forked from MAVRICK-1/DragGAN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
visualizer_drag_gradio.py
871 lines (745 loc) · 31.6 KB
/
visualizer_drag_gradio.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
import os
import os.path as osp
from argparse import ArgumentParser
from functools import partial
import gradio as gr
import numpy as np
import torch
from PIL import Image
import dnnlib
from gradio_utils import (ImageMask, draw_mask_on_image, draw_points_on_image,
get_latest_points_pair, get_valid_mask,
on_change_single_global_state)
from viz.renderer import Renderer, add_watermark_np
parser = ArgumentParser()
parser.add_argument('--share', action='store_true',default='True')
parser.add_argument('--cache-dir', type=str, default='./checkpoints')
parser.add_argument(
"--listen",
action="store_true",
help="launch gradio with 0.0.0.0 as server name, allowing to respond to network requests",
)
args = parser.parse_args()
cache_dir = args.cache_dir
device = 'cuda'
def reverse_point_pairs(points):
new_points = []
for p in points:
new_points.append([p[1], p[0]])
return new_points
def clear_state(global_state, target=None):
"""Clear target history state from global_state
If target is not defined, points and mask will be both removed.
1. set global_state['points'] as empty dict
2. set global_state['mask'] as full-one mask.
"""
if target is None:
target = ['point', 'mask']
if not isinstance(target, list):
target = [target]
if 'point' in target:
global_state['points'] = dict()
print('Clear Points State!')
if 'mask' in target:
image_raw = global_state["images"]["image_raw"]
global_state['mask'] = np.ones((image_raw.size[1], image_raw.size[0]),
dtype=np.uint8)
print('Clear mask State!')
return global_state
def init_images(global_state):
"""This function is called only ones with Gradio App is started.
0. pre-process global_state, unpack value from global_state of need
1. Re-init renderer
2. run `renderer._render_drag_impl` with `is_drag=False` to generate
new image
3. Assign images to global state and re-generate mask
"""
if isinstance(global_state, gr.State):
state = global_state.value
else:
state = global_state
state['renderer'].init_network(
state['generator_params'], # res
valid_checkpoints_dict[state['pretrained_weight']], # pkl
state['params']['seed'], # w0_seed,
None, # w_load
state['params']['latent_space'] == 'w+', # w_plus
'const',
state['params']['trunc_psi'], # trunc_psi,
state['params']['trunc_cutoff'], # trunc_cutoff,
None, # input_transform
state['params']['lr'] # lr,
)
state['renderer']._render_drag_impl(state['generator_params'],
is_drag=False,
to_pil=True)
init_image = state['generator_params'].image
state['images']['image_orig'] = init_image
state['images']['image_raw'] = init_image
state['images']['image_show'] = Image.fromarray(
add_watermark_np(np.array(init_image)))
state['mask'] = np.ones((init_image.size[1], init_image.size[0]),
dtype=np.uint8)
return global_state
def update_image_draw(image, points, mask, show_mask, global_state=None):
image_draw = draw_points_on_image(image, points)
if show_mask and mask is not None and not (mask == 0).all() and not (
mask == 1).all():
image_draw = draw_mask_on_image(image_draw, mask)
image_draw = Image.fromarray(add_watermark_np(np.array(image_draw)))
if global_state is not None:
global_state['images']['image_show'] = image_draw
return image_draw
def preprocess_mask_info(global_state, image):
"""Function to handle mask information.
