "import_dataset1": 74, "importantli": [64, 65], "imposs": 59, "improv": [59, 78], "imshow": 68, "includ": [5, 6, 16, 57, 64, 65, 66, 67, 69, 70, 71, 73, 74], "incom": [64, 77], "incompat": 78, "incorpor": [16, 36, 42, 47, 66, 70, 71], "incorrect": 73, "increas": [66, 67, 69, 71, 72, 73, 76, 77, 78], "increment": [57, 64], "inde": 71, "independ": [63, 66, 72], "index": [17, 20, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 47, 51, 52, 55, 56, 57, 58, 60, 62, 65], "indic": [56, 64, 69, 70, 71, 72, 73, 74, 76, 78], "individu": [1, 62, 72, 79], "inf": [5, 16, 21, 24, 25, 26, 67, 68, 70, 71, 76], "infer": [0, 1, 5, 6, 13, 34, 62, 63, 64, 65, 69, 70, 75, 78, 79], "inferred_paramet": 72, "infinit": [28, 41, 68, 76], "influenc": [0, 1, 37, 64, 65, 66, 67, 69, 71, 73, 76, 77, 78], "inform": [1, 13, 17, 57, 65, 66, 67, 68, 69, 71, 73, 76, 77, 78], "infti": 69, "ingredi": 70, "inherit": [5, 6, 62, 64, 77], "initi": [2, 3, 4, 16, 17, 65, 66, 67, 69, 70, 71, 72, 74, 76, 77, 78], "initial_belief": 78, "initial_mean": [16, 20, 21, 67, 69, 70, 71, 72, 74, 78], "initial_precis": [16, 20, 21, 67, 69, 70, 74, 78], "initv": 72, "inplac": 68, "input": [1, 2, 3, 4, 5, 6, 16, 17, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 33, 39, 47, 51, 52, 53, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 77, 78], "input_convers": 74, "input_data": [2, 3, 4, 5, 6, 20, 21, 57, 62, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "input_nodes_idx": 39, "input_precis": [5, 6, 65, 66, 73, 75], "input_typ": 74, "insert": 64, "insid": [70, 73, 76, 78], "inspir": [62, 64, 65], "instal": [19, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "instanc": [0, 6, 18, 19, 20, 21, 22, 23, 24, 25, 26, 58, 59, 62, 65, 67, 69, 70, 71, 77], "instanti": [68, 76], "instead": [2, 3, 4, 32, 33, 43, 69, 76, 77, 78], "instruct": 65, "instrument": 73, "int": [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 66, 73], "int32": 78, "integ": [2, 3, 4, 65], "integr": [1, 66, 78], "inter": 1, "interact": [63, 64, 78], "intercept": 64, "interest": [64, 71, 72, 76, 77], "interestingli": 66, "interfac": [62, 70], "interleav": 0, "intern": [34, 63, 68, 70, 71, 73, 77, 79], "interocept": 63, "interpol": 68, "interpret": 1, "intersect": 63, "interv": [29, 35, 36, 37, 38, 40, 41, 42, 43, 45, 66, 73, 74], "interven": 69, "intervent": 69, "introduc": [1, 63, 64, 68, 77, 78], "introduct": [62, 63], "introductori": 77, "intuit": [1, 63, 70], "invers": [1, 5, 6, 23, 62, 63, 64, 70, 71, 72, 76], "inverse_temperatur": [71, 72], "invert": [1, 77, 78], "involv": 1, "io": [11, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "ion": 11, "ipykernel_2231": 65, "ipykernel_3096": 69, "ipython": [64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "ipywidget": [67, 69, 70, 71, 72, 74, 76, 78], "irrespect": 54, "isbn": 1, "isnan": [68, 76], "issn": 1, "item": [2, 3, 4], "iter": [64, 67, 69, 70, 71, 72, 74, 75, 76, 78], "ith": 57, "its": [1, 35, 37, 45, 52, 56, 62, 63, 64, 65, 67, 69, 70, 71, 73, 74, 77, 78], "itself": [64, 65, 67, 73, 77], "iv": [64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "j": [1, 32, 33, 38, 43, 44, 49, 62, 79], "jacobian": [68, 76], "jan": 79, "jax": [0, 5, 17, 21, 22, 23, 54, 57, 62, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "jaxlib": [64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "jean": [1, 79], "jit": [62, 68, 76], "jitted_custom_op_jax": [68, 76], "jitted_vjp_custom_op_jax": [68, 76], "jitter": [67, 69, 70, 71, 72, 74, 76, 78], "jl": 70, "jnp": [16, 21, 24, 25, 26, 66, 67, 68, 69, 70, 72, 73, 76], "job": [67, 69, 70, 71, 72, 74, 76, 78], "joint": [65, 66], "jonah": 79, "journal": [1, 79], "julia": [62, 65, 70], "jump": 64, "jupyt": [67, 69, 70, 71, 72, 74, 76, 78], "just": [70, 71, 72, 73, 78], "k": [1, 11, 22, 23, 27, 28, 30, 31, 32, 33, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 62, 64, 65, 66, 68, 70, 71, 72, 73, 76, 77, 78], "kai": [1, 79], "kalman": [64, 70], "kappa": 64, "kappa_1": 64, "kappa_j": [32, 33, 38, 43], "karl": [1, 79], "kasper": [62, 79], "kdeplot": 72, "keep": [73, 77], "kei": [1, 54, 64, 65, 78], "keyword": [1, 65, 70], "kg": 77, "kind": [32, 56, 62, 64, 65, 66, 68, 69, 71, 73, 75, 76, 77, 78], "kl": [11, 68], "kl_diverg": 68, "klaa": [1, 79], "knew": [67, 69], "know": [64, 70, 73, 78], "knowledg": 77, "known": 73, "kora": 73, "kullback": [11, 68], "kwarg": [7, 8], "l": [13, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 62, 64, 78, 79], "l_a": 76, "l_b": 76, "label": [64, 65, 66, 68, 70, 71, 75, 76, 77, 78], "laew": 1, "lambda": [64, 71, 73], "lambda_1": 64, "lambda_2": [64, 73], "lambda_2x_2": 73, "lambda_3": [64, 73], "lambda_a": [37, 64, 73], "land": 77, "lanillo": 79, "lar": 79, "larg": [65, 66, 77], "larger": [65, 66, 72], "last": [57, 62, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "latent": 64, "later": [38, 62, 64, 71, 78], "latter": 76, "lax": [17, 57, 73, 76], "layer": [5, 64, 69, 77, 78], "layout": [65, 69], "lead": [64, 69, 78], "learn": [1, 62, 64, 68, 72, 73, 75, 77, 79], "learning_r": 78, "learnt": 73, "least": [0, 67, 69, 70, 71, 72, 74, 76, 78], "leav": [0, 64, 71, 77, 78, 79], "lee": [71, 79], "left": [11, 13, 32, 33, 37, 38, 44, 49, 64, 66, 68, 70, 77], "leftarrow": [34, 66], "legend": [64, 65, 66, 70, 71, 73, 75, 76, 77, 78], "legrand": [27, 28, 30, 31, 32, 33, 36, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 62, 73, 79], "leibler": [11, 68], "len": [68, 70, 76, 78], "length": [2, 3, 4, 17, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 47, 51, 52, 55, 57, 70, 71], "leq": 73, "less": [16, 65, 70], "let": [64, 65, 66, 68, 70, 73, 77, 78], "level": [0, 1, 2, 5, 6, 16, 20, 21, 23, 25, 62, 63, 64, 65, 66, 70, 72, 73, 74, 75, 76, 77], "leverag": 71, "li": 64, "lib": [67, 69, 70, 71, 72, 74, 76, 78], "librari": [0, 65, 67, 69, 78], "like": [54, 67, 68, 69, 70, 71, 73, 78], "likelihood": [50, 52, 69, 70, 71, 78], "lilian": 79, "limit": [1, 31, 64, 66, 70, 73, 76, 78], "line": [64, 65, 69, 70, 73], "linear": [32, 33, 56, 63], "linear_hgf": 73, "linearli": 66, "linestyl": [64, 65, 66, 70, 72, 73, 75, 78], "linewidth": [64, 66, 68, 77, 78], "link": [1, 56, 62, 65, 71], "linspac": [71, 72, 75], "list": [2, 3, 4, 5, 17, 20, 21, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 47, 51, 52, 55, 56, 58, 59, 60, 62, 65, 68, 70, 71, 76, 77], "lit": 