-
Notifications
You must be signed in to change notification settings - Fork 0
/
start_request.py
164 lines (134 loc) · 4.51 KB
/
start_request.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import pyaudio
import wave
import audioop
from collections import deque
import os
import requests
import time
import math
import xml.etree.ElementTree as xmlt
url = 'https://asr.yandex.net/asr_xml'
params = {'uuid':'34353bf726ff4ea885eea4164d3ab413',
'key' : 'f1233cf8-c27a-4bad-9b5e-04f6ed2f265a',
'topic' : 'queries',
'lang': 'ru-RU'}
headers = {"Content-Type": "audio/x-pcm;bit=16;rate=16000"}
# Microphone stream config.
CHUNK = 1024 # CHUNKS of bytes to read each time from mic
FORMAT = pyaudio.paInt16
CHANNELS = 1
RATE = 16000
THRESHOLD = 2500 # The threshold intensity that defines silence
# and noise signal (an int. lower than THRESHOLD is silence).
SILENCE_LIMIT = 1 # Silence limit in seconds. The max ammount of seconds where
# only silence is recorded. When this time passes the
# recording finishes and the file is delivered.
PREV_AUDIO = 0.5 # Previous audio (in seconds) to prepend. When noise
# is detected, how much of previously recorded audio is
# prepended. This helps to prevent chopping the beggining
# of the phrase.
def audio_int(num_samples=50):
""" Gets average audio intensity of your mic sound. You can use it to get
average intensities while you're talking and/or silent. The average
is the avg of the 20% largest intensities recorded.
"""
print ("Getting intensity values from mic.")
p = pyaudio.PyAudio()
stream = p.open(format=FORMAT,
channels=CHANNELS,
rate=RATE,
input=True,
frames_per_buffer=CHUNK)
values = [math.sqrt(abs(audioop.avg(stream.read(CHUNK), 4)))
for x in range(num_samples)]
values = sorted(values, reverse=True)
r = sum(values[:int(num_samples * 0.2)]) / int(num_samples * 0.2)
print (" Finished ")
print (" Average audio intensity is ", r)
stream.close()
p.terminate()
return r
def listen_for_speech(threshold=THRESHOLD, num_phrases=1):
"""
Listens to Microphone, extracts phrases from it and sends it to
Google's TTS service and returns response. a "phrase" is sound
surrounded by silence (according to threshold). num_phrases controls
how many phrases to process before finishing the listening process
(-1 for infinite).
"""
#Open stream
p = pyaudio.PyAudio()
stream = p.open(format=FORMAT,
channels=CHANNELS,
rate=RATE,
input=True,
frames_per_buffer=CHUNK)
print ("* Listening mic. ")
audio2send = []
cur_data = '' # current chunk of audio data
rel = int(RATE/CHUNK)
slid_win = deque(maxlen=SILENCE_LIMIT * rel)
#Prepend audio from 0.5 seconds before noise was detected
prev_audio = deque(maxlen=int(PREV_AUDIO * rel))
started = False
n = num_phrases
response = []
while (num_phrases == -1 or n > 0):
cur_data = stream.read(CHUNK)
slid_win.append(math.sqrt(abs(audioop.avg(cur_data, 4))))
#print slid_win[-1]
if(sum([x > THRESHOLD for x in slid_win]) > 0):
if(not started):
print ("Starting record of phrase")
started = True
audio2send.append(cur_data)
elif (started is True):
print ("Finished")
# The limit was reached, finish capture and deliver.
filename = save_speech(list(prev_audio) + audio2send, p)
# Send file to Google and get response
r = stt_google_wav(filename)
# Reset all
started = False
slid_win = deque(maxlen=SILENCE_LIMIT * rel)
prev_audio = deque(maxlen=int(0.5 * rel) )
audio2send = []
n -= 1
else:
prev_audio.append(cur_data)
print ("* Done recording")
stream.close()
p.terminate()
return r
def save_speech(data, p):
""" Saves mic data to temporary WAV file. Returns filename of saved
file """
filename = 'command'
# writes data to WAV file
data = b''.join(data)
wf = wave.open(filename + '.pcm', 'wb')
wf.setnchannels(1)
wf.setsampwidth(p.get_sample_size(pyaudio.paInt16))
wf.setframerate(16000) # TODO make this value a function parameter?
wf.writeframes(data)
wf.close()
pass
def stt_google_wav(audio_fname):
""" Sends audio file (audio_fname) to Google's text to speech
service and returns service's response. We need a FLAC
converter if audio is not FLAC (check FLAC_CONV). """
with open('command.pcm', 'rb') as file1:
files = {'file': file1.read()}
print ("Sending request to Yandex SK")
req = requests.post(url, params = params, headers=headers, files = files)
try:
response = req.text
income_xml = xmlt.fromstring(req.text)
command = income_xml[0].text
except:
print ("Couldn't parse service response")
command = 'динахуй блять'
return command
if(__name__ == '__main__'):
print(listen_for_speech())
os.remove('command.pcm')