1. last_mask is None: Do not need to change mask, return mask
2. last_mask is not None:
2.1 global_state is remove_mask:
2.2 global_state is add_mask:
"""
if isinstance(image, dict):
last_mask = get_valid_mask(image['mask'])
else:
last_mask = None
mask = global_state['mask']
# mask in global state is a placeholder with all 1.
if (mask == 1).all():
mask = last_mask
# last_mask = global_state['last_mask']
editing_mode = global_state['editing_state']
if last_mask is None:
return global_state
if editing_mode == 'remove_mask':
updated_mask = np.clip(mask - last_mask, 0, 1)
print(f'Last editing_state is {editing_mode}, do remove.')
elif editing_mode == 'add_mask':
updated_mask = np.clip(mask + last_mask, 0, 1)
print(f'Last editing_state is {editing_mode}, do add.')
else:
updated_mask = mask
print(f'Last editing_state is {editing_mode}, '
'do nothing to mask.')
global_state['mask'] = updated_mask
# global_state['last_mask'] = None # clear buffer
return global_state
valid_checkpoints_dict = {
f.split('/')[-1].split('.')[0]: osp.join(cache_dir, f)
for f in os.listdir(cache_dir)
if (f.endswith('pkl') and osp.exists(osp.join(cache_dir, f)))
}
print(f'File under cache_dir ({cache_dir}):')
print(os.listdir(cache_dir))
print('Valid checkpoint file:')
print(valid_checkpoints_dict)
init_pkl = 'stylegan2_lions_512_pytorch'
with gr.Blocks() as app:
# renderer = Renderer()
global_state = gr.State({
"images": {
# image_orig: the original image, change with seed/model is changed
# image_raw: image with mask and points, change durning optimization
# image_show: image showed on screen
},
"temporal_params": {
# stop
},
'mask':
None, # mask for visualization, 1 for editing and 0 for unchange
'last_mask': None, # last edited mask
'show_mask': True, # add button
"generator_params": dnnlib.EasyDict(),
"params": {
"seed": 0,
"motion_lambda": 20,
"r1_in_pixels": 3,
"r2_in_pixels": 12,
"magnitude_direction_in_pixels": 1.0,
"latent_space": "w+",
"trunc_psi": 0.7,
"trunc_cutoff": None,
"lr": 0.001,
},
"device": device,
"draw_interval": 1,
"renderer": Renderer(disable_timing=True),
"points": {},
"curr_point": None,
"curr_type_point": "start",
'editing_state': 'add_points',
'pretrained_weight': init_pkl
})
# init image
global_state = init_images(global_state)
with gr.Row():
with gr.Row():
# Left --> tools
with gr.Column(scale=3):
# Pickle
with gr.Row():
with gr.Column(scale=1, min_width=10):
gr.Markdown(value='Pickle', show_label=False)
with gr.Column(scale=4, min_width=10):
form_pretrained_dropdown = gr.Dropdown(
choices=list(valid_checkpoints_dict.keys()),
label="Pretrained Model",
value=init_pkl,
)
# Latent
with gr.Row():
with gr.Column(scale=1, min_width=10):
gr.Markdown(value='Latent', show_label=False)
with gr.Column(scale=4, min_width=10):
form_seed_number = gr.Number(
value=global_state.value['params']['seed'],
interactive=True,
label="Seed",
)
form_lr_number = gr.Number(
value=global_state.value["params"]["lr"],
interactive=True,
label="Step Size")
with gr.Row():
with gr.Column(scale=2, min_width=10):
form_reset_image = gr.Button("Reset Image")
with gr.Column(scale=3, min_width=10):
form_latent_space = gr.Radio(
['w', 'w+'],
value=global_state.value['params']
['latent_space'],
interactive=True,
label='Latent space to optimize',
show_label=False,
)
# Drag
with gr.Row():
with gr.Column(scale=1, min_width=10):
gr.Markdown(value='Drag', show_label=False)
with gr.Column(scale=4, min_width=10):
with gr.Row():
with gr.Column(scale=1, min_width=10):
enable_add_points = gr.Button('Add Points')
with gr.Column(scale=1, min_width=10):
undo_points = gr.Button('Reset Points')
with gr.Row():
with gr.Column(scale=1, min_width=10):
form_start_btn = gr.Button("Start")
with gr.Column(scale=1, min_width=10):
form_stop_btn = gr.Button("Stop")
form_steps_number = gr.Number(value=0,
label="Steps",
interactive=False)
# Mask
with gr.Row():
with gr.Column(scale=1, min_width=10):
gr.Markdown(value='Mask', show_label=False)
with gr.Column(scale=4, min_width=10):
enable_add_mask = gr.Button('Edit Flexible Area')
with gr.Row():
with gr.Column(scale=1, min_width=10):
form_reset_mask_btn = gr.Button("Reset mask")
with gr.Column(scale=1, min_width=10):
show_mask = gr.Checkbox(
label='Show Mask',
value=global_state.value['show_mask'],
show_label=False)
with gr.Row():
form_lambda_number = gr.Number(
value=global_state.value["params"]
["motion_lambda"],
interactive=True,
label="Lambda",
)
form_draw_interval_number = gr.Number(
value=global_state.value["draw_interval"],
label="Draw Interval (steps)",
interactive=True,
visible=False)
# Right --> Image
with gr.Column(scale=8):
form_image = ImageMask(
value=global_state.value['images']['image_show'],
brush_radius=20).style(
width=768,
height=768) # NOTE: hard image size code here.
