-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdose_equations.py
68 lines (59 loc) · 1.63 KB
/
dose_equations.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Dec 13 14:54:18 2022
Equations and dgn values for tkinter
@author: DIDSR
"""
import numpy as np
import pandas as pd
import os
# Sarno polyenergetic and monoenergetic tables from published papers
Sarno_mono_dgn = pd.read_csv(
os.path.join(os.getcwd(), "dose_table", "Sarno_mono_dgn.txt"), sep=" "
)
Sarno_poly_dgn = pd.read_csv(
os.path.join(os.getcwd(), "dose_table", "Sarno_poly_dgn.txt"),
sep=" ",
index_col="HVL",
)
# monoenergetic dgnct equation 8th degree polynomial fitting
sarno_dgnct = (
lambda a, b, c, d, e, f, g, h, E: (a * 10**-14) * E**8
+ (b * 10**-12) * E**7
+ (c * 10**-10) * E**6
+ (d * 10**-8) * E**5
+ (e * 10**-6) * E**4
+ (f * 10**-4) * E**3
+ (g * 10**-3) * E**2
+ (h * 10**-2) * E
)
# define equation for exposure per fluence
aa = -5.023290717769674e-6
bb = 1.810595449064631e-7
cc = 0.008838658459816926
exposure_per_fluence = (
lambda E: (aa + bb * np.log(E) * np.log(E) + cc / E**2) ** (-1) / 1000 * 0.1145
)
# Hernandez_hetero_dgn table
Hernandez_hetero_mono_dgn = pd.read_csv(
os.path.join(os.getcwd(), "dose_table", "Hernandez_heterogeneous_dgn.txt"),
sep=",",
header=0,
)
# Sechopoulos dgn
Sechopoulos_poly_dgn = pd.read_csv(
os.path.join(os.getcwd(), "dose_table", "Sechopoulos_dgn.txt"),
sep=" ",
header=None,
index_col=0,
) # index is diameter at chest wall (breast diameter)
Sechopoulos_poly_dgn.columns = [
"Chest wall-to-nipple distance",
"1%",
"14.3%",
"25%",
"50%",
"75%",
"100%",
]