-
Notifications
You must be signed in to change notification settings - Fork 0
/
README.txt
47 lines (24 loc) · 7.72 KB
/
README.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
1) Download and install Python version 3.7
2) Change into the <data_misc> folder and install all required packages with the following line:
pip install -r requirements.txt
3) Change into the <scripts> folder and execute following comands to train
### Federated Learning ###
nohup python train_FedAvg.py -model resnet18 -model_name resnet18 -subname FL_FedAvg -num_workers 8 -name_main_dataframe dummy_df.p -batch_size 32 -epochs_frozen 2 -epochs_unfrozen 8 -learning_rate 0.0017335209373335885 -sync_factor 0.2 -minimal_training False -custom_random_state 0 -sample_rate_majority_class 300 -clinic clinic1 -participating_clinics clinic1_clinic2_clinic3_clinic4_clinic5 -leading_clinic clinic1 -testing_clinic clinic6 -random_erasing_probability 0.9390864270863725 -random_erasing_max_count 4 &
nohup python train_FedAvg.py -model resnet18 -model_name resnet18 -subname FL_FedAvg -num_workers 8 -name_main_dataframe dummy_df.p -batch_size 32 -epochs_frozen 2 -epochs_unfrozen 8 -learning_rate 0.0017335209373335885 -sync_factor 0.2 -minimal_training False -custom_random_state 0 -sample_rate_majority_class 300 -clinic clinic2 -participating_clinics clinic1_clinic2_clinic3_clinic4_clinic5 -leading_clinic clinic1 -testing_clinic clinic6 -random_erasing_probability 0.9390864270863725 -random_erasing_max_count 4 &
nohup python train_FedAvg.py -model resnet18 -model_name resnet18 -subname FL_FedAvg -num_workers 8 -name_main_dataframe dummy_df.p -batch_size 32 -epochs_frozen 2 -epochs_unfrozen 8 -learning_rate 0.0017335209373335885 -sync_factor 0.2 -minimal_training False -custom_random_state 0 -sample_rate_majority_class 300 -clinic clinic3 -participating_clinics clinic1_clinic2_clinic3_clinic4_clinic5 -leading_clinic clinic1 -testing_clinic clinic6 -random_erasing_probability 0.9390864270863725 -random_erasing_max_count 4 &
nohup python train_FedAvg.py -model resnet18 -model_name resnet18 -subname FL_FedAvg -num_workers 8 -name_main_dataframe dummy_df.p -batch_size 32 -epochs_frozen 2 -epochs_unfrozen 8 -learning_rate 0.0017335209373335885 -sync_factor 0.2 -minimal_training False -custom_random_state 0 -sample_rate_majority_class 300 -clinic clinic4 -participating_clinics clinic1_clinic2_clinic3_clinic4_clinic5 -leading_clinic clinic1 -testing_clinic clinic6 -random_erasing_probability 0.9390864270863725 -random_erasing_max_count 4 &
nohup python train_FedAvg.py -model resnet18 -model_name resnet18 -subname FL_FedAvg -num_workers 8 -name_main_dataframe dummy_df.p -batch_size 32 -epochs_frozen 2 -epochs_unfrozen 8 -learning_rate 0.0017335209373335885 -sync_factor 0.2 -minimal_training False -custom_random_state 0 -sample_rate_majority_class 300 -clinic clinic5 -participating_clinics clinic1_clinic2_clinic3_clinic4_clinic5 -leading_clinic clinic1 -testing_clinic clinic6 -random_erasing_probability 0.9390864270863725 -random_erasing_max_count 4 &
### Centralized ###
nohup python train_centralized.py -model resnet18 -model_name resnet18 -subname FL_centralized -num_workers 8 -name_main_dataframe dummy_df.p -batch_size 32 -epochs_frozen 9 -epochs_unfrozen 4 -learning_rate 0.0034512756844944955 -minimal_training False -custom_random_state 0 -sample_rate_majority_class 200 -participating_clinics clinic1_clinic2_clinic3_clinic4_clinic5 -random_erasing_probability 0.03503048342527504 -random_erasing_max_count 6 &
### Centralized leave one out ###
nohup python train_centralized.py -model resnet18 -model_name resnet18 -subname FL_centralized_leave_one_clinic_out_CLINIC1_22_03_23 -num_workers 8 -name_main_dataframe dummy_df.p -batch_size 32 -epochs_frozen 9 -epochs_unfrozen 9 -learning_rate 0.007895373126386886 -minimal_training True -custom_random_state 0 -sample_rate_majority_class 400 -participating_clinics clinic2_clinic3_clinic4_clinic5 -random_erasing_probability 0.4268647044312376 -random_erasing_max_count 3 &
