-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdataset.py
362 lines (319 loc) · 14.9 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
import os
import sys
import torch
from torch.utils import data
import numpy as np
import random
import itk
import SimpleITK as sitk
def read_image(fname, imtype):
reader = itk.ImageFileReader[imtype].New()
reader.SetFileName(fname)
reader.Update()
image = reader.GetOutput()
return image
def get_center_of_mass(label):
arr = itk.GetArrayFromImage(label)
mask = np.zeros_like(arr)
mask[arr > 0] = 1
inds = np.nonzero(mask)
origin = np.array(label.GetOrigin())
spacing = np.array(label.GetSpacing())
cm = np.zeros_like(origin)
cm[2] = np.mean(inds[0])
cm[1] = np.mean(inds[1])
cm[0] = np.mean(inds[2])
cm = origin + cm * spacing
return cm
def scan_path(d_name, d_path):
entries = []
if d_name == 'prostate_ucla':
for case_name in os.listdir('{}/image'.format(d_path)):
if case_name.startswith('Case'):
case_id = int(case_name.split('Case')[1])
for fn in os.listdir('{}/image/{}'.format(d_path, case_name)):
if fn.startswith('us_') and fn.endswith('.nii.gz'):
image_name = '{0:s}/image/{1:s}/{2:s}'.format(d_path, case_name, fn)
label_name = '{0:s}/label/{1:s}/{2:s}'.format(d_path, case_name, fn)
if os.path.isfile(image_name) and os.path.isfile(label_name):
entries.append([d_name, case_name, image_name, label_name, True])
return entries
def create_data_folds(data_path, fraction, exclude_case):
fold_file_name = '{0:s}/CV_UCLA-fold.txt'.format(sys.path[0])
folds = {}
if os.path.exists(fold_file_name):
with open(fold_file_name, 'r') as fold_file:
strlines = fold_file.readlines()
for strline in strlines:
strline = strline.rstrip('\n')
params = strline.split()
fold_id = int(params[0])
if fold_id not in folds:
folds[fold_id] = []
folds[fold_id].append([params[1], params[2], params[3], params[4], bool(params[5])])
else:
entries = []
for [d_name, d_path] in data_path:
entries.extend(scan_path(d_name, d_path))
for e in entries:
if e[0:2] in exclude_case:
entries.remove(e)
unique_cases = []
for e in entries:
if e[0:2] not in unique_cases:
unique_cases.append(e[0:2])
case_num = len(unique_cases)
random.shuffle(unique_cases)
ptr = 0
for fold_id in range(len(fraction)):
folds[fold_id] = []
for fold_id in range(len(fraction)):
fold_cases = unique_cases[ptr:ptr+fraction[fold_id]]
for e in entries:
if e[0:2] in fold_cases:
folds[fold_id].append(e)
ptr += fraction[fold_id]
with open(fold_file_name, 'w') as fold_file:
for fold_id in range(len(fraction)):
for i, [d_name, case_name, image_path, label_path, unlabeled] in enumerate(folds[fold_id]):
instance_id = int(image_path.split('/{}/us_'.format(case_name))[1].split('.nii.gz')[0])
instance_name = '{0:s}-{1:d}'.format(case_name, instance_id)
fold_file.write('{0:d} {1:s} {2:s} {3:s} {4:s} {5:s}\n'.format(fold_id, d_name, instance_name, image_path, label_path, str(unlabeled)))
folds[fold_id][i] = [d_name, instance_name, image_path, label_path, unlabeled]
folds_size = [len(x) for x in folds.values()]
return folds, folds_size
def normalize(x, min, max):
factor = 1.0 / (max - min)
x[x < min] = min
x[x > max] = max
x = (x - min) * factor
return x
def generate_transform(rand):
if rand:
min_rotate = -0.05 # [rad]
max_rotate = 0.05 # [rad]
min_offset = -5.0 # [mm]
max_offset = 5.0 # [mm]
t = itk.Euler3DTransform[itk.D].New()
euler_parameters = t.GetParameters()
euler_parameters = itk.OptimizerParameters[itk.D](t.GetNumberOfParameters())
offset_x = min_offset + random.random() * (max_offset - min_offset) # rotate
offset_y = min_offset + random.random() * (max_offset - min_offset) # rotate
offset_z = min_offset + random.random() * (max_offset - min_offset) # rotate
rotate_x = min_rotate + random.random() * (max_rotate - min_rotate) # tranlate
rotate_y = min_rotate + random.random() * (max_rotate - min_rotate) # tranlate
rotate_z = min_rotate + random.random() * (max_rotate - min_rotate) # tranlate
euler_parameters[0] = rotate_x # rotate
euler_parameters[1] = rotate_y # rotate
euler_parameters[2] = rotate_z # rotate
euler_parameters[3] = offset_x # tranlate
euler_parameters[4] = offset_y # tranlate
euler_parameters[5] = offset_z # tranlate
t.SetParameters(euler_parameters)
else:
offset_x = 0
offset_y = 0