gr.Markdown("""
## Quick Start
1. Select desired `Pretrained Model` and adjust `Seed` to generate an
initial image.
2. Click on image to add control points.
3. Click `Start` and enjoy it!
## Advance Usage
1. Change `Step Size` to adjust learning rate in drag optimization.
2. Select `w` or `w+` to change latent space to optimize:
* Optimize on `w` space may cause greater influence to the image.
* Optimize on `w+` space may work slower than `w`, but usually achieve
better results.
* Note that changing the latent space will reset the image, points and
mask (this has the same effect as `Reset Image` button).
3. Click `Edit Flexible Area` to create a mask and constrain the
unmasked region to remain unchanged.
""")
gr.HTML("""
<style>
.container {
position: absolute;
height: 50px;
text-align: center;
line-height: 50px;
width: 100%;
}
</style>
<div class="container">
Gradio demo supported by
<img src="https://avatars.githubusercontent.com/u/10245193?s=200&v=4" height="20" width="20" style="display:inline;">
<a href="https://github.com/open-mmlab/mmagic">OpenMMLab MMagic</a>
</div>
""")
# Network & latents tab listeners
def on_change_pretrained_dropdown(pretrained_value, global_state):
"""Function to handle model change.
1. Set pretrained value to global_state
2. Re-init images and clear all states
"""
global_state['pretrained_weight'] = pretrained_value
init_images(global_state)
clear_state(global_state)
return global_state, global_state["images"]['image_show']
form_pretrained_dropdown.change(
on_change_pretrained_dropdown,
inputs=[form_pretrained_dropdown, global_state],
outputs=[global_state, form_image],
)
def on_click_reset_image(global_state):
"""Reset image to the original one and clear all states
1. Re-init images
2. Clear all states
"""
init_images(global_state)
clear_state(global_state)
return global_state, global_state['images']['image_show']
form_reset_image.click(
on_click_reset_image,
inputs=[global_state],
outputs=[global_state, form_image],
)
# Update parameters
def on_change_update_image_seed(seed, global_state):
"""Function to handle generation seed change.
1. Set seed to global_state
2. Re-init images and clear all states
"""
global_state["params"]["seed"] = int(seed)
init_images(global_state)
clear_state(global_state)
return global_state, global_state['images']['image_show']
form_seed_number.change(
on_change_update_image_seed,
inputs=[form_seed_number, global_state],
outputs=[global_state, form_image],
)
def on_click_latent_space(latent_space, global_state):
"""Function to reset latent space to optimize.