1, "live": [67, 69, 70, 71, 72, 74, 76, 78], "ln": [11, 68], "load": [62, 77, 78], "load_data": [2, 20, 21, 62, 67, 69, 70, 71, 72, 77, 78], "load_ext": [64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "loc": [64, 66, 68, 75, 76, 77], "log": [2, 4, 5, 6, 9, 14, 20, 62, 67, 69, 70, 71, 76, 78], "log_likelihoo": 78, "log_likelihood": [71, 78], "log_prob": 5, "logist": 15, "logit": 78, "lognorm": 71, "logp": [5, 71, 78], "logp_fn": 76, "logp_pointwis": [71, 78], "lomakina": [1, 62, 79], "london": 11, "long": [73, 79], "loo": 71, "loo_hgf": 71, "look": [67, 68, 69, 73, 78], "loop": [64, 76, 77, 78], "loos": 76, "loss": 76, "loss_arm1": 76, "loss_arm2": 76, "lot": 67, "low": [75, 76], "low_nois": 73, "low_prob": 76, "lower": [64, 65, 66, 67, 68, 72], "lower_bound": 15, "lowest": 62, "luckili": 71, "m": [62, 64, 65], "m2": 77, "m3": 77, "m_1": 64, "m_a": 37, "made": [16, 65, 70, 71, 76, 77, 78], "magic": 77, "mai": [1, 68, 79], "main": [0, 19, 20, 21, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "major": 1, "make": [1, 62, 64, 65, 67, 68, 70, 71, 75, 76, 77], "make_nod": [68, 76], "manag": 73, "mani": [1, 2, 64, 65, 68, 70, 71], "manipul": [0, 17, 62, 63, 67, 70, 71, 76, 77], "manka": 79, "manual": [65, 66, 71, 73, 78], "many_binary_children_hgf": 65, "many_value_children_hgf": 65, "many_value_parents_hgf": 65, "many_volatility_children_hgf": 65, "many_volatility_parents_hgf": 65, "map": 71, "marker": 73, "market": 69, "markov": 1, "mask": 76, "master": 62, "match": [5, 57, 65, 73, 78], "math": [2, 34, 37, 48, 66, 72, 76], "mathcal": [2, 13, 64, 65, 66, 67, 70, 71, 77], "mathemat": [14, 64, 77], "mathi": [1, 13, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 62, 64, 65, 66, 77, 79], "matlab": [62, 64, 69], "matplotlib": [18, 20, 21, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "matrix": [71, 76], "matter": [57, 70, 78], "maxim": 69, "mayb": 71, "mcmc": [2, 63, 78], "mcse_mean": [2, 70, 78], "mcse_sd": [2, 70, 78], "mead": 1, "mean": [1, 2, 5, 6, 9, 12, 14, 16, 20, 21, 30, 31, 32, 33, 35, 36, 37, 43, 50, 53, 54, 59, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 77, 78], "mean_1": [2, 5, 6, 69], "mean_2": [5, 6], "mean_3": [5, 6], "mean_hgf": 75, "mean_mu_g0": 54, "mean_precision_hgf": 75, "measur": [68, 70, 72, 73, 74], "mechan": 1, "media": 62, "mention": 64, "mere": 70, "messag": 65, "meta": [65, 69], "meter": 77, "method": [1, 2, 3, 4, 7, 8, 16, 17, 24, 25, 34, 65, 67, 69, 70, 71, 74, 77], "metric": 70, "michael": 79, "might": [2, 3, 4, 16, 70, 78], "min": 68, "minim": [1, 65, 67, 69, 77], "minimis": 74, "miss": [73, 76], "missing_inputs_u": 76, "mix": 77, "mm": 77, "modal": 74, "model": [1, 2, 3, 4, 5, 6, 18, 20, 21, 22, 23, 24, 25, 26, 31, 58, 59, 63, 65, 66, 72, 73, 75, 76, 79], "model_to_graphviz": [67, 69, 71, 74, 78], "model_typ": [2, 3, 4, 16, 20, 21, 24, 65, 67, 69, 70, 71, 72, 74, 78], "modifi": 70, "modul": [0, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "modular": [62, 64, 65, 78], "mont": [1, 67, 69, 78], "montemagno": 73, "month": 77, "more": [63, 64, 65, 66, 67, 68, 69, 70, 72, 73, 77, 78], "moreov": 71, "most": [16, 64, 65, 66, 67, 68, 69, 70, 76, 77], "mostli": 76, "move": [64, 71, 78], "mu": [9, 14, 23, 32, 33, 35, 37, 48, 64, 67, 69, 70, 71, 77], "mu_": 44, "mu_1": [64, 69, 73, 77], "mu_2": [64, 73], "mu_3": 73, "mu_a": [37, 38, 43, 73], "mu_b": [32, 33, 73], "mu_i": 64, "mu_j": [32, 33, 43, 48], "mu_temperatur": 71, "mu_volatil": 71, "much": [65, 66, 69, 77, 78], "multi": [63, 71, 72], "multiarm": 63, "multilevel": [63, 71, 78], "multinomi": 68, "multipl": [1, 5, 20, 56, 65, 68, 70, 71, 73, 74, 76], "multipleloc": 66, "multipli": 65, "multiprocess": 78, "multithread": 78, "multivari": [7, 66], "multivariatenorm": 66, "must": [56, 73], "m\u00f8ller": [27, 28, 30, 31, 32, 33, 36, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 62, 79], "m\u00fcller": 62, "n": [2, 4, 27, 28, 30, 31, 32, 33, 36, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 62, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "n1662": 1, "n_": [32, 33, 38], "n_1": 65, "n_categori": 68, "n_j": 65, "n_level": [2, 3, 4, 5, 6, 16, 20, 21, 65, 67, 69, 70, 71, 72, 74, 78], "n_node": [65, 66, 73, 76], "n_sampl": [53, 54], "name": 64, "nan": [2, 3, 4, 5, 78], "nativ": [67, 69, 71, 73], "natur": [1, 64, 66], "ncol": [64, 72], "ndarrai": [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 22, 23, 50, 53, 54, 57], "necessarili": 1, "need": [27, 28, 29, 30, 31, 66, 68, 70, 71, 72, 73, 76, 77, 78], "neg": [5, 6, 20, 31, 67, 69, 70, 73, 76], "nelder": 1, "nest": [68, 70, 76, 77], "network": [0, 5, 6, 18, 19, 20, 21, 25, 26, 37, 38, 39, 51, 52, 55, 56, 57, 58, 59, 60, 61, 63, 66, 67, 69, 70, 72, 73, 74, 75, 76, 77, 78], "neural": [0, 17, 39, 51, 52, 55, 56, 59, 63, 64, 65, 73, 78], "neuroimag": 79, "neuromodel": 62, "neuromodul": 1, "neuromodulatori": 1, "neurosci": [1, 62, 67, 69, 71, 79], "new": [0, 20, 21, 32, 33, 35, 37, 38, 40, 41, 42, 45, 50, 51, 52, 53, 54, 57, 62, 64, 65, 66, 67, 68, 69, 71, 72, 73, 76, 77, 78], "new_attribut": 65, "new_belief": 78, "new_input_precision_1": 65, "new_input_precision_2": 65, "new_mean": 66, "new_mu": 54, "new_observ": 78, "new_sigma": 54, "newaxi": [2, 67, 69, 70, 71, 74, 78], "next": [1, 64, 67, 69, 70], "nicola": [73, 79], "nodal": 74, "nodalis": [62, 77], "node": [2, 3, 4, 5, 6, 16, 17, 19, 20, 21, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 69, 70, 71, 73, 74, 76, 78], "node_idx": [20, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 55, 58, 60, 65, 68, 76], "node_paramet": [65, 66], "node_precis": 32, "node_trajectori": [17, 68, 70, 71, 72, 76, 78], "node_typ": 65, "nois": [1, 44, 65, 73], "noisi": [65, 66, 73], "noisier": 73, "non": [32, 33, 51, 55, 63], "non_sequ": 78, "none": [2, 3, 4, 6, 16, 17, 20, 21, 24, 25, 26, 29, 56, 64, 65, 67, 68, 70, 73], "nonlinear_hgf": 73, "noon": 77, "nope": 44, "norm": [66, 75], "normal": [1, 2, 7, 10, 11, 34, 63, 64, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "note": [16, 19, 29, 32, 33, 36, 42, 43, 44, 47, 56, 64, 67, 69, 70, 71, 73, 76, 77, 78], "notebook": [63, 64, 65, 67, 69, 70, 71, 73, 75, 76, 78], "notic": 73, "notion": [64, 65], "nov": 79, "novel": 1, "novemb": 79, "now": [64, 65, 67, 69, 70, 71, 73, 76, 77, 78], "np": [2, 5, 13, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 