offset_z = 0
rotate_x = 0
rotate_y = 0
rotate_z = 0
t = itk.IdentityTransform[itk.D, 3].New()
return t, [offset_x, offset_y, offset_z, rotate_x, rotate_y, rotate_z]
def resample(image, imtype, size, spacing, origin, transform, linear, dtype, use_min_default):
o_origin = image.GetOrigin()
o_spacing = image.GetSpacing()
o_size = image.GetBufferedRegion().GetSize()
output = {}
output['org_size'] = np.array(o_size, dtype=int)
output['org_spacing'] = np.array(o_spacing, dtype=np.float32)
output['org_origin'] = np.array(o_origin, dtype=np.float32)
if origin is None: # if no origin point specified, center align the resampled image with the original image
new_size = np.zeros(3, dtype=int)
new_spacing = np.zeros(3, dtype=np.float32)
new_origin = np.zeros(3, dtype=np.float32)
for i in range(3):
new_size[i] = size[i]
if spacing[i] > 0:
new_spacing[i] = spacing[i]
new_origin[i] = o_origin[i] + o_size[i]*o_spacing[i]*0.5 - size[i]*spacing[i]*0.5
else:
new_spacing[i] = o_size[i] * o_spacing[i] / size[i]
new_origin[i] = o_origin[i]
else:
new_size = np.array(size, dtype=int)
new_spacing = np.array(spacing, dtype=np.float32)
new_origin = np.array(origin, dtype=np.float32)
output['size'] = new_size
output['spacing'] = new_spacing
output['origin'] = new_origin
resampler = itk.ResampleImageFilter[imtype, imtype].New()
resampler.SetInput(image)
resampler.SetSize((int(new_size[0]), int(new_size[1]), int(new_size[2])))
resampler.SetOutputSpacing((float(new_spacing[0]), float(new_spacing[1]), float(new_spacing[2])))
resampler.SetOutputOrigin((float(new_origin[0]), float(new_origin[1]), float(new_origin[2])))
resampler.SetTransform(transform)
if linear:
resampler.SetInterpolator(itk.LinearInterpolateImageFunction[imtype, itk.D].New())
else:
resampler.SetInterpolator(itk.NearestNeighborInterpolateImageFunction[imtype, itk.D].New())
if use_min_default:
resampler.SetDefaultPixelValue(int(np.min(itk.GetArrayFromImage(image))))
else:
resampler.SetDefaultPixelValue(int(np.max(itk.GetArrayFromImage(image))))
resampler.Update()
rs_image = resampler.GetOutput()
image_array = itk.GetArrayFromImage(rs_image)
image_array = image_array[np.newaxis, :].astype(dtype)
output['array'] = image_array
return output
def make_onehot(input, cls):
oh = np.repeat(np.zeros_like(input), cls*2, axis=0)
for i in range(cls):
tmp = np.zeros_like(input)
tmp[input==i+1] = 1
oh[i*2+0,:] = 1-tmp
oh[i*2+1,:] = tmp
return oh
def make_flag(cls, labelmap):
flag = np.zeros([cls, 1], dtype=np.float32)
for key in labelmap:
flag[labelmap[key]-1,0] = 1
return flag
# dataset of 3D image volume
# 3D volumes are resampled from and center-aligned with the original images
class Dataset(data.Dataset):
def __init__(self, ids, rs_size, rs_spacing, rs_intensity, label_map, cls_num, aug_data, center_aligned):
self.ImageType = itk.Image[itk.SS, 3]
self.LabelType = itk.Image[itk.UC, 3]
self.FloatType = itk.Image[itk.F, 3]
self.ids = ids
self.rs_size = rs_size
self.rs_spacing = rs_spacing
self.rs_intensity = rs_intensity
self.label_map = label_map
self.cls_num = cls_num
self.aug_data = aug_data
self.center_aligned = center_aligned
self.case_center = {}
def __len__(self):
return len(self.ids)
def __getitem__(self, index):
[d_name, casename, image_fn, label_fn, labeled] = self.ids[index]
cm = None
if self.center_aligned:
if casename not in self.case_center:
src_label = read_image(fname=label_fn, imtype=self.LabelType)
c = get_center_of_mass(src_label)
self.case_center[casename] = c - np.array(self.rs_size) * np.array(self.rs_spacing) * 0.5
cm = self.case_center[casename]
t, t_param = generate_transform(rand=self.aug_data)
output = {}
src_image = read_image(fname=image_fn, imtype=self.ImageType)
image = resample(image=src_image, imtype=self.ImageType, size=self.rs_size, spacing=self.rs_spacing, origin=cm,
transform=t, linear=True, dtype=np.float32, use_min_default=True)
image['array'] = normalize(image['array'], min=self.rs_intensity[0], max=self.rs_intensity[1])
if labeled:
src_label = read_image(fname=label_fn, imtype=self.LabelType)
label = resample(image=src_label, imtype=self.LabelType, size=self.rs_size, spacing=self.rs_spacing, origin=cm,
transform=t, linear=False, dtype=np.int64, use_min_default=True)