NOTE: this function we reset the image and all controls
1. Set latent-space to global_state
2. Re-init images and clear all state
"""
global_state['params']['latent_space'] = latent_space
init_images(global_state)
clear_state(global_state)
return global_state, global_state['images']['image_show']
form_latent_space.change(on_click_latent_space,
inputs=[form_latent_space, global_state],
outputs=[global_state, form_image])
# ==== Params
form_lambda_number.change(
partial(on_change_single_global_state, ["params", "motion_lambda"]),
inputs=[form_lambda_number, global_state],
outputs=[global_state],
)
def on_change_lr(lr, global_state):
if lr == 0:
print('lr is 0, do nothing.')
return global_state
else:
global_state["params"]["lr"] = lr
renderer = global_state['renderer']
renderer.update_lr(lr)
print('New optimizer: ')
print(renderer.w_optim)
return global_state
form_lr_number.change(
on_change_lr,
inputs=[form_lr_number, global_state],
outputs=[global_state],
)
def on_click_start(global_state, image):
p_in_pixels = []
t_in_pixels = []
valid_points = []
# handle of start drag in mask editing mode
global_state = preprocess_mask_info(global_state, image)
# Prepare the points for the inference
if len(global_state["points"]) == 0:
# yield on_click_start_wo_points(global_state, image)
image_raw = global_state['images']['image_raw']
update_image_draw(
image_raw,
global_state['points'],
global_state['mask'],
global_state['show_mask'],
global_state,
)
yield (
global_state,
0,
global_state['images']['image_show'],
# gr.File.update(visible=False),
gr.Button.update(interactive=True),
gr.Button.update(interactive=True),
gr.Button.update(interactive=True),
gr.Button.update(interactive=True),
gr.Button.update(interactive=True),
# latent space
gr.Radio.update(interactive=True),
gr.Button.update(interactive=True),
# NOTE: disable stop button
gr.Button.update(interactive=False),
# update other comps
gr.Dropdown.update(interactive=True),
gr.Number.update(interactive=True),
gr.Number.update(interactive=True),
gr.Button.update(interactive=True),
gr.Button.update(interactive=True),
gr.Checkbox.update(interactive=True),
# gr.Number.update(interactive=True),
gr.Number.update(interactive=True),
)
else:
# Transform the points into torch tensors
for key_point, point in global_state["points"].items():
try:
p_start = point.get("start_temp", point["start"])
p_end = point["target"]
if p_start is None or p_end is None:
continue
except KeyError:
continue
p_in_pixels.append(p_start)
t_in_pixels.append(p_end)
valid_points.append(key_point)
mask = torch.tensor(global_state['mask']).float()
drag_mask = 1 - mask
renderer: Renderer = global_state["renderer"]
global_state['temporal_params']['stop'] = False
global_state['editing_state'] = 'running'
# reverse points order
p_to_opt = reverse_point_pairs(p_in_pixels)
t_to_opt = reverse_point_pairs(t_in_pixels)
print('Running with:')
print(f' Source: {p_in_pixels}')
print(f' Target: {t_in_pixels}')
step_idx = 0
while True:
if global_state["temporal_params"]["stop"]:
break
# do drage here!
renderer._render_drag_impl(
global_state['generator_params'],
p_to_opt, # point
t_to_opt, # target
drag_mask, # mask,
global_state['params']['motion_lambda'], # lambda_mask
reg=0,
feature_idx=5, # NOTE: do not support change for now
r1=global_state['params']['r1_in_pixels'], # r1
r2=global_state['params']['r2_in_pixels'], # r2
# random_seed = 0,
# noise_mode = 'const',
trunc_psi=global_state['params']['trunc_psi'],
# force_fp32 = False,
# layer_name = None,
# sel_channels = 3,
# base_channel = 0,
# img_scale_db = 0,
# img_normalize = False,
# untransform = False,
is_drag=True,
to_pil=True)
if step_idx % global_state['draw_interval'] == 0:
print('Current Source:')
for key_point, p_i, t_i in zip(valid_points, p_to_opt,
t_to_opt):
global_state["points"][key_point]["start_temp"] = [
p_i[1],
p_i[0],
]
global_state["points"][key_point]["target"] = [
t_i[1],
t_i[0],
]
start_temp = global_state["points"][key_point][
"start_temp"]
print(f' {start_temp}')