78], "nrow": [64, 66, 68, 76], "nu": [13, 34], "nu_": 66, "num": 72, "num_sampl": 78, "number": [1, 2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 17, 20, 21, 22, 23, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 47, 50, 51, 52, 53, 54, 55, 57, 65, 66, 67, 68, 69, 70, 71, 72, 73, 76, 78], "numer": [1, 68, 76], "numpi": [2, 4, 5, 21, 22, 23, 54, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "nut": [67, 69, 70, 71, 72, 74, 76, 78], "nutshel": 70, "o": [62, 77, 78], "o_": 70, "object": [72, 78], "observ": [0, 9, 10, 13, 14, 20, 21, 29, 30, 31, 32, 33, 40, 41, 42, 43, 45, 50, 52, 53, 54, 57, 62, 63, 64, 65, 66, 67, 68, 69, 71, 73, 74, 76, 77, 78], "observation_input_0": 70, "observation_input_0_expected_precis": [70, 75], "observation_input_0_surpris": 70, "obtain": 70, "occur": [31, 68, 71], "octob": 79, "offer": [1, 64], "offici": [62, 68], "often": [31, 64, 65, 70, 71, 72], "omega": [67, 68, 69, 71, 74, 76, 77], "omega_": [67, 69, 71], "omega_1": [64, 69, 77], "omega_2": [2, 64, 67, 68, 69, 70, 74, 78], "omega_3": [67, 69], "omega_a": 38, "omega_j": [32, 33], "onc": [64, 65, 78], "one": [1, 2, 3, 4, 20, 30, 31, 32, 33, 34, 37, 43, 64, 65, 66, 70, 71, 76, 77, 78, 79], "ones": [66, 72, 73, 76], "onli": [0, 16, 21, 24, 64, 65, 67, 68, 70, 71, 73, 74, 76, 77], "onlin": 1, "oop": 77, "op": [3, 68, 76], "open": [62, 74], "oper": [62, 66, 68, 70, 76, 77], "operand": [51, 55], "opt": [67, 69, 70, 71, 72, 74, 76, 78], "optim": [1, 59, 62, 64, 65, 67, 69, 76], "optimis": [67, 69, 70], "option": [23, 37, 69, 70], "orang": 69, "order": [56, 57, 62, 64, 65, 66, 67, 69, 70, 73, 78], "org": [1, 7, 8, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 62, 72, 79], "organ": 0, "origin": [59, 62, 73], "orphan": 64, "oscil": 73, "oscillatori": 73, "other": [32, 33, 60, 62, 64, 65, 67, 69, 70, 73, 76, 77, 78], "otherwis": 76, "our": [1, 64, 66, 67, 69, 70, 71, 73, 74, 76, 78], "ourselv": [67, 69], "out": [64, 71, 78, 79], "outcom": [9, 14, 62, 63, 65, 67, 70, 71, 76, 78], "outcome_1": 78, "outcome_2": 78, "output": [68, 70, 76, 79], "output_gradi": [68, 76], "output_typ": 74, "outputs_info": 78, "outsid": 73, "over": [2, 5, 6, 13, 62, 63, 64, 65, 66, 67, 69, 70, 71, 73, 74, 76, 77, 78], "overal": [1, 69, 70], "overcom": 73, "overfit": [69, 76], "overlai": 54, "overtim": 75, "overview": 64, "own": [37, 64, 77], "p": [11, 23, 27, 28, 30, 31, 32, 33, 36, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 62, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "p1": 68, "p2": 68, "p3": 68, "p_a": [37, 73, 76], "p_loo": [71, 78], "pablo": 79, "packag": [1, 62, 65, 67, 69, 70, 71, 72, 74, 76, 78], "page": 1, "pair": 64, "pan": 74, "panda": [61, 70, 74, 77], "panel": [65, 69, 70], "paper": [1, 64], "paralel": 66, "parallel": [3, 5, 6, 71], "paramet": [0, 1, 2, 3, 4, 5, 6, 9, 10, 11, 13, 14, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 66, 71, 73, 74, 77], "parameter": [16, 64], "parameter_structur": 57, "parametr": [11, 13, 17, 23, 50, 52, 62, 64, 65, 66, 67, 68, 69, 70, 71, 72, 78], "parametris": [76, 77, 78], "paraticip": [22, 23], "parent": [0, 5, 6, 16, 17, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 51, 52, 55, 56, 59, 60, 62, 64, 65, 66, 67, 69, 73, 74, 75, 76, 77], "parent_idx": 56, "pareto": 71, "part": [5, 6, 16, 62, 64, 65, 68, 69, 70, 71, 73, 77, 78], "partial": [68, 72, 76], "particip": [70, 71, 72, 74, 78], "particular": [64, 77], "pass": [2, 3, 4, 5, 6, 17, 29, 45, 64, 65, 66, 67, 69, 70, 73, 76, 77], "past": [66, 70], "patholog": 1, "pattern": 79, "pct": 71, "pd": 77, "pdf": [1, 66, 75], "peak": 74, "penni": 11, "per": [71, 72], "percept": [1, 62, 79], "perceptu": [1, 2, 3, 4, 16, 70, 71, 72], "pereira": 62, "perform": [1, 5, 6, 31, 37, 57, 59, 63, 64, 65, 67, 68, 69, 70, 73, 74, 76, 77, 78], "perspect": [67, 69], "peter": 79, "petzschner": 62, "pfenning": [77, 79], "phasic": [5, 6, 16, 37, 38, 43, 64, 77], "phenomena": 65, "phenomenon": 73, "phi": 64, "physio_df": 74, "physiolog": [63, 69], "pi": [13, 14, 20, 32, 33, 35, 38, 43, 44, 49, 64, 66, 67, 69, 73], "pi_": 44, "pi_1": 64, "pi_a": 38, "pi_b": [32, 33], "pi_i": 64, "pi_j": [32, 33, 49], "pid": 78, "piec": 78, "pip": [62, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "pjitfunct": 5, "place": [64, 65, 71, 76], "plai": [1, 69], "plausibl": 62, "pleas": 71, "plot": [64, 65, 66, 68, 70, 72, 73, 75, 76, 77, 78], "plot_compar": 78, "plot_correl": 69, "plot_network": [65, 66, 67, 68, 69, 73, 75, 76, 77, 78], "plot_nod": [65, 68, 73, 76], "plot_posterior": [71, 76], "plot_raw": 74, "plot_trac": [67, 68, 69, 70, 74, 78], "plot_trajectori": [62, 65, 67, 69, 73, 74, 77, 78], "plt": [64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "plu": 76, "pm": [2, 67, 68, 69, 70, 71, 72, 74, 76, 78], "pmid": 1, "point": [13, 24, 25, 26, 29, 35, 36, 37, 38, 40, 41, 42, 43, 45, 57, 64, 65, 66, 67, 68, 69, 70, 71, 76, 77], "pointer": [27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 55], "pointwis": [4, 71, 78], "pointwise_loglikelihood": [71, 78], "pool": 72, "popen_fork": 78, "popul": 71, "popular": 78, "posit": [65, 70, 71, 77], "possess": 73, "possibl": [10, 37, 62, 63, 65, 66, 68, 70, 71, 73, 74, 78], "post": 68, "posterior": [1, 2, 44, 62, 63, 64, 66, 77], "posterior_mean": 32, "posterior_precis": 33, "posterior_update_mean_continuous_nod": [30, 31, 33], "posterior_update_precision_continuous_nod": [30, 31, 32], "posteriori": 71, "potenti": [2, 67, 68, 69, 70, 72, 74, 76, 78], "power": [78, 79], "pp": [13, 34], "ppg": 74, "pr": [67, 70], "practic": [63, 65, 66, 70, 79], "pre": [16, 17, 50, 52, 54, 67, 68, 69, 78], "precipit": 77, "precis": [1, 5, 6, 10, 12, 14, 16, 20, 21, 27, 28, 30, 31, 32, 33, 35, 36, 38, 40, 41, 43, 44, 46, 53, 59, 62, 63, 64, 65, 66, 67, 68, 69, 73, 76, 77], "precision_1": [2, 5, 6], "precision_2": [2, 5, 6], "precision_3": [5, 6], "precsnoland": 77, "prectotland": 77, "predict": [1, 13, 14, 17, 32, 33, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 52, 59, 63, 65, 66, 69, 70, 71, 74, 76, 77, 79], "predict_precis": 32, "prediction_error": [32, 33], "presenc": 72, "present": [62, 63, 64, 65, 67, 69, 70, 71, 76, 77], "press": 79, "previou": [0, 1, 29, 30, 31, 33, 35, 36, 37, 38, 40, 41, 42, 43, 45, 52, 53, 64, 65, 67, 68, 69, 70, 71, 73, 77, 78], "previous": [64, 70, 77], "principl": [1, 59, 64, 65, 