tmp_array = np.zeros_like(label['array'])
lmap = self.label_map[d_name]
for key in lmap:
tmp_array[label['array'] == key] = lmap[key]
label['array'] = tmp_array
label_bin = make_onehot(label['array'], cls=self.cls_num)
label_exist = make_flag(cls=self.cls_num, labelmap=self.label_map[d_name])
else:
label_bin = make_onehot(np.zeros_like(image['array'], dtype=np.int64), cls=self.cls_num)
label_exist = np.zeros([self.cls_num, 1])
output['data'] = torch.from_numpy(image['array'])
output['label'] = torch.from_numpy(label_bin.astype(np.float32))
output['label_exist'] = label_exist
output['dataset'] = d_name
output['case'] = casename
output['size'] = image['size']
output['spacing'] = image['spacing']
output['origin'] = image['origin']
output['transform'] = np.array(t_param, dtype=np.float32)
output['org_size'] = image['org_size']
output['org_spacing'] = image['org_spacing']
output['org_origin'] = image['org_origin']
output['eof'] = True
return output
def keep_largest_component(image, largest_n=1):
arr = itk.GetArrayFromImage(image)
c_filter = sitk.ConnectedComponentImageFilter()
obj_arr = sitk.GetArrayFromImage(c_filter.Execute(sitk.GetImageFromArray(arr)))
obj_num = c_filter.GetObjectCount()
tmp_arr = np.zeros_like(obj_arr)
if obj_num > 0:
obj_vol = np.zeros(obj_num, dtype=np.int64)
for obj_id in range(obj_num):
tmp_arr = np.zeros_like(obj_arr)
tmp_arr[obj_arr == obj_id+1] = 1
obj_vol[obj_id] = np.sum(tmp_arr)
sorted_obj_id = np.argsort(obj_vol)[::-1]
for i in range(min(largest_n, obj_num)):
tmp_arr[obj_arr == sorted_obj_id[i]+1] = 1
output = itk.GetImageFromArray(tmp_arr.astype(np.int16))
output.SetSpacing(image.GetSpacing())
output.SetOrigin(image.GetOrigin())
output.SetDirection(image.GetDirection())
return output
# Dataset for Teacher-Student training manner
# Each sample will be augmented twice by different transforms
# One for teacher model, the other one for student model
class TSDataset(data.Dataset):
def __init__(self, ids, rs_size, rs_spacing, rs_intensity, label_map, cls_num, aug_data):
self.ImageType = itk.Image[itk.SS, 3]
self.LabelType = itk.Image[itk.UC, 3]
self.FloatType = itk.Image[itk.F, 3]
self.ids = ids
self.rs_size = rs_size
self.rs_spacing = rs_spacing
self.rs_intensity = rs_intensity
self.label_map = label_map
self.cls_num = cls_num
self.aug_data = aug_data
def __len__(self):
return len(self.ids)
def __getitem__(self, index):
[d_name, casename, image_fn, label_fn, labeled] = self.ids[index]
output = {}
src_image = read_image(fname=image_fn, imtype=self.ImageType)
if labeled:
src_label = read_image(fname=label_fn, imtype=self.LabelType)
label_exist = make_flag(cls=self.cls_num, labelmap=self.label_map[d_name])
else:
label_exist = np.zeros([self.cls_num, 1])
status = ['tea', 'stu']
for mode in status:
t, t_param = generate_transform(rand=self.aug_data)
image = resample(image=src_image, imtype=self.ImageType, size=self.rs_size, spacing=self.rs_spacing, origin=None,
transform=t, linear=True, dtype=np.float32, use_min_default=True)
image['array'] = normalize(image['array'], min=self.rs_intensity[0], max=self.rs_intensity[1])
output['{0:s}_data'.format(mode)] = torch.from_numpy(image['array'])
output['{0:s}_size'.format(mode)] = image['size']
output['{0:s}_spacing'.format(mode)] = image['spacing']
output['{0:s}_origin'.format(mode)] = image['origin']
output['{0:s}_transform'.format(mode)] = np.array(t_param, dtype=np.float32)
if labeled:
label = resample(image=src_label, imtype=self.LabelType, size=self.rs_size, spacing=self.rs_spacing, origin=None,
transform=t, linear=False, dtype=np.int64, use_min_default=True)
tmp_array = np.zeros_like(label['array'])
lmap = self.label_map[d_name]
for key in lmap:
tmp_array[label['array'] == key] = lmap[key]
label['array'] = tmp_array
label_bin = make_onehot(label['array'], cls=self.cls_num)
else:
label_bin = make_onehot(np.zeros_like(image['array'], dtype=np.int64), cls=self.cls_num)
output['{0:s}_label'.format(mode)] = torch.from_numpy(label_bin.astype(np.float32))
output['org_size'] = image['org_size']
output['org_spacing'] = image['org_spacing']
output['org_origin'] = image['org_origin']
output['label_exist'] = label_exist
output['dataset'] = d_name
output['case'] = casename
output['eof'] = True
return output