-
Notifications
You must be signed in to change notification settings - Fork 130
/
Copy pathhistoric_usage_to_csv.py
97 lines (84 loc) · 4.49 KB
/
historic_usage_to_csv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
"""
Disclaimer:
These projects are not a part of Datadog's subscription services and are provided for example purposes only
They are NOT guaranteed to be bug free and are not production quality
If you choose to use to adapt them for use in a production environment, you do so at your own risk.
"""
import datetime
import os
import time
import csv
import requests
import simplejson
from argparse import ArgumentParser, RawTextHelpFormatter
"""
This script is meant to pull historical usage metrics and export them to CSV. Set variables in __init__.
"""
class UsageReport(object):
def __init__(self, api_key, app_key, start_hour, end_hour, type, filename):
self.api_key = api_key
self.app_key= app_key
self.type = type
self.filename = filename
self.url = 'https://app.datadoghq.com/api/v1/usage/' + type + '?api_key=' + api_key + '&application_key=' + app_key + '&start_hr=' + start_hour + '&end_hr=' + end_hour
def get_usage_metrics(self):
usage_metrics = []
error_messages = []
try:
metrics = requests.get(self.url).json()
if metrics.get('errors', None):
print(metrics['errors'])
return usage_metrics
usage_metrics = metrics.get('usage', None)
error_messages = metrics.get('errors', [])
for m in error_messages:
print('Error when retrieving metrics: {}'.format(m))
except requests.exceptions.MissingSchema:
print('Invalid URL format: {}'.format(url))
except requests.exceptions.ConnectionError:
print('Could not connect to url: {}'.format(url))
except simplejson.scanner.JSONDecodeError:
print('The response did not contain JSON data')
return usage_metrics
def gen_usage_report(self):
# Get usage metrics from Datadog
metrics = self.get_usage_metrics()
# print(metrics)
file_exists = os.path.isfile(self.filename)
with open(self.filename, mode='a+') as output_file:
metric_writer = csv.writer(output_file, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL)
if not file_exists:
if self.type == 'hosts':
metric_writer.writerow(['hour', 'total_host_count', 'container_count', 'apm_host_count', 'agent_host_count', 'gcp_host_count', 'aws_host_count'])
elif self.type == 'timeseries':
metric_writer.writerow(['hour', 'num_custom_timeseries'])
elif self.type == 'logs':
metric_writer.writerow(['hour', 'indexed_events_count', 'ingested_events_bytes'])
for m in metrics:
hour = m.get('hour', False)
if self.type == 'hosts':
metric_writer.writerow([hour, m['host_count'], m['container_count'], m['apm_host_count'], m['agent_host_count'], m['gcp_host_count'], m['aws_host_count']])
elif self.type == 'timeseries':
metric_writer.writerow([hour, m['num_custom_timeseries']])
elif self.type == 'logs':
metric_writer.writerow([hour, m['indexed_events_count'], m['ingested_events_bytes']])
if __name__ == '__main__':
parser = ArgumentParser(description='Poll datadog API for usage metrics and export to CSV. Example: \n\npython historic_usage_to_csv.py -a your-api-key -k your-app-key -s 2018-11-01T01 -e 2018-11-04T01 -t logs -f log_usage.csv', formatter_class=RawTextHelpFormatter)
parser.add_argument('-a', '--api_key', help='Datadog API key', required=True)
parser.add_argument('-k', '--app_key', help='Datadog APP key', required=True)
parser.add_argument('-s', '--start_hour', help='YYYY-MM-DDTHH (ex. 2018-11-01T01)', required=True)
parser.add_argument('-e', '--end_hour', help='YYYY-MM-DDTHH (ex. 2018-12-01T01)', required=True)
parser.add_argument('-t', '--type', help='One of "hosts", "logs", or "timeseries" (metrics)', required=True)
parser.add_argument('-f', '--filename',help='Filename to export metrics', required=True)
args = parser.parse_args()
api_key = args.api_key
app_key = args.app_key
start_hour = args.start_hour
end_hour = args.end_hour
type = args.type
filename = args.filename
if type not in ['hosts', 'logs', 'timeseries']:
print('\nError: Argument "endpoint" must be one of "hosts", "logs", or "timeseries"\n')
exit(0)
print(args)
UsageReport(api_key, app_key, start_hour, end_hour, type, filename).gen_usage_report()