66, 70, 77, 78], "print": [2, 62], "prior": [2, 63, 65, 66, 67, 69, 70, 71, 74, 77, 78], "probabilist": [0, 1, 2, 17, 20, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 55, 62, 63, 64, 66, 69, 70, 74, 76, 78], "probabl": [0, 1, 2, 4, 5, 6, 9, 10, 13, 20, 23, 29, 34, 50, 63, 64, 66, 67, 69, 70, 71, 72, 76, 78], "problem": [63, 72], "procedur": [65, 71, 78], "proceed": 71, "process": [1, 30, 31, 37, 39, 51, 52, 55, 62, 63, 65, 66, 73, 76, 77, 78], "produc": [71, 76, 78], "product": [68, 76], "programmat": 70, "progress": [65, 68, 73], "propag": [0, 17, 57, 65, 66, 70, 77, 78], "propens": [64, 71], "properti": [1, 65], "proport": 66, "propos": 59, "provid": [1, 2, 3, 4, 5, 16, 20, 23, 56, 62, 64, 65, 67, 68, 69, 70, 71, 73, 76, 77, 78], "proxim": 65, "pseudo": [13, 66, 71], "psi": [11, 29, 68], "psychiatri": [62, 63, 70, 71, 77], "psycholog": 70, "pt": [68, 71, 76, 78], "public": [1, 11, 68], "publish": [34, 79], "pulcu": [76, 79], "punish": [63, 79], "purpos": [64, 70, 75], "put": 69, "pv": 79, "pval": 68, "py": [65, 67, 69, 70, 71, 72, 74, 76, 78], "pyhgf": [1, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "pymc": [0, 2, 5, 6, 67, 68, 69, 70, 71, 72, 74, 76, 78], "pyplot": [64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "pytensor": [67, 68, 69, 70, 71, 72, 74, 76, 78], "python": [62, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "python3": [67, 69, 70, 71, 72, 74, 76, 78], "pytre": 65, "pytress": 65, "q": [11, 68], "qualiti": 71, "quantiti": [71, 75, 76, 77], "question": 66, "quickli": 69, "quit": 69, "r": [64, 66, 73, 74, 76], "r_a": 66, "r_hat": [2, 70, 78], "rain": 77, "raman": 62, "rand": 66, "randn": 66, "random": [1, 5, 6, 16, 37, 54, 65, 66, 68, 70, 71, 72, 73, 75, 76], "randomli": [64, 72, 78], "rang": [64, 66, 68, 70, 71, 72, 75, 76, 77], "rank": 78, "rate": [37, 62, 64, 66, 67, 69, 70, 75, 76, 77, 78], "rather": 78, "ratio": 66, "ration": 79, "raw": 77, "rcparam": [64, 65, 66, 67, 69, 70, 71, 73, 74, 76, 78], "reach": 65, "react": 69, "read": [20, 21, 77, 78], "read_csv": 77, "reader": 64, "readi": [76, 78], "real": [1, 43, 65, 66, 67, 69, 70, 73, 74, 77, 78], "reanalysi": 79, "reason": [65, 67, 69, 70, 71], "recap": 78, "receiv": [0, 20, 21, 29, 37, 45, 52, 62, 64, 65, 66, 68, 70, 71, 73, 76, 78], "recent": 1, "recommend": [67, 69, 70, 71, 72, 74, 76, 78], "reconstruct": 78, "record": [63, 76, 77], "recov": [0, 63, 76], "recoveri": [63, 70, 78], "recurs": [60, 62], "red": 72, "reduc": 59, "ref": 72, "ref_val": 71, "refer": [7, 8, 11, 13, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 64, 65, 66, 68, 70, 71, 72, 76, 77], "reflect": [65, 77], "regist": [65, 73, 78], "regular": [31, 64, 67, 78], "reinforc": [1, 62, 63, 64, 67, 68], "relat": [1, 70, 74], "relationship": 56, "relax": 75, "releas": 62, "relev": [16, 67, 69, 73], "reli": [64, 66, 71], "reliabl": 72, "remain": 76, "remot": 64, "remov": 77, "reparameter": [69, 71, 72, 78], "repeat": [64, 71, 76, 77], "replac": [68, 76], "report": [1, 72], "repres": [1, 5, 6, 16, 37, 64, 65, 66, 68, 70, 71, 73, 77], "requier": [68, 76], "requir": [4, 19, 22, 24, 25, 26, 37, 65, 66, 70, 71, 76, 77, 78], "rescorla": [64, 67, 72], "research": [1, 70], "resembl": 70, "resolut": 1, "respect": [11, 64, 65, 69, 78], "respir": 74, "respond": 78, "respons": [2, 3, 4, 5, 6, 62, 63, 67, 69, 71, 72, 74, 77, 78, 79], "response_funct": [2, 3, 4, 6, 62, 67, 69, 70, 71, 72, 74, 77, 78], "response_function_input": [2, 3, 4, 5, 6, 22, 23, 24, 25, 26, 62, 70, 71, 72, 78], "response_function_paramet": [5, 6, 22, 23, 24, 25, 26, 62, 67, 70, 71, 72], "rest": 1, "restrict": [65, 69], "result": [1, 2, 62, 65, 67, 68, 69, 70, 71, 74, 76, 77, 78], "retriev": [65, 69, 74, 78], "return": [0, 4, 5, 6, 9, 10, 11, 13, 14, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 65, 66, 67, 68, 69, 70, 71, 73, 74, 76, 78], "revert": [37, 64], "review": [64, 77], "reward": [63, 70, 78, 79], "rf": [66, 71], "rhat": 72, "rho": [64, 73], "rho_1": 64, "rho_2": 73, "rho_3": 73, "rho_a": [37, 73], "rhoa": 77, "rich": [67, 69, 70, 71, 72, 74, 76, 78], "right": [11, 13, 32, 33, 37, 38, 44, 49, 64, 66, 68, 70, 76], "rise": 69, "rl": 1, "robert": 79, "robust": [67, 69, 70, 71, 72, 74, 76, 78], "rocket": 71, "role": [0, 1, 69], "root": [0, 60, 64, 65, 77], "row": 20, "rr": 74, "rr_": 74, "rule": [78, 79], "run": [63, 64, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 77, 78], "runtimewarn": 78, "rust": 62, "rw": 78, "rw_idata": 78, "rw_model": 78, "rw_updat": 78, "s11222": 79, "s_0": 70, "s_1": 70, "sa": 62, "sake": 70, "salient": 69, "same": [1, 2, 3, 4, 17, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 47, 51, 52, 55, 56, 64, 68, 69, 70, 71, 72, 73, 75, 76, 77, 78], "sampl": [1, 2, 53, 54, 59, 62, 63, 64, 65, 66, 70, 72, 74, 75, 76], "sampler": [67, 69, 70, 71, 72, 74, 76, 78], "samuel": 79, "sandra": [1, 79], "satellit": 79, "save": [38, 66, 71, 72, 78], "scalar": 66, "scale": [64, 66, 75, 77, 78], "scall": 64, "scan": [17, 57, 76, 78], "scan_fn": 17, "scat": 66, "scat2": 66, "scatter": [66, 70, 72, 76, 78], "scatterplot": 72, "scheme": [1, 65], "schrader": 62, "sch\u00f6bi": 62, "scienc": 13, "scipi": [66, 75], "scope": 64, "scratch": 62, "sd": [2, 70, 78], "se": [71, 78], "seaborn": [64, 65, 66, 68, 71, 72, 73, 75, 76, 77, 78], "seagreen": 76, "search": 60, "second": [0, 1, 2, 5, 6, 10, 16, 63, 64, 65, 67, 69, 70, 71, 72, 73, 74, 76, 77, 78], "section": [63, 64, 67, 68, 69, 71, 77, 78], "see": [64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 76, 77, 78], "seed": [64, 65, 66, 70, 71, 72, 73, 75, 76, 77], "seen": [64, 77, 78], "select": [70, 76, 77], "self": [68, 76, 78], "send": [64, 65, 69], "sens": [1, 64, 68, 70], "sensori": [1, 64, 77, 78, 79], "sensory_precis": 53, "sep": [64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "separ": [66, 71, 72, 78], "septemb": 69, "sequenc": [17, 57, 59, 62, 64, 66, 68, 70, 71, 76, 78], "sequenti": [67, 68, 69, 70, 71, 72, 74, 76, 78], "seri": [1, 2, 3, 4, 5, 6, 13, 24, 34, 61, 62, 64, 65, 66, 67, 68, 69, 71, 74, 77, 79], "serotonin": 1, "serv": 62, "session": 63, "set": [16, 20, 21, 56, 58, 60, 62, 64, 65, 66, 67, 69, 70, 71, 72, 73, 75, 76, 78], "set_minor_loc": 66, "set_offset": 66, "set_palett": 71, "set_titl": [66, 68, 72], "set_update_sequ": 75, "set_xdata": 66, "set_xlabel": [66, 72, 75], "set_ydata": 