-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFourier.lua
80 lines (68 loc) · 2.05 KB
/
Fourier.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
local Math = require "Math"
local Fourier = {}
setmetatable(Fourier, { __index = Fourier })
---CoefficientsWave
---@param i number index
---@param f number frequency
---@param t number time
---@return number result coefficients wave
function Fourier:cosine(i, f, t)
-- i is the index, f is the frequency, t is the time
return math.cos(2 * Math:pi() * f * i * t)
end
---Sinwave
---@param i number index
---@param f number frequency
---@param t number time
---@return number result sinwave
function Fourier:sine(i, f, t)
return math.sin(2 * Math:pi() * f * i * t)
end
---Recompose signals
---@param coeffs table sin & cosin coefficients signals
---@param f number frequency
---@param t number time
---@return number result composed signals
function Fourier:recompose(coeffs, f, t)
local result = 0
for n, coeff in ipairs(coeffs) do
-- Rebuild signal using both sine and cosine terms
result = result + coeff.cos * self:cosine(n, f, t) + coeff.sin * self:sine(n, f, t)
end
return result
end
---Decompose signals
---@param signal table table of discrete signal
---@param maxHarmonic number
---@param f number frequency
---@param t table time table
---@return table coefficients
function Fourier:decompose(signal, maxHarmonic, f, t)
local coeffs = {}
for n = 1, maxHarmonic do
local cosC, sinC = 0, 0
for i, ti in ipairs(t) do
cosC = cosC + signal[i] * self:cosine(n, f, ti)
sinC = sinC + signal[i] * self:sine(n, f, ti)
end
-- Average them over the time length
cosC = (2 / #t) * cosC
sinC = (2 / #t) * sinC
-- Store the coefficients
coeffs[n] = { cos = cosC, sin = sinC }
end
return coeffs
end
---Generate sawtooth wave
---@param i number index
---@param f number frequency
---@param t number time
---@return number result sawtooth wave
function Fourier:saw(i, f, t)
local term = 0
for n = 1, i do
term = term + ((-1) ^ n * math.sin(2 * Math:pi() * n * f * t) / n)
end
return 2 / Math:pi() * term
end
return Fourier