forked from SIAnalytics/dual-hrnet
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathinference.py
131 lines (98 loc) · 4.11 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import os
import argparse
import multiprocessing
import warnings
import copy
import numpy as np
import torch
import torch.nn as nn
from torch.autograd import Variable
import torch.nn.functional as F
import torchvision.transforms as transforms
from skimage.io import imread, imsave
from yacs.config import CfgNode
from models.dual_hrnet import get_model
multiprocessing.set_start_method('spawn', True)
warnings.filterwarnings("ignore")
parser = argparse.ArgumentParser()
parser.add_argument('in_pre_path', type=str, default='test_images/test_pre_00000.png')
parser.add_argument('in_post_path', type=str, default='test_images/test_post_00000.png')
parser.add_argument('out_loc_path', type=str, default='test_images/test_loc_00000.png')
parser.add_argument('out_cls_path', type=str, default='test_images/test_cls_00000.png')
parser.add_argument('--model_config_path', type=str, default='configs/model.yaml')
parser.add_argument('--model_weight_path', type=str, default='weights/weight.pth')
parser.add_argument('--is_use_gpu', action='store_true', dest='is_use_gpu')
parser.add_argument('--is_vis', action='store_true', dest='is_vis')
args = parser.parse_args()
class ModelWraper(nn.Module):
def __init__(self, model, is_use_gpu=False, is_split_loss=True):
super(ModelWraper, self).__init__()
self.is_use_gpu = is_use_gpu
self.is_split_loss = is_split_loss
if self.is_use_gpu:
self.model = model.cuda()
else:
self.model = model
def forward(self, inputs_pre, inputs_post):
inputs_pre = Variable(inputs_pre)
inputs_post = Variable(inputs_post)
if self.is_use_gpu:
inputs_pre = inputs_pre.cuda()
inputs_post = inputs_post.cuda()
pred_dict = self.model(inputs_pre, inputs_post)
loc = F.interpolate(pred_dict['loc'], size=inputs_pre.size()[2:4], mode='bilinear')
if self.is_split_loss:
cls = F.interpolate(pred_dict['cls'], size=inputs_post.size()[2:4], mode='bilinear')
else:
cls = None
return loc, cls
def argmax(loc, cls):
loc = torch.argmax(loc, dim=1, keepdim=False)
cls = torch.argmax(cls, dim=1, keepdim=False)
cls = cls + 1
cls[loc == 0] = 0
return loc, cls
def build_image_transforms():
return transforms.Compose([
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
def main():
config = CfgNode.load_cfg(open(args.model_config_path, 'rb'))
ckpt_path = args.model_weight_path
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = True
model = get_model(config)
model.load_state_dict(torch.load(ckpt_path, map_location='cpu')['state_dict'])
model.eval()
model_wrapper = ModelWraper(model, args.is_use_gpu, config.MODEL.IS_SPLIT_LOSS)
model_wrapper.eval()
image_transforms = build_image_transforms()
pre_image = imread(args.in_pre_path)
post_image = imread(args.in_post_path)
inputs_pre = image_transforms(pre_image)
inputs_post = image_transforms(post_image)
inputs_pre.unsqueeze_(0)
inputs_post.unsqueeze_(0)
loc, cls = model_wrapper(inputs_pre, inputs_post)
if config.MODEL.IS_SPLIT_LOSS:
loc, cls = argmax(loc, cls)
loc = loc.detach().cpu().numpy().astype(np.uint8)[0]
cls = cls.detach().cpu().numpy().astype(np.uint8)[0]
else:
loc = torch.argmax(loc, dim=1, keepdim=False)
loc = loc.detach().cpu().numpy().astype(np.uint8)[0]
cls = copy.deepcopy(loc)
imsave(args.out_loc_path, loc)
imsave(args.out_cls_path, cls)
if args.is_vis:
mask_map_img = np.zeros((cls.shape[0], cls.shape[1], 3), dtype=np.uint8)
mask_map_img[cls == 1] = (255, 255, 255)
mask_map_img[cls == 2] = (229, 255, 50)
mask_map_img[cls == 3] = (255, 159, 0)
mask_map_img[cls == 4] = (255, 0, 0)
compare_img = np.concatenate((pre_image, mask_map_img, post_image), axis=1)
out_dir = os.path.dirname(args.out_loc_path)
imsave(os.path.join(out_dir, 'compare_img.png'), compare_img)
if __name__ == '__main__':
main()