66, "set_ylabel": [66, 68, 72, 75, 76], "sever": [1, 69, 78], "sfreq": 74, "shad": 20, "shape": [0, 1, 3, 65, 66, 68, 71, 72, 73, 76, 77], "share": [65, 67], "sharei": 76, "sharex": [64, 68, 76], "she": 70, "shoot": 69, "shortwav": 77, "should": [0, 2, 4, 5, 20, 21, 29, 34, 37, 38, 44, 53, 56, 65, 66, 68, 70, 71, 76, 78], "show": [20, 21, 65, 69, 78], "show_current_st": [20, 21], "show_heart_r": 74, "show_observ": [20, 21, 65, 73], "show_surpris": [20, 21, 73], "shown": [64, 66, 73], "side": [65, 70, 71], "sidecar": 78, "sigma": [53, 64, 65, 71, 77], "sigma_1": [64, 77], "sigma_2": [64, 77], "sigma_mu_g0": 54, "sigma_pi_g0": 54, "sigma_temperatur": 71, "sigma_volatil": 71, "sigmoid": [64, 71, 72, 76, 78], "sigmoid_hgf": 70, "sigmoid_hgf_idata": 70, "sigmoid_inverse_temperatur": 72, "signal": [0, 62, 63, 73], "sim": [2, 64, 71, 73, 77], "similar": [32, 33, 43, 62, 67, 69, 74, 76, 78], "similarli": [65, 69], "simpl": [2, 64, 65, 66, 70, 72, 76, 77, 78, 79], "simpler": [64, 65, 78], "simplest": [64, 70], "simplex": 1, "simpli": [0, 65, 66, 71, 72, 77, 78], "simplifi": [73, 77], "simpul": 64, "simul": [1, 53, 54, 64, 65, 66, 70, 73, 77, 78, 79], "simultan": 71, "sin": [65, 66, 73], "sinc": [64, 73], "singl": [6, 57, 65, 76, 78], "sinusoid": [65, 73], "sinusoid_linear_hgf": 73, "sinusoid_nonlinear_hgf": 73, "site": [67, 69, 70, 71, 72, 74, 76, 78], "situat": [1, 20, 21, 64, 65, 68, 70, 71, 76], "size": [1, 5, 62, 64, 65, 67, 69, 72, 75, 77], "skew": 68, "slightli": [69, 70, 78], "slope": [64, 73], "slow": 76, "smaller": 72, "smooth": 63, "smoother": 66, "smoothli": 62, "sn": [64, 65, 66, 68, 71, 72, 73, 75, 76, 77, 78], "snoma": 77, "snow": 77, "so": [44, 57, 62, 65, 67, 69, 70, 73, 77, 78], "sofmax": [22, 23], "softmax": [5, 6, 62, 70, 76], "softwar": 62, "solar": 77, "sole": 76, "solid": 78, "solut": 66, "some": [31, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 76, 77], "someth": [64, 65, 70, 73, 75, 78], "sometim": [65, 69, 70, 77, 78], "sort": 66, "sourc": [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62], "space": [43, 59, 69, 71, 73], "sparsiti": 70, "special": 76, "specif": [1, 37, 62, 63, 64, 65, 66, 67, 68, 70, 71, 73, 76], "specifi": [2, 56, 64, 68, 73, 74, 76], "spike": 69, "spiral": 66, "split": [65, 70], "springer": [34, 79], "sqrt": [13, 20, 66, 75], "squar": 71, "stabil": 1, "stabl": 69, "stable_conting": 76, "stack": 66, "staffel": [77, 79], "standard": [0, 20, 21, 30, 32, 50, 53, 54, 59, 63, 64, 65, 67, 68, 69, 70, 71, 75, 77, 78], "start": [2, 3, 4, 59, 64, 66, 68, 70, 71, 76, 77, 78], "stat": [66, 75], "state": [1, 20, 32, 33, 35, 37, 38, 43, 46, 48, 49, 54, 56, 58, 62, 64, 65, 66, 70, 71, 73, 76, 77, 78], "static": [39, 51, 55], "statist": [0, 13, 18, 20, 21, 34, 61, 64, 65, 70, 72, 75, 79], "statproofbook": 11, "std": [73, 75], "steep": 73, "steeper": 73, "stefan": 79, "step": [1, 5, 6, 17, 30, 31, 32, 33, 38, 43, 57, 59, 63, 64, 65, 66, 67, 70, 71, 72, 73, 76, 77, 78], "stephan": [1, 27, 28, 30, 31, 32, 33, 36, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 62, 79], "still": [68, 76], "stim_1": 78, "stim_2": 78, "stimuli": [70, 71, 78], "stimulu": [70, 71, 78], "stochast": [64, 66, 68, 73, 77], "storag": 77, "store": [38, 42, 43, 44, 47, 62, 65, 70, 71], "str": [2, 3, 4, 16, 20, 59], "straight": 64, "straightforward": [64, 66, 76], "strength": [16, 29, 32, 33, 36, 37, 38, 42, 47, 56, 64, 67, 73], "string": 65, "structur": [0, 16, 17, 20, 21, 29, 36, 42, 47, 57, 59, 60, 61, 62, 64, 65, 66, 67, 68, 69, 70, 72, 73, 77, 78], "student": 66, "studi": [1, 63, 69, 71], "sub": [0, 65, 67], "subject": [1, 78], "subplot": [64, 66, 68, 72, 73, 75, 76, 78], "subtl": 78, "success": 72, "suffici": [0, 13, 18, 20, 21, 34, 61, 64, 65, 70, 75, 79], "sufficient_statist": 66, "sufficient_stats_fn": 34, "suggest": [66, 78], "suitabl": 76, "sum": [5, 24, 26, 37, 38, 43, 62, 67, 68, 69, 70, 71, 74, 76, 77, 78], "sum_": [11, 32, 33, 38, 68, 70], "summari": [2, 67, 69, 70, 72, 74, 78], "summer": 77, "support": [5, 20, 21, 62, 64, 65, 67, 69, 70, 71, 72, 74, 76, 78], "suppos": 73, "sure": [68, 70, 76, 78], "surfac": 77, "surpris": [0, 2, 3, 4, 5, 6, 9, 10, 14, 20, 21, 22, 23, 24, 25, 26, 61, 62, 65, 68, 74, 76, 77, 78], "surprise_fn": 68, "suspect": 69, "swgdn": 77, "swiss": 69, "switch": [66, 67], "swtdn": 77, "sy": [64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "system": 62, "systol": 74, "t": [23, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 57, 62, 64, 65, 66, 67, 68, 70, 71, 73, 76, 77, 78], "t2m": 77, "tailor": [67, 68], "take": [0, 1, 64, 67, 70, 71, 77, 78], "tapa": 62, "target": [62, 66, 77], "target_accept": [69, 71, 72, 78], "task": [62, 63, 65, 67, 70, 71, 74, 78], "techniqu": 72, "tediou": 69, "temp": 71, "temperatur": [5, 6, 23, 62, 70, 71, 72, 76, 77], "temporari": 52, "ten": 79, "tensor": [67, 68, 69, 70, 71, 72, 74, 76, 78], "term": [1, 38, 64, 65, 70, 73, 79], "terminologi": [68, 71], "test": [71, 72], "text": [9, 70, 73], "th": 71, "than": [16, 31, 64, 66, 68, 69, 71, 72, 73], "thank": [71, 78], "thecomput": 63, "thei": [0, 65, 66, 67, 68, 69, 70, 71, 72, 78], "them": [64, 70, 76, 77], "theoret": [63, 77], "theori": [1, 64, 78], "therefor": [24, 44, 64, 65, 66, 68, 69, 70, 71, 73, 76, 77, 78], "thestrup": 79, "theta": [65, 66, 73], "theta_": 65, "theta_1": [65, 73], "theta_2": 73, "thi": [0, 1, 2, 4, 5, 6, 13, 16, 17, 19, 20, 21, 24, 29, 30, 31, 32, 33, 34, 38, 43, 44, 52, 57, 59, 60, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "thing": [68, 71, 77], "think": [64, 70], "third": [1, 5, 6, 65, 67, 69], "those": [62, 65, 66, 67, 70, 71], "three": [0, 5, 6, 16, 20, 21, 64, 65, 68, 75, 76], "three_level_hgf": [69, 74], "three_level_hgf_idata": [67, 69], "three_level_trajectori": 78, "three_levels_binary_hgf": [67, 78], "three_levels_continuous_hgf": 69, "three_levels_continuous_hgf_bi": 69, "three_levels_hgf": [21, 67], "three_levels_idata": 78, "threshold": 73, "through": [0, 62, 63, 64, 65, 70, 71, 73, 77, 78], "thu": [1, 77], "ticker": 66, "tight": [65, 69], "tight_layout": [65, 66, 69], "tile": [64, 76, 77], "tim": 79, "time": [1, 2, 3, 4, 5, 6, 13, 22, 23, 24, 25, 26, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 45, 57, 61, 62, 64, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79], "time_step": [2, 3, 4, 5, 6, 29, 30, 31, 33, 35, 36, 37, 38, 