-
Notifications
You must be signed in to change notification settings - Fork 3
/
utils.py
154 lines (127 loc) · 5.65 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
# Copyright Niantic 2019. Patent Pending. All rights reserved.
#
# This software is licensed under the terms of the Monodepth2 licence
# which allows for non-commercial use only, the full terms of which are made
# available in the LICENSE file.
# This implementation is borrowed from MonoDepth2: https://github.com/nianticlabs/monodepth2/blob/master/utils.py
import os
import hashlib
import zipfile
from six.moves import urllib
import numpy as np
import torch
import matplotlib.cm as cm
def readlines(filename):
"""Read all the lines in a text file and return as a list
"""
with open(filename, 'r') as f:
lines = f.read().splitlines()
return lines
def draw_attention(attention_map, image=None, u=20, v=20):
attention_map = attention_map.view(24, 80, 24, 80)
attn_pos = attention_map[v, u, :, :]
attn_pos = normalize_image(attn_pos)
attn_np = attn_pos.squeeze().cpu().numpy()
mapper = cm.ScalarMappable(cmap='rainbow')
attn_vis = (mapper.to_rgba(attn_np)[:, :, :3] * 255).astype(np.uint8)
result = torch.from_numpy(attn_vis).permute(2, 0, 1)
return result
def draw_attention_stacked(attention_map, image=None, u=17, v=8):
attention_map = attention_map.view(24, 80, 24, 80)
output = []
for v in range(0, 24, 10):
for u in range(0, 80, 20):
attn_pos = attention_map[v, u, :, :]
attn_pos = normalize_image(attn_pos)
attn_np = attn_pos.squeeze().cpu().numpy()
mapper = cm.ScalarMappable(cmap='jet')
attn_vis = (mapper.to_rgba(attn_np)[:, :, :3] * 255).astype(np.uint8)
result = torch.from_numpy(attn_vis).permute(2, 0, 1)
output.append(result)
output = torch.cat(output, 1)
return output
def draw_normals(normals):
normals = normals.view(3, 24, 80).cpu()
normal_map = 0.5 * normals + 0.5
normal_map = np.uint8(normal_map.numpy() * 255)
normal_map = normal_map[[0, 2, 1], :, :]
normal_map = torch.from_numpy(normal_map)
return normal_map
def normalize_image(x):
"""Rescale image pixels to span range [0, 1]
"""
ma = float(x.max().cpu().data)
mi = float(x.min().cpu().data)
d = ma - mi if ma != mi else 1e5
return (x - mi) / d
def sec_to_hm(t):
"""Convert time in seconds to time in hours, minutes and seconds
e.g. 10239 -> (2, 50, 39)
"""
t = int(t)
s = t % 60
t //= 60
m = t % 60
t //= 60
return t, m, s
def sec_to_hm_str(t):
"""Convert time in seconds to a nice string
e.g. 10239 -> '02h50m39s'
"""
h, m, s = sec_to_hm(t)
return "{:02d}h{:02d}m{:02d}s".format(h, m, s)
def download_model_if_doesnt_exist(model_name):
"""If pretrained kitti model doesn't exist, download and unzip it
"""
# values are tuples of (<google cloud URL>, <md5 checksum>)
download_paths = {
"mono_640x192":
("https://storage.googleapis.com/niantic-lon-static/research/monodepth2/mono_640x192.zip",
"a964b8356e08a02d009609d9e3928f7c"),
"stereo_640x192":
("https://storage.googleapis.com/niantic-lon-static/research/monodepth2/stereo_640x192.zip",
"3dfb76bcff0786e4ec07ac00f658dd07"),
"mono+stereo_640x192":
("https://storage.googleapis.com/niantic-lon-static/research/monodepth2/mono%2Bstereo_640x192.zip",
"c024d69012485ed05d7eaa9617a96b81"),
"mono_no_pt_640x192":
("https://storage.googleapis.com/niantic-lon-static/research/monodepth2/mono_no_pt_640x192.zip",
"9c2f071e35027c895a4728358ffc913a"),
"stereo_no_pt_640x192":
("https://storage.googleapis.com/niantic-lon-static/research/monodepth2/stereo_no_pt_640x192.zip",
"41ec2de112905f85541ac33a854742d1"),
"mono+stereo_no_pt_640x192":
("https://storage.googleapis.com/niantic-lon-static/research/monodepth2/mono%2Bstereo_no_pt_640x192.zip",
"46c3b824f541d143a45c37df65fbab0a"),
"mono_1024x320":
("https://storage.googleapis.com/niantic-lon-static/research/monodepth2/mono_1024x320.zip",
"0ab0766efdfeea89a0d9ea8ba90e1e63"),
"stereo_1024x320":
("https://storage.googleapis.com/niantic-lon-static/research/monodepth2/stereo_1024x320.zip",
"afc2f2126d70cf3fdf26b550898b501a"),
"mono+stereo_1024x320":
("https://storage.googleapis.com/niantic-lon-static/research/monodepth2/mono%2Bstereo_1024x320.zip",
"cdc5fc9b23513c07d5b19235d9ef08f7"),
}
if not os.path.exists("models"):
os.makedirs("models")
model_path = os.path.join("models", model_name)
def check_file_matches_md5(checksum, fpath):
if not os.path.exists(fpath):
return False
with open(fpath, 'rb') as f:
current_md5checksum = hashlib.md5(f.read()).hexdigest()
return current_md5checksum == checksum
# see if we have the model already downloaded...
if not os.path.exists(os.path.join(model_path, "encoder.pth")):
model_url, required_md5checksum = download_paths[model_name]
if not check_file_matches_md5(required_md5checksum, model_path + ".zip"):
print("-> Downloading pretrained model to {}".format(model_path + ".zip"))
urllib.request.urlretrieve(model_url, model_path + ".zip")
if not check_file_matches_md5(required_md5checksum, model_path + ".zip"):
print(" Failed to download a file which matches the checksum - quitting")
quit()
print(" Unzipping model...")
with zipfile.ZipFile(model_path + ".zip", 'r') as f:
f.extractall(model_path)
print(" Model unzipped to {}".format(model_path))