image_result = global_state['generator_params']['image']
image_draw = update_image_draw(
image_result,
global_state['points'],
global_state['mask'],
global_state['show_mask'],
global_state,
)
global_state['images']['image_raw'] = image_result
yield (
global_state,
step_idx,
global_state['images']['image_show'],
# gr.File.update(visible=False),
gr.Button.update(interactive=False),
gr.Button.update(interactive=False),
gr.Button.update(interactive=False),
gr.Button.update(interactive=False),
gr.Button.update(interactive=False),
# latent space
gr.Radio.update(interactive=False),
gr.Button.update(interactive=False),
# enable stop button in loop
gr.Button.update(interactive=True),
# update other comps
gr.Dropdown.update(interactive=False),
gr.Number.update(interactive=False),
gr.Number.update(interactive=False),
gr.Button.update(interactive=False),
gr.Button.update(interactive=False),
gr.Checkbox.update(interactive=False),
# gr.Number.update(interactive=False),
gr.Number.update(interactive=False),
)
# increate step
step_idx += 1
image_result = global_state['generator_params']['image']
global_state['images']['image_raw'] = image_result
image_draw = update_image_draw(image_result,
global_state['points'],
global_state['mask'],
global_state['show_mask'],
global_state)
# fp = NamedTemporaryFile(suffix=".png", delete=False)
# image_result.save(fp, "PNG")
global_state['editing_state'] = 'add_points'
yield (
global_state,
0, # reset step to 0 after stop.
global_state['images']['image_show'],
# gr.File.update(visible=True, value=fp.name),
gr.Button.update(interactive=True),
gr.Button.update(interactive=True),
gr.Button.update(interactive=True),
gr.Button.update(interactive=True),
gr.Button.update(interactive=True),
# latent space
gr.Radio.update(interactive=True),
gr.Button.update(interactive=True),
# NOTE: disable stop button with loop finish
gr.Button.update(interactive=False),
# update other comps
gr.Dropdown.update(interactive=True),
gr.Number.update(interactive=True),
gr.Number.update(interactive=True),
gr.Checkbox.update(interactive=True),
gr.Number.update(interactive=True),
)
form_start_btn.click(
on_click_start,
inputs=[global_state, form_image],
outputs=[
global_state,
form_steps_number,
form_image,
# form_download_result_file,
# >>> buttons
form_reset_image,
enable_add_points,
enable_add_mask,
undo_points,
form_reset_mask_btn,
form_latent_space,
form_start_btn,
form_stop_btn,
# <<< buttonm
# >>> inputs comps
form_pretrained_dropdown,
form_seed_number,
form_lr_number,
show_mask,
form_lambda_number,
],
)
def on_click_stop(global_state):
"""Function to handle stop button is clicked.
1. send a stop signal by set global_state["temporal_params"]["stop"] as True
2. Disable Stop button
"""
global_state["temporal_params"]["stop"] = True
return global_state, gr.Button.update(interactive=False)
form_stop_btn.click(on_click_stop,
inputs=[global_state],
outputs=[global_state, form_stop_btn])
form_draw_interval_number.change(
partial(
on_change_single_global_state,
"draw_interval",
map_transform=lambda x: int(x),
),
inputs=[form_draw_interval_number, global_state],
outputs=[global_state],
)
def on_click_remove_point(global_state):
choice = global_state["curr_point"]
del global_state["points"][choice]
choices = list(global_state["points"].keys())
if len(choices) > 0:
global_state["curr_point"] = choices[0]
return (
gr.Dropdown.update(choices=choices, value=choices[0]),
global_state,
)
# Mask
def on_click_reset_mask(global_state):
global_state['mask'] = np.ones(
(
global_state["images"]["image_raw"].size[1],
global_state["images"]["image_raw"].size[0],
),
dtype=np.uint8,
)
image_draw = update_image_draw(global_state['images']['image_raw'],
global_state['points'],
global_state['mask'],
global_state['show_mask'], global_state)
return global_state, image_draw
form_reset_mask_btn.click(
on_click_reset_mask,
inputs=[global_state],
outputs=[global_state, form_image],
)
# Image
def on_click_enable_draw(global_state, image):
"""Function to start add mask mode.