40, 41, 42, 43, 45, 70, 76], "timeseri": [2, 20, 21, 69, 77], "timestep": 73, "titl": [1, 64, 66, 68, 71, 73, 75, 78], "tmp": [65, 69], "to_numpi": [77, 78], "to_panda": [66, 70, 75], "toa": 77, "togeth": [21, 67, 69, 70, 78], "tolist": 72, "tomkin": 74, "tonic": [2, 5, 6, 16, 37, 38, 43, 64, 69, 71, 72, 73, 75, 76, 77, 78], "tonic_drift": [16, 20, 21, 67, 73, 74], "tonic_drift_1": [5, 6], "tonic_drift_2": [5, 6], "tonic_drift_3": [5, 6], "tonic_volatil": [16, 20, 21, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "tonic_volatility_1": [5, 6, 69, 74], "tonic_volatility_2": [2, 5, 6, 67, 68, 69, 70, 71, 72, 74, 78], "tonic_volatility_3": [5, 6, 67, 69], "too": 76, "took": [67, 69, 70, 71, 72, 74, 76, 78], "tool": 71, "toolbox": [62, 64, 69, 70], "top": [0, 20, 21, 62, 64, 67, 69, 70, 75, 77], "total": [37, 38, 64, 67, 69, 70, 71, 72, 73, 74, 76, 77, 78], "total_gaussian_surpris": [2, 74], "total_surpris": 70, "toussaint": 62, "toward": [76, 78], "trace": 73, "track": [64, 65, 66, 67, 70, 75, 77], "tradition": 70, "trajectori": [0, 6, 18, 20, 21, 61, 62, 66, 70, 71, 72, 74, 75, 76, 77], "trajectories_df": 61, "transform": [64, 65, 70, 71, 73, 78], "transit": [58, 63, 66], "translat": 62, "transmiss": 77, "transpar": 65, "treat": 71, "tree": 65, "tree_util": [68, 76], "tri": [65, 67, 70, 78], "trial": [1, 64, 69, 70, 76, 78], "trigger": [0, 57, 62, 64, 77], "tristan": 73, "trivial": 70, "true": [9, 14, 20, 21, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 78], "try": [69, 70, 73, 75, 76, 77, 78], "tune": [2, 67, 69, 70, 71, 72, 74, 76, 78], "tupl": [2, 3, 4, 17, 20, 21, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 47, 51, 52, 53, 54, 55, 56, 57, 60, 62, 65, 70, 73], "turn": [63, 64, 77], "tutori": [62, 64, 67, 70, 71, 72, 73, 76, 77, 78], "two": [0, 1, 5, 6, 11, 16, 20, 21, 30, 31, 57, 62, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77], "two_armed_bandit_hgf": 76, "two_armed_bandit_missing_inputs_hgf": 76, "two_bandits_logp": 76, "two_level_hgf": 69, "two_level_hgf_idata": [67, 69, 71, 72, 78], "two_level_trajectori": 78, "two_levels_binary_hgf": [67, 71, 72, 78], "two_levels_continuous_hgf": [69, 77], "two_levels_hgf": [67, 78], "two_levels_idata": 78, "type": [2, 3, 4, 5, 6, 16, 17, 22, 23, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 47, 51, 52, 54, 55, 56, 57, 59, 65, 66, 68, 70, 71, 76, 78], "typic": 65, "u": [21, 43, 44, 62, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "u1": 73, "u2": 73, "u_0": 65, "u_0_prob": 65, "u_1": [64, 65, 73], "u_1_prob": 65, "u_2": [64, 73], "u_loss_arm1": 76, "u_loss_arm2": 76, "u_win_arm1": 76, "u_win_arm2": 76, "ucl": 11, "uk": 11, "uncertain": [1, 65], "uncertainti": [1, 20, 21, 62, 63, 64, 76, 77, 78, 79], "under": [1, 6, 9, 10, 14, 22, 23, 31, 50, 52, 54, 62, 64, 66, 67, 69, 70, 71, 78, 79], "undergo": [70, 71], "underli": [10, 65, 67, 68, 69, 70, 72, 73], "underpin": [64, 66], "understand": [1, 64, 73, 78], "underw": 70, "unexpect": [66, 67, 69], "uniform": [67, 72, 78], "union": [22, 23, 54, 56], "uniqu": [64, 65, 78], "unit": [2, 3, 4, 57, 71], "univari": [8, 34], "univariate_hgf": 66, "univers": [11, 73, 79], "unlik": [64, 69], "unobserv": 76, "until": [68, 73], "up": [20, 21, 62, 64, 69, 77], "updat": [1, 13, 17, 57, 58, 59, 62, 63, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 77, 78], "update_binary_input_par": 36, "update_continuous_input_par": 36, "update_fn": 65, "update_fn1": 65, "update_fn2": 65, "update_sequ": [17, 57, 65, 66, 76], "update_typ": [59, 75], "upon": 64, "upper": [64, 65, 72, 76], "upper_bound": 15, "url": [1, 11, 79], "us": [0, 1, 2, 3, 4, 5, 6, 16, 19, 20, 29, 30, 31, 32, 33, 37, 38, 43, 44, 54, 57, 62, 64, 65, 71, 72, 73, 74, 75, 76, 77, 78, 79], "usd": [20, 21], "user": [62, 64, 70], "userwarn": [65, 67, 69, 70, 71, 72, 74, 76, 78], "usual": [0, 64, 65, 72, 75], "util": [64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "v": [64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "valid": [4, 13, 24, 65, 71, 78, 79], "valu": [0, 2, 5, 6, 10, 16, 17, 20, 21, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 55, 56, 57, 62, 63, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78], "valuat": 69, "value_children": [62, 65, 66, 73, 75, 76, 77], "value_coupling_children": [16, 36, 42, 47], "value_coupling_par": [16, 36, 42, 47], "value_par": 65, "vapa": 44, "vape": 64, "var_nam": [2, 67, 70, 71, 72, 78], "vari": [64, 66, 70, 71, 73], "variabl": [1, 13, 37, 57, 62, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 76, 77, 78], "varianc": [5, 6, 16, 62, 63, 64, 65, 69, 77], "variat": [0, 1, 65, 66], "varieti": 65, "variou": [1, 65, 77], "vartheta": 66, "vector": [2, 3, 4, 5, 16, 54, 57, 66, 68, 70, 71, 72, 76, 78], "vectorized_logp": 5, "vehtari": [71, 79], "verbelen": 79, "veri": [1, 64, 69, 71, 74, 77], "versatil": 77, "version": [17, 27, 28, 30, 31, 32, 33, 36, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 62, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "via": [64, 65], "view": 76, "visibl": 69, "visual": [0, 19, 20, 21, 62, 66, 75, 77, 78], "vizualis": 66, "vjp": [68, 76], "vjp_custom_op": [68, 76], "vjp_custom_op_jax": [68, 76], "vjp_fn": [68, 76], "vjpcustomop": [68, 76], "vol": 62, "volatil": [0, 1, 2, 5, 6, 16, 17, 20, 21, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 47, 49, 51, 52, 55, 56, 59, 62, 63, 66, 67, 69, 70, 71, 72, 73, 75, 76, 78], "volatile_conting": 76, "volatility_children": [65, 66, 75, 77], "volatility_coupl": [16, 20, 21, 29, 67, 74], "volatility_coupling_1": [5, 6], "volatility_coupling_2": [5, 6], "volatility_coupling_children": [16, 36, 42, 47], "volatility_coupling_par": [16, 36, 42, 47], "volatility_par": 65, "volum": 1, "vopa": 38, "vope": [44, 64], "vstack": 68, "w": [64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "w_a": 76, "w_b": 76, "wa": [32, 33, 41, 42, 45, 59, 62, 65, 67, 68, 69, 70, 73, 76, 78], "waad": [27, 28, 30, 31, 32, 33, 36, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 62, 79], "wagenmak": [71, 79], "wagner": [64, 67, 72], "wai": [1, 44, 57, 64, 65, 66, 67, 68, 69, 70, 71, 73, 76, 77, 78], "waic": 79, "walk": [1, 5, 6, 16, 37, 73, 76], "want": [2, 65, 67, 69, 70, 71, 73, 74, 75, 76, 77, 78], "warmup": 2, "warn": [67, 68, 69, 70, 71, 72, 74, 76, 78], "watermark": [64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "wave": [65, 