-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconjugate_gradient_method.py
158 lines (130 loc) · 4.83 KB
/
conjugate_gradient_method.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
from math import sqrt
import matplotlib.pyplot as plt
import numpy as np
from prettytable import PrettyTable
headers = PrettyTable(
['№', 'x1_1', 'x2_1', 'x1_2', 'x2_2', 'function(x1,x2)', 'df'])
def table(count, old_function, x1_1, x2_1, x1_2, x2_2, new_function):
Tablelist = {
'№': count,
'x1_1': round(x1_1, 7),
'x2_1': round(x2_1, 7),
'x1_2': round(x1_2, 7),
'x2_2': round(x2_2, 7),
'function(x1,x2)': round(new_function, 8),
'df': abs(round(new_function - old_function, 8)),
}
headers.add_row(Tablelist.values())
def output(x1, x2, count, eps_y):
return (f'Число шагов = {count}\nx1 = {x1}, x2 = {x2}\n'
f'function(x1,x2) = {function(x1, x2)}\neps_y = {eps_y}')
def function(x1, x2):
#return 10 * x1 * x1 + 2 * x2 * x2 - 2 * x1 - 2 * x2 + 1 - 4 * x1 * x2
return 22 * x1 + 0.1 * x2 + np.exp(4.84 * x1 * x1 + 1.2 * x2 * x2)
def grad_function(x1, x2, delta):
def derivative(x1, x2, delta_x1, delta_x2):
der = ((function(x1 + delta_x1, x2 + delta_x2) - function(
x1 - delta_x1, x2 - delta_x2)) / (
2 * delta))
return der
gradient = (
[-1 * derivative(x1, x2, delta, 0), -1 * derivative(x1, x2, 0, delta)])
return gradient
def gss_1(a, b, gradient, x1, x2, eps, s):
interval = (b - a)
a1 = a + interval * (1 - s)
b1 = a + interval * s
fa1 = function(x1 + a1 * gradient[0], x2 + a1 * gradient[1])
fb1 = function(x1 + b1 * gradient[0], x2 + b1 * gradient[1])
while abs(interval) >= eps:
if fa1 <= fb1: # <= - минимум, >= - максимум
b = b1
b1 = a1
fb1 = fa1
interval = interval * s
a1 = a + interval * (1 - s)
fa1 = function(x1 + a1 * gradient[0], x2 + a1 * gradient[1])
else:
a = a1
a1 = b1
fa1 = fb1
interval = interval * s
b1 = a + interval * s
fb1 = function(x1 + b1 * gradient[0], x2 + b1 * gradient[1])
L = (a + b) / 2
return L
def grad_move(old_x1, old_x2, lam, gradient):
x1 = old_x1 + lam * gradient[0]
x2 = old_x2 + lam * gradient[1]
old_gradient = gradient
gradient = grad_function(x1, x2, delta)
new_function = function(x1, x2)
return [new_function, x1, x2, gradient, old_gradient]
def CH(grad0, grad1):
new_grad = np.array(grad1)
old_grad = np.array(grad0)
khi = (np.transpose(new_grad).dot(new_grad - old_grad)) / (
np.transpose(old_grad).dot(old_grad))
return khi
def s_1(old_gradient, new_gradient, chi):
sx1 = new_gradient[0] + chi * old_gradient[0]
sx2 = new_gradient[1] + chi * old_gradient[1]
s = [sx1, sx2]
return s
def conj_grad(x1, x2, delta):
points_x = [x1]
points_y = [x2]
func = [function(x1, x2)]
count = 0
new_function = function(x1, x2)
old_function = new_function + 100
eps_y = 0.000001
a, b = 0, 1
eps = (1 - a) / 100000
x1_0, x2_0 = x1, x2
gradient = grad_function(x1_0, x2_0, delta)
while abs(new_function - old_function) > eps_y:
count += 1
lam = gss_1(a, b, gradient, x1_0, x2_0, eps, s)
func_value, x1_1, x2_1, gradient, old_gradient = grad_move(x1_0, x2_0,
lam,
gradient)
points_x.append(x1_1)
points_y.append(x2_1)
func.append(func_value)
chi = CH(old_gradient, gradient)
s1 = s_1(old_gradient, gradient, chi)
lam = gss_1(a, b, s1, x1_1, x2_1, eps, s)
old_function = new_function
new_function, x1_2, x2_2, gradient = grad_move(x1_1, x2_1, lam, s1)[
:-1]
x1_0, x2_0 = x1_2, x2_2
table(count, old_function, x1_1, x2_1, x1_0, x2_0, new_function)
points_x.append(x1_2)
points_y.append(x2_2)
func.append(new_function)
return output(x1_0, x2_0, count, eps_y), [points_x, points_y], func
if __name__ == '__main__':
s = ((sqrt(5) - 1) / 2)
x1 = 1
x2 = 1
delta = 0.000001
info, points_coord, coord_func = conj_grad(x1, x2, delta)
print(headers)
print(info)
x_axis = y_axis = np.arange(0, 2, 0.001)
X, Y = np.meshgrid(x_axis, y_axis)
Zs = np.array(function(np.ravel(X), np.ravel(Y)))
Z = Zs.reshape(X.shape)
sorted_coord_func = sorted(coord_func)
cs = plt.contour(X, Y, Z, levels=sorted_coord_func)
plt.clabel(cs)
plt.xlabel('x1')
plt.ylabel('x2')
plt.plot(points_coord[0], points_coord[1])
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.plot_surface(X, Y, Z, zorder=2)
ax.plot(points_coord[0], points_coord[1], coord_func, color='red',
zorder=1)
plt.show()