nohup python train_centralized.py -model resnet18 -model_name resnet18 -subname FL_centralized_leave_one_clinic_out_CLINIC2_22_03_23 -num_workers 8 -name_main_dataframe dummy_df.p -batch_size 32 -epochs_frozen 9 -epochs_unfrozen 9 -learning_rate 0.007895373126386886 -minimal_training True -custom_random_state 0 -sample_rate_majority_class 400 -participating_clinics clinic1_clinic3_clinic4_clinic5 -random_erasing_probability 0.4268647044312376 -random_erasing_max_count 3 &
nohup python train_centralized.py -model resnet18 -model_name resnet18 -subname FL_centralized_leave_one_clinic_out_CLINIC3_22_03_23 -num_workers 8 -name_main_dataframe dummy_df.p -batch_size 32 -epochs_frozen 9 -epochs_unfrozen 9 -learning_rate 0.007895373126386886 -minimal_training True -custom_random_state 0 -sample_rate_majority_class 400 -participating_clinics clinic1_clinic2_clinic4_clinic5 -random_erasing_probability 0.4268647044312376 -random_erasing_max_count 3 &
nohup python train_centralized.py -model resnet18 -model_name resnet18 -subname FL_centralized_leave_one_clinic_out_CLINIC4_22_03_23 -num_workers 8 -name_main_dataframe dummy_df.p -batch_size 32 -epochs_frozen 9 -epochs_unfrozen 9 -learning_rate 0.007895373126386886 -minimal_training True -custom_random_state 0 -sample_rate_majority_class 400 -participating_clinics clinic1_clinic2_clinic3_clinic5 -random_erasing_probability 0.4268647044312376 -random_erasing_max_count 3 &
nohup python train_centralized.py -model resnet18 -model_name resnet18 -subname FL_centralized_leave_one_clinic_out_CLINIC5_22_03_23 -num_workers 8 -name_main_dataframe dummy_df.p -batch_size 32 -epochs_frozen 9 -epochs_unfrozen 9 -learning_rate 0.007895373126386886 -minimal_training True -custom_random_state 0 -sample_rate_majority_class 400 -participating_clinics clinic1_clinic2_clinic3_clinic4 -random_erasing_probability 0.4268647044312376 -random_erasing_max_count 3 &
### Ensemble ###
nohup python train_centralized_ensemble.py -model resnet18 -model_name resnet18 -subname FL_centralized_ensemble -num_workers 8 -name_main_dataframe dummy_df.p -batch_size 32 -epochs_frozen 4 -epochs_unfrozen 2 -learning_rate 0.007962377303224796 -minimal_training False -custom_random_state 0 -sample_rate_majority_class 100 -clinic clinic1 -random_erasing_probability 0.27335458998696716 -random_erasing_max_count 2 &
nohup python train_centralized_ensemble.py -model resnet18 -model_name resnet18 -subname FL_centralized_ensemble -num_workers 8 -name_main_dataframe dummy_df.p -batch_size 32 -epochs_frozen 4 -epochs_unfrozen 2 -learning_rate 0.007962377303224796 -minimal_training False -custom_random_state 0 -sample_rate_majority_class 100 -clinic clinic2 -random_erasing_probability 0.27335458998696716 -random_erasing_max_count 2 &
nohup python train_centralized_ensemble.py -model resnet18 -model_name resnet18 -subname FL_centralized_ensemble -num_workers 8 -name_main_dataframe dummy_df.p -batch_size 32 -epochs_frozen 4 -epochs_unfrozen 2 -learning_rate 0.007962377303224796 -minimal_training False -custom_random_state 0 -sample_rate_majority_class 100 -clinic clinic3 -random_erasing_probability 0.27335458998696716 -random_erasing_max_count 2 &
nohup python train_centralized_ensemble.py -model resnet18 -model_name resnet18 -subname FL_centralized_ensemble -num_workers 8 -name_main_dataframe dummy_df.p -batch_size 32 -epochs_frozen 4 -epochs_unfrozen 2 -learning_rate 0.007962377303224796 -minimal_training False -custom_random_state 0 -sample_rate_majority_class 100 -clinic clinic4 -random_erasing_probability 0.27335458998696716 -random_erasing_max_count 2 &
nohup python train_centralized_ensemble.py -model resnet18 -model_name resnet18 -subname FL_centralized_ensemble -num_workers 8 -name_main_dataframe dummy_df.p -batch_size 32 -epochs_frozen 4 -epochs_unfrozen 2 -learning_rate 0.007962377303224796 -minimal_training False -custom_random_state 0 -sample_rate_majority_class 100 -clinic clinic5 -random_erasing_probability 0.27335458998696716 -random_erasing_max_count 2 &