73], "we": [0, 1, 2, 44, 62, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "weak_typ": [9, 14], "weber": [0, 13, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 62, 64, 65, 66, 77, 79], "weigh": [66, 77], "weight": [1, 54, 62, 64, 65, 66, 78], "weigth": 54, "well": [1, 57, 65, 72, 77, 78], "were": [64, 67, 69, 70, 71, 72, 76, 78], "what": [65, 68, 69, 70, 73, 76, 77, 78], "when": [2, 4, 5, 6, 24, 37, 52, 64, 65, 66, 67, 68, 69, 70, 71, 73, 76, 77, 78], "whenev": 62, "where": [0, 3, 4, 5, 6, 14, 20, 21, 23, 32, 33, 37, 38, 43, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 75, 76, 77], "wherea": 74, "whether": [20, 41, 42, 45], "which": [1, 5, 6, 13, 37, 43, 59, 64, 65, 66, 67, 68, 69, 70, 71, 73, 76, 77, 78], "while": [62, 64, 65, 66, 70, 71, 73, 74, 76, 77, 78], "whole": [64, 66, 76], "wide": [16, 67], "width": [20, 21], "wiki": [7, 8], "wikipedia": [7, 8], "william": 11, "wilson": [72, 79], "win": 76, "win_arm1": 76, "win_arm2": 76, "wind": 79, "wine": 76, "wishart": 11, "within": 1, "without": [1, 37, 63, 65, 66, 70, 71, 73], "won": 67, "word": [65, 67, 69, 78], "work": [19, 44, 63, 68, 70, 71, 76, 78], "workflow": [71, 78], "workshop": 77, "world": [64, 66, 70, 78], "worri": [67, 69], "worth": 71, "would": [67, 69, 71, 73, 76, 77], "wpenni": 11, "wrap": [0, 67, 68, 69, 76], "write": [68, 70, 73, 77, 78], "written": [62, 66], "www": [1, 11, 79], "x": [9, 12, 13, 14, 15, 34, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 77], "x1": [64, 73], "x2": [64, 73], "x3": 73, "x64": [67, 69, 70, 71, 72, 74, 76, 78], "x_": [64, 67, 77], "x_1": [64, 66, 73, 77], "x_1_1": 64, "x_1_2": 64, "x_1_3": 64, "x_1_expected_mean": [70, 75], "x_1_expected_precis": 70, "x_1_mean": 70, "x_1_precis": 70, "x_1_surpris": 70, "x_1_xis_0": 66, "x_2": [64, 66, 73, 77], "x_2_1": 64, "x_2_2": 64, "x_2_3": 64, "x_2_expected_mean": 70, "x_2_expected_precis": 70, "x_2_mean": 70, "x_2_precis": 70, "x_2_surpris": 70, "x_3": 73, "x_b": 37, "x_i": 66, "xaxi": 66, "xflr6": 19, "xi": [13, 34, 65, 66, 68], "xi_": [13, 65, 66], "xi_1": 65, "xi_k": 65, "xi_x": [13, 66], "xlabel": [64, 66, 68, 70, 73, 77, 78], "xlim": 66, "y": [13, 62, 66, 70, 72, 76, 78], "y1": 68, "y2": 68, "yaxi": 66, "ye": 73, "year": [1, 77, 79], "yet": 76, "ylabel": [64, 66, 68, 73, 77, 78], "ylim": 66, "you": [1, 62, 63, 65, 68, 70, 73, 76, 77, 78], "your": [1, 77, 78], "z": [66, 71], "z_": 71, "zero": 73, "zeta": 43, "zip": [64, 66, 72, 75, 76, 78], "zoom": 73, "zorder": [68, 72], "zurich": [63, 77], "\u03c9_2": 2}, "titles": ["API", "How to cite?", "pyhgf.distribution.HGFDistribution", "pyhgf.distribution.HGFLogpGradOp", "pyhgf.distribution.HGFPointwise", "pyhgf.distribution.hgf_logp", "pyhgf.distribution.logp", "pyhgf.math.MultivariateNormal", "pyhgf.math.Normal", "pyhgf.math.binary_surprise", "pyhgf.math.binary_surprise_finite_precision", "pyhgf.math.dirichlet_kullback_leibler", "pyhgf.math.gaussian_density", "pyhgf.math.gaussian_predictive_distribution", "pyhgf.math.gaussian_surprise", "pyhgf.math.sigmoid", "pyhgf.model.HGF", "pyhgf.model.Network", "pyhgf.plots.plot_correlations", "pyhgf.plots.plot_network", "pyhgf.plots.plot_nodes", "pyhgf.plots.plot_trajectories", "pyhgf.response.binary_softmax", "pyhgf.response.binary_softmax_inverse_temperature", "pyhgf.response.first_level_binary_surprise", "pyhgf.response.first_level_gaussian_surprise", "pyhgf.response.total_gaussian_surprise", "pyhgf.updates.posterior.binary.binary_node_update_finite", "pyhgf.updates.posterior.binary.binary_node_update_infinite", "pyhgf.updates.posterior.categorical.categorical_input_update", "pyhgf.updates.posterior.continuous.continuous_node_update", "pyhgf.updates.posterior.continuous.continuous_node_update_ehgf", "pyhgf.updates.posterior.continuous.posterior_update_mean_continuous_node", "pyhgf.updates.posterior.continuous.posterior_update_precision_continuous_node", "pyhgf.updates.posterior.exponential.posterior_update_exponential_family", "pyhgf.updates.prediction.binary.binary_state_node_prediction", "pyhgf.updates.prediction.continuous.continuous_node_prediction", "pyhgf.updates.prediction.continuous.predict_mean", "pyhgf.updates.prediction.continuous.predict_precision", "pyhgf.updates.prediction.dirichlet.dirichlet_node_prediction", "pyhgf.updates.prediction_error.inputs.binary.binary_input_prediction_error_finite_precision", "pyhgf.updates.prediction_error.inputs.binary.binary_input_prediction_error_infinite_precision", "pyhgf.updates.prediction_error.inputs.continuous.continuous_input_prediction_error", "pyhgf.updates.prediction_error.inputs.continuous.continuous_input_value_prediction_error", "pyhgf.updates.prediction_error.inputs.continuous.continuous_input_volatility_prediction_error", "pyhgf.updates.prediction_error.inputs.generic.generic_input_prediction_error", "pyhgf.updates.prediction_error.nodes.binary.binary_state_node_prediction_error", "pyhgf.updates.prediction_error.nodes.continuous.continuous_node_prediction_error", "pyhgf.updates.prediction_error.nodes.continuous.continuous_node_value_prediction_error", "pyhgf.updates.prediction_error.nodes.continuous.continuous_node_volatility_prediction_error", "pyhgf.updates.prediction_error.nodes.dirichlet.clusters_likelihood", "pyhgf.updates.prediction_error.nodes.dirichlet.create_cluster", "pyhgf.updates.prediction_error.nodes.dirichlet.dirichlet_node_prediction_error", "pyhgf.updates.prediction_error.nodes.dirichlet.get_candidate", "pyhgf.updates.prediction_error.nodes.dirichlet.likely_cluster_proposal", "pyhgf.updates.prediction_error.nodes.dirichlet.update_cluster", "pyhgf.utils.add_edges", "pyhgf.utils.beliefs_propagation", "pyhgf.utils.fill_categorical_state_node", "pyhgf.utils.get_update_sequence", "pyhgf.utils.list_branches", "pyhgf.utils.to_pandas", "PyHGF: A Neural Network Library for Predictive Coding", "Learn", "Introduction to the Generalised Hierarchical Gaussian Filter", "Creating and manipulating networks of probabilistic nodes", "From Reinforcement Learning to Generalised Bayesian Filtering", "The binary Hierarchical Gaussian Filter", "The categorical Hierarchical Gaussian Filter", "The continuous Hierarchical Gaussian Filter", "Using custom response models", "Hierarchical Bayesian modelling with probabilistic neural networks", "Recovering computational parameters from observed