-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMath.lua
172 lines (151 loc) · 4.06 KB
/
Math.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
local Math = {
SPEED_OF_LIGHT = 299792458, -- m/s
GRAVITY = 9.80665, -- m/s²
PLANCK = 6.62607015e-34, -- J.Hz⁻¹ reduced = h/(2pi) J.s
sqrtTolerance = 1e-14,
sqrtMaxIteration = 30,
lambertTolerance = 1e-2,
lambertIteration = 3,
}
--setmetatable(Math, { __index = Math }) -- static class
-- binary tree square root
function Math:sqrtTree(x)
local low, mid, high = 0, 0, x
local eps = 1e-14 -- Adjust epsilon for desired precision, 1*(10^-14) seems the best
while high - low > eps do
mid = (low + high) / 2
if mid * mid <= x then
low = mid
else
high = mid
end
end
return low
end
-- newton square root
function Math:sqrt(square)
if (square < 0) then
return 0 / 0 -- nan
elseif (square == 0) then
return 0
end
local iteration, guessFuture = 0, 0
--local guess = square / 2 -- Initial guess
local guess = square -- Start with a more robust initial guess
while iteration < self.sqrtMaxIteration do
guessFuture = 0.5 * (guess + (square / guess))
if math.abs(guessFuture - guess) < self.sqrtTolerance then
return guessFuture
end
guess = guessFuture
iteration = iteration + 1
end
return guess
end
-- decimal grouping separator
function Math:separate(amount)
local formatted, k = amount, nil
while k ~= 0 do
formatted, k = string.gsub(formatted, "^(-?%d+)(%d%d%d)", '%1,%2')
end
return formatted
end
-- round numbers
function Math:round(x)
return x >= 0 and math.floor(x + 0.5) or math.ceil(x - 0.5)
end
-- round and format
function Math:humanize(x)
return Math:separate(Math:round(x))
end
function Math:binarySplit(a, b)
local pmb, qmb, p1a, q1a, r1a, p1b, q1b, r1b, m, rab
if b == a + 1 then
-- Base case
p1a = -(6 * a - 5) * (2 * a - 1) * (6 * a - 1)
q1a = 10939058860032000 * a ^ 3
r1a = p1a * (545140134 * a + 13591409)
return p1a, q1a, r1a
else
-- Divide and conquer
m = math.floor((a + b) / 2)
p1a, q1a, r1a = self:binarySplit(a, m)
p1b, q1b, r1b = self:binarySplit(m, b)
-- Combine results
pmb = p1a * p1b
qmb = q1a * q1b
rab = q1b * r1a + p1a * r1b
return pmb, qmb, rab
end
end
function Math:pi(n)
n = n or 17
local p1n, q1n, r1n = self:binarySplit(1, n)
return (426880 * self:sqrt(10005) * q1n) / (13591409 * q1n + r1n)
end
-- Lambert W function implemented using Newton-Raphson iteration
function Math:lambertW(x)
-- Ensure valid input
if x < -1 / math.exp(1) then
return 0 / 0 -- -NaN
end
local w
if x == 0 then
return 0
elseif x > 1 then
-- For large x, initial guess can be log(x)
w = self:log(x)
else
-- For small x, initial guess is x
w = x
end
-- Newton-Raphson iteration
for i = 1, self.lambertIteration do
local ew = math.exp(w)
local wew = w * ew
local deltaW = (wew - x) / (ew * (w + 1) - ((w + 2) * (wew - x) / (2 * w + 2))) -- Halley's method
w = w - deltaW
-- Check convergence
if math.abs(deltaW) < self.lambertTolerance then
return w
end
end
end
---base^x=n
---@param base number
---@param n any
---@return number x
function Math:log(base, n)
if n == nil then
return math.log(base) -- ln(x)
end
return math.log(n, base)
end
---@param n integer
---@return integer
function Math:factorial(n)
if n < 0 then
return 0 / 0
end
local result = 1
for i = 1, n do
result = result * i
end
return result
end
---Taylor sine, simple but not accurate
---@param x number
---@return number result
function Math:sin(x)
local sinMaxIteration = 32
local term, term1, term2
local result = 0
for n = 0, sinMaxIteration do
term1 = 2 * n + 1
term2 = self:factorial(2 * n + 1)
term = ((-1) ^ n * x ^ term1) / term2
result = result + term
end
return result
end
return Math