1. Preprocess mask info from last state
2. Change editing state to add_mask
3. Set curr image with points and mask
"""
global_state = preprocess_mask_info(global_state, image)
global_state['editing_state'] = 'add_mask'
image_raw = global_state['images']['image_raw']
image_draw = update_image_draw(image_raw, global_state['points'],
global_state['mask'], True,
global_state)
return (global_state,
gr.Image.update(value=image_draw, interactive=True))
def on_click_remove_draw(global_state, image):
"""Function to start remove mask mode.
1. Preprocess mask info from last state
2. Change editing state to remove_mask
3. Set curr image with points and mask
"""
global_state = preprocess_mask_info(global_state, image)
global_state['edinting_state'] = 'remove_mask'
image_raw = global_state['images']['image_raw']
image_draw = update_image_draw(image_raw, global_state['points'],
global_state['mask'], True,
global_state)
return (global_state,
gr.Image.update(value=image_draw, interactive=True))
enable_add_mask.click(on_click_enable_draw,
inputs=[global_state, form_image],
outputs=[
global_state,
form_image,
])
def on_click_add_point(global_state, image: dict):
"""Function switch from add mask mode to add points mode.
1. Updaste mask buffer if need
2. Change global_state['editing_state'] to 'add_points'
3. Set current image with mask
"""
global_state = preprocess_mask_info(global_state, image)
global_state['editing_state'] = 'add_points'
mask = global_state['mask']
image_raw = global_state['images']['image_raw']
image_draw = update_image_draw(image_raw, global_state['points'], mask,
global_state['show_mask'], global_state)
return (global_state,
gr.Image.update(value=image_draw, interactive=False))
enable_add_points.click(on_click_add_point,
inputs=[global_state, form_image],
outputs=[global_state, form_image])
def on_click_image(global_state, evt: gr.SelectData):
"""This function only support click for point selection
"""
xy = evt.index
if global_state['editing_state'] != 'add_points':
print(f'In {global_state["editing_state"]} state. '
'Do not add points.')
return global_state, global_state['images']['image_show']
points = global_state["points"]
point_idx = get_latest_points_pair(points)
if point_idx is None:
points[0] = {'start': xy, 'target': None}
print(f'Click Image - Start - {xy}')
elif points[point_idx].get('target', None) is None:
points[point_idx]['target'] = xy
print(f'Click Image - Target - {xy}')
else:
points[point_idx + 1] = {'start': xy, 'target': None}
print(f'Click Image - Start - {xy}')
image_raw = global_state['images']['image_raw']
image_draw = update_image_draw(
image_raw,
global_state['points'],
global_state['mask'],
global_state['show_mask'],
global_state,
)
return global_state, image_draw
form_image.select(
on_click_image,
inputs=[global_state],
outputs=[global_state, form_image],
)
def on_click_clear_points(global_state):
"""Function to handle clear all control points
1. clear global_state['points'] (clear_state)
2. re-init network
2. re-draw image
"""
clear_state(global_state, target='point')
renderer: Renderer = global_state["renderer"]
renderer.feat_refs = None
image_raw = global_state['images']['image_raw']
image_draw = update_image_draw(image_raw, {}, global_state['mask'],
global_state['show_mask'], global_state)
return global_state, image_draw
undo_points.click(on_click_clear_points,
inputs=[global_state],
outputs=[global_state, form_image])
def on_click_show_mask(global_state, show_mask):
"""Function to control whether show mask on image."""
global_state['show_mask'] = show_mask
image_raw = global_state['images']['image_raw']
image_draw = update_image_draw(
image_raw,
global_state['points'],
global_state['mask'],
global_state['show_mask'],
global_state,
)
return global_state, image_draw
show_mask.change(
on_click_show_mask,
inputs=[global_state, show_mask],
outputs=[global_state, form_image],
)
gr.close_all()
app.queue(concurrency_count=3, max_size=20)
app.launch(share=args.share, server_name="0.0.0.0" if args.listen else "127.0.0.1")