behaviours", "Non-linear value coupling", "Example 1: Bayesian filtering of cardiac volatility", "Example 2: Estimating the mean and precision of an input node", "Example 3: A multi-armed bandit task with independent rewards and punishments", "Introduction to the generalised Hierarchical Gaussian Filter", "Application to reinforcement learning", "References"], "titleterms": {"1": [74, 77], "2": [75, 77], "3": [76, 77], "4": 77, "A": [62, 76], "The": [62, 63, 64, 65, 67, 68, 69, 77, 78], "acknowledg": 62, "activ": 73, "ad": 64, "adapt": 66, "add": [67, 69], "add_edg": 56, "an": 75, "api": 0, "applic": 78, "arm": [72, 76], "ascend": 65, "assign": 65, "attribut": 65, "autoregress": 64, "bandit": [72, 76], "bayesian": [66, 71, 74, 76], "behavior": 70, "behaviour": [72, 78], "belief": [64, 76, 78], "beliefs_propag": 57, "between": 77, "bias": 78, "binari": [0, 27, 28, 35, 40, 41, 46, 65, 67, 70, 78], "binary_input_prediction_error_finite_precis": 40, "binary_input_prediction_error_infinite_precis": 41, "binary_node_update_finit": 27, "binary_node_update_infinit": 28, "binary_softmax": 22, "binary_softmax_inverse_temperatur": 23, "binary_state_node_predict": 35, "binary_state_node_prediction_error": 46, "binary_surpris": 9, "binary_surprise_finite_precis": 10, "bivari": 66, "cardiac": 74, "case": [63, 65], "categor": [0, 29, 68], "categorical_input_upd": 29, "cite": 1, "clusters_likelihood": 50, "code": 62, "collect": 66, "comparison": [71, 78], "comput": [71, 72], "configur": [64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "content": 0, "continu": [0, 30, 31, 32, 33, 36, 37, 38, 42, 43, 44, 47, 48, 49, 65, 69], "continuous_input_prediction_error": 42, "continuous_input_value_prediction_error": 43, "continuous_input_volatility_prediction_error": 44, "continuous_node_predict": 36, "continuous_node_prediction_error": 47, "continuous_node_upd": 30, "continuous_node_update_ehgf": 31, "continuous_node_value_prediction_error": 48, "continuous_node_volatility_prediction_error": 49, "correl": 69, "coupl": [64, 65, 73, 77], "creat": [65, 67, 68, 69, 70], "create_clust": 51, "custom": [65, 70], "data": [67, 69], "dataset": [68, 71, 76], "decis": [70, 76], "deriv": 74, "descend": 65, "detail": 65, "differ": 78, "dirichlet": [0, 39, 50, 51, 52, 53, 54, 55], "dirichlet_kullback_leibl": 11, "dirichlet_node_predict": 39, "dirichlet_node_prediction_error": 52, "distribut": [0, 2, 3, 4, 5, 6, 66, 71], "doe": 62, "drift": 64, "dynam": [64, 65, 66], "edg": 65, "error": [0, 64], "estim": 75, "exampl": [74, 75, 76], "exercis": [63, 77], "exponenti": [0, 34], "famili": 0, "fill_categorical_state_nod": 58, "filter": [62, 63, 64, 66, 67, 68, 69, 74, 77], "first_level_binary_surpris": 24, "first_level_gaussian_surpris": 25, "fit": [62, 67, 68, 69, 78], "fix": [66, 67, 69], "forward": 68, "frequenc": 73, "from": [66, 70, 72, 76], "function": [0, 65, 70, 73], "gaussian": [62, 63, 64, 66, 67, 68, 69, 77], "gaussian_dens": 12, "gaussian_predictive_distribut": 13, "gaussian_surpris": 14, "gener": [0, 45, 62, 64, 77], "generalis": [64, 66, 77], "generic_input_prediction_error": 45, "get": 62, "get_candid": 53, "get_update_sequ": 59, "glossari": [64, 70], "go": 78, "graph": 71, "group": 71, "heart": 74, "hgf": [16, 67, 69, 70, 78], "hgf_logp": 5, "hgfdistribut": 2, "hgflogpgradop": 3, "hgfpointwis": 4, "hierarch": [62, 63, 64, 66, 67, 68, 69, 71, 77], "how": [1, 62], "implement": 65, "import": 67, "independ": 76, "infer": [68, 71, 72, 76], "input": [0, 40, 41, 42, 43, 44, 45, 65, 75], "instal": 62, "instantan": 74, "introduct": [64, 77], "invers": 77, "known": 75, "kown": 75, "learn": [63, 66, 67, 69, 78], "level": [67, 69, 71, 78], "librari": 62, "likely_cluster_propos": 54, "linear": 73, "list_branch": 60, "load": 74, "logp": 6, "manipul": 65, "math": [0, 7, 8, 9, 10, 11, 12, 13, 14, 15], "mcmc": [67, 68, 69], "mean": 75, "miss": 65, "model": [0, 16, 17, 62, 64, 67, 68, 69, 70, 71, 74, 77, 78], "modifi": 65, "multi": 76, "multivari": 65, "multivariatenorm": 7, "network": [17, 62, 64, 65, 68, 71], "neural": [62, 71], "new": 70, "next": 78, "node": [0, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 64, 65, 68, 75, 77], "non": [66, 73], "normal": [8, 66], "nu": 66, "observ": [70, 72], "one": 72, "optim": 78, "paramet": [67, 69, 70, 72, 76, 78], "particip": 76, "physiolog": 74, "plot": [0, 18, 19, 20, 21, 67, 69, 71, 74], "plot_correl": 18, "plot_network": 19, "plot_nod": 20, "plot_trajectori": 21, "posterior": [0, 27, 28, 29, 30, 31, 32, 33, 34, 71, 78], "posterior_update_exponential_famili": 34, "posterior_update_mean_continuous_nod": 32, "posterior_update_precision_continuous_nod": 33, "practic": 77, "precis": 75, "predict": [0, 35, 36, 37, 38, 39, 62, 64, 73, 78], "predict_mean": 37, "predict_precis": 38, "prediction_error": [40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55], "preprocess": 74, "probabilist": [65, 68, 71, 77], "process": [0, 64], "propag": 64, "punish": 76, "pyhgf": [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62], "random": [64, 77, 78], "rate": 74, "real": 76, "record": 74, "recov": [70, 72], "recoveri": [72, 76], "rectifi": 73, "refer": [62, 79], "reinforc": [66, 78], "relu": 73, "rescorla": 78, "respons": [0, 22, 23, 24, 25, 26, 70, 76], "reward": 76, "rl": 78, "rule": [70, 76], "sampl": [67, 68, 69, 71, 78], "sequenc": 65, "sigmoid": 15, "signal": 74, "simul": [68, 71, 72, 76], "solut": [77, 78], "start": 62, "state": [0, 68], "static": 65, "stationari": 66, "statist": 66, "step": 0, "structur": 76, "suffici": 66, "surpris": [67, 69, 70], "system": [64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "tabl": 0, "task": [72, 76], "theori": [63, 65], "three": [67, 69, 78], "through": 66, "time": [65, 76], "to_panda": 61, "total_gaussian_surpris": 26, "track": 73, "trajectori": [67, 69, 78], "transit": 68, "tutori": 63, "two": [67, 69, 78], "unit": 73, "univari": 66, "unknown": 75, "unkown": 75, "unobserv": 65, "updat": [0, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 64, 65, 76], "update_clust": 55, "us": [63, 66, 67, 68, 69, 70], "util": [0, 56, 57, 58, 59, 60, 61], "valu": [64, 65, 73, 77], "vari": 65, "visual": [65, 67, 69, 71, 72], "volatil": [64, 65, 74, 77], "wagner": 78, "walk": [64, 77], "weather": 77, "where": 78, "work": [62, 65], "world": 77}}) \ No newline at end of file