-
Notifications
You must be signed in to change notification settings - Fork 20
/
LLM.py
204 lines (180 loc) · 7.46 KB
/
LLM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
from openai import AzureOpenAI, OpenAI,AsyncAzureOpenAI,AsyncOpenAI
from abc import abstractmethod
import os
import httpx
import base64
import logging
import asyncio
import numpy as np
from tenacity import (
retry,
stop_after_attempt,
wait_fixed,
)
def get_content_between_a_b(start_tag, end_tag, text):
extracted_text = ""
start_index = text.find(start_tag)
while start_index != -1:
end_index = text.find(end_tag, start_index + len(start_tag))
if end_index != -1:
extracted_text += text[start_index + len(start_tag) : end_index] + " "
start_index = text.find(start_tag, end_index + len(end_tag))
else:
break
return extracted_text.strip()
def before_retry_fn(retry_state):
if retry_state.attempt_number > 1:
logging.info(f"Retrying API call. Attempt #{retry_state.attempt_number}, f{retry_state}")
def encode_image(image_path):
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode('utf-8')
def get_openai_url(img_pth):
end = img_pth.split(".")[-1]
if end == "jpg":
end = "jpeg"
base64_image = encode_image(img_pth)
return f"data:image/{end};base64,{base64_image}"
class base_llm:
def __init__(self) -> None:
pass
@abstractmethod
def response(self,messages,**kwargs):
pass
class openai_llm(base_llm):
def __init__(self,model = "gpt4o-0513") -> None:
super().__init__()
is_azure = os.environ.get("is_azure", True)
self.model = model
if is_azure:
if "AZURE_OPENAI_ENDPOINT" not in os.environ or os.environ["AZURE_OPENAI_ENDPOINT"] == "":
raise ValueError("AZURE_OPENAI_ENDPOINT is not set")
if "AZURE_OPENAI_KEY" not in os.environ or os.environ["AZURE_OPENAI_KEY"] == "":
raise ValueError("AZURE_OPENAI_KEY is not set")
api_version = os.environ.get("AZURE_OPENAI_API_VERSION",None)
if api_version == "":
api_version = None
self.client = AzureOpenAI(
azure_endpoint=os.environ["AZURE_OPENAI_ENDPOINT"],
api_key=os.environ["AZURE_OPENAI_KEY"],
api_version= api_version
)
self.async_client = AsyncAzureOpenAI(
azure_endpoint=os.environ["AZURE_OPENAI_ENDPOINT"],
api_key=os.environ["AZURE_OPENAI_KEY"],
api_version= api_version
)
else:
if "OPENAI_API_KEY" not in os.environ or os.environ["OPENAI_API_KEY"] == "":
raise ValueError("OPENAI_API_KEY is not set")
api_key = os.environ.get("OPENAI_API_KEY",None)
proxy_url = os.environ.get("OPENAI_PROXY_URL", None)
if proxy_url == "":
proxy_url = None
base_url = os.environ.get("OPENAI_BASE_URL", None)
if base_url == "":
base_url = None
http_client = httpx.Client(proxy=proxy_url) if proxy_url else None
async_http_client = httpx.AsyncClient(proxy=proxy_url) if proxy_url else None
self.client = OpenAI(api_key=api_key,base_url=base_url,http_client=http_client)
self.async_client = AsyncOpenAI(api_key=api_key,base_url=base_url,http_client=async_http_client)
def cal_cosine_similarity(self, vec1, vec2):
if isinstance(vec1, list):
vec1 = np.array(vec1)
if isinstance(vec2, list):
vec2 = np.array(vec2)
return np.dot(vec1, vec2) / (np.linalg.norm(vec1) * np.linalg.norm(vec2))
@retry(wait=wait_fixed(10), stop=stop_after_attempt(10), before=before_retry_fn)
def response(self,messages,**kwargs):
try:
response = self.client.chat.completions.create(
model=kwargs.get("model", self.model),
messages=messages,
n = kwargs.get("n", 1),
temperature= kwargs.get("temperature", 0.7),
max_tokens=kwargs.get("max_tokens", 4000),
timeout=kwargs.get("timeout", 180)
)
except Exception as e:
model = kwargs.get("model", self.model)
print(f"get {model} response failed: {e}")
print(e)
logging.info(e)
return
return response.choices[0].message.content
@retry(wait=wait_fixed(10), stop=stop_after_attempt(10), before=before_retry_fn)
def get_embbeding(self,text):
if os.environ.get("EMBEDDING_API_ENDPOINT"):
client = AzureOpenAI(
azure_endpoint=os.environ.get("EMBEDDING_API_ENDPOINT",None),
api_key=os.environ.get("EMBEDDING_API_KEY",None),
api_version= os.environ.get("AZURE_OPENAI_API_VERSION",None),
azure_deployment="embedding-3-large"
)
else:
client = self.client
try:
embbeding = client.embeddings.create(
model=os.environ.get("EMBEDDING_MODEL","text-embedding-3-large"),
input=text,
timeout= 180
)
embbeding = embbeding.data
if len(embbeding) == 0:
return None
elif len(embbeding) == 1:
return embbeding[0].embedding
else:
return [e.embedding for e in embbeding]
except Exception as e:
print(f"get embbeding failed: {e}")
print(e)
logging.info(e)
return
@retry(wait=wait_fixed(10), stop=stop_after_attempt(10), before=before_retry_fn)
async def get_embbeding_async(self,text):
if os.environ.get("EMBEDDING_API_ENDPOINT"):
client = AsyncAzureOpenAI(
azure_endpoint=os.environ.get("EMBEDDING_API_ENDPOINT",None),
api_key=os.environ.get("EMBEDDING_API_KEY",None),
api_version= os.environ.get("AZURE_OPENAI_API_VERSION",None),
azure_deployment="embedding-3-large"
)
else:
client = self.async_client
try:
embbeding = await client.embeddings.create(
model=os.environ.get("EMBEDDING_MODEL","text-embedding-3-large"),
input=text,
timeout= 180
)
embbeding = embbeding.data
if len(embbeding) == 0:
return None
elif len(embbeding) == 1:
return embbeding[0].embedding
else:
return [e.embedding for e in embbeding]
except Exception as e:
print(f"get embbeding failed: {e}")
print(e)
logging.info(e)
return
@retry(wait=wait_fixed(10), stop=stop_after_attempt(10), before=before_retry_fn)
async def response_async(self,messages,**kwargs):
try:
response = await self.async_client.chat.completions.create(
model=kwargs.get("model", self.model),
messages=messages,
n = kwargs.get("n", 1),
temperature= kwargs.get("temperature", 0.7),
max_tokens=kwargs.get("max_tokens", 4000),
timeout=kwargs.get("timeout", 180)
)
except Exception as e:
await asyncio.sleep(0.1)
model = kwargs.get("model", self.model)
print(f"get {model} response failed: {e}")
print(e)
logging.info(e)
return
return response.choices[0].message.content