-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathPolynomial.inl
285 lines (271 loc) · 9.72 KB
/
Polynomial.inl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
/*
Copyright (c) 2006, Michael Kazhdan and Matthew Bolitho
All rights reserved.
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer. Redistributions in binary form must reproduce
the above copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the distribution.
Neither the name of the Johns Hopkins University nor the names of its contributors
may be used to endorse or promote products derived from this software without specific
prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.
*/
#include <float.h>
#include <math.h>
#include <algorithm>
#include "Factor.cuh"
////////////////
// Polynomial //
////////////////
template<int Degree>
__host__ __device__ Polynomial<Degree>::Polynomial(void){
#if !defined(__CUDA_ARCH__)
memset(coefficients,0,sizeof(float)*(Degree+1));
#endif
}
template<int Degree>
template<int Degree2>
Polynomial<Degree>::Polynomial(const Polynomial<Degree2>& P){
memset(coefficients,0,sizeof(float)*(Degree+1));
for(int i=0;i<=Degree && i<=Degree2;i++){coefficients[i]=P.coefficients[i];}
}
template<int Degree>
template<int Degree2>
Polynomial<Degree>& Polynomial<Degree>::operator = (const Polynomial<Degree2> &p){
int d=Degree<Degree2?Degree:Degree2;
memset(coefficients,0,sizeof(float)*(Degree+1));
memcpy(coefficients,p.coefficients,sizeof(float)*(d+1));
return *this;
}
template<int Degree>
Polynomial<Degree-1> Polynomial<Degree>::derivative(void) const{
Polynomial<Degree-1> p;
for(int i=0;i<Degree;i++){p.coefficients[i]=coefficients[i+1]*(i+1);}
return p;
}
template<int Degree>
Polynomial<Degree+1> Polynomial<Degree>::integral(void) const{
Polynomial<Degree+1> p;
p.coefficients[0]=0;
for(int i=0;i<=Degree;i++){p.coefficients[i+1]=coefficients[i]/(i+1);}
return p;
}
template<int Degree>
__host__ __device__ float Polynomial<Degree>::operator() (const float& t) const{
float temp=1;
float v=0;
for(int i=0;i<=Degree;i++){
v+=temp*coefficients[i];
temp*=t;
}
return v;
}
template<int Degree>
float Polynomial<Degree>::integral(const float& tMin,const float& tMax) const{
float v=0;
float t1,t2;
t1=tMin;
t2=tMax;
for(int i=0;i<=Degree;i++){
v+=coefficients[i]*(t2-t1)/(i+1);
if(t1!=-DBL_MAX && t1!=DBL_MAX){t1*=tMin;}
if(t2!=-DBL_MAX && t2!=DBL_MAX){t2*=tMax;}
}
return v;
}
template<int Degree>
int Polynomial<Degree>::operator == (const Polynomial& p) const{
for(int i=0;i<=Degree;i++){if(coefficients[i]!=p.coefficients[i]){return 0;}}
return 1;
}
template<int Degree>
int Polynomial<Degree>::operator != (const Polynomial& p) const{
for(int i=0;i<=Degree;i++){if(coefficients[i]==p.coefficients[i]){return 0;}}
return 1;
}
template<int Degree>
int Polynomial<Degree>::isZero(void) const{
for(int i=0;i<=Degree;i++){if(coefficients[i]!=0){return 0;}}
return 1;
}
template<int Degree>
void Polynomial<Degree>::setZero(void){memset(coefficients,0,sizeof(float)*(Degree+1));}
template<int Degree>
Polynomial<Degree>& Polynomial<Degree>::addScaled(const Polynomial& p,const float& s){
for(int i=0;i<=Degree;i++){coefficients[i]+=p.coefficients[i]*s;}
return *this;
}
template<int Degree>
Polynomial<Degree>& Polynomial<Degree>::operator += (const Polynomial<Degree>& p){
for(int i=0;i<=Degree;i++){coefficients[i]+=p.coefficients[i];}
return *this;
}
template<int Degree>
Polynomial<Degree>& Polynomial<Degree>::operator -= (const Polynomial<Degree>& p){
for(int i=0;i<=Degree;i++){coefficients[i]-=p.coefficients[i];}
return *this;
}
template<int Degree>
Polynomial<Degree> Polynomial<Degree>::operator + (const Polynomial<Degree>& p) const{
Polynomial q;
for(int i=0;i<=Degree;i++){q.coefficients[i]=(coefficients[i]+p.coefficients[i]);}
return q;
}
template<int Degree>
Polynomial<Degree> Polynomial<Degree>::operator - (const Polynomial<Degree>& p) const{
Polynomial q;
for(int i=0;i<=Degree;i++) {q.coefficients[i]=coefficients[i]-p.coefficients[i];}
return q;
}
template<int Degree>
void Polynomial<Degree>::Scale(const Polynomial& p,const float& w,Polynomial& q){
for(int i=0;i<=Degree;i++){q.coefficients[i]=p.coefficients[i]*w;}
}
template<int Degree>
void Polynomial<Degree>::AddScaled(const Polynomial& p1,const float& w1,const Polynomial& p2,const float& w2,Polynomial& q){
for(int i=0;i<=Degree;i++){q.coefficients[i]=p1.coefficients[i]*w1+p2.coefficients[i]*w2;}
}
template<int Degree>
void Polynomial<Degree>::AddScaled(const Polynomial& p1,const float& w1,const Polynomial& p2,Polynomial& q){
for(int i=0;i<=Degree;i++){q.coefficients[i]=p1.coefficients[i]*w1+p2.coefficients[i];}
}
template<int Degree>
void Polynomial<Degree>::AddScaled(const Polynomial& p1,const Polynomial& p2,const float& w2,Polynomial& q){
for(int i=0;i<=Degree;i++){q.coefficients[i]=p1.coefficients[i]+p2.coefficients[i]*w2;}
}
template<int Degree>
void Polynomial<Degree>::Subtract(const Polynomial &p1,const Polynomial& p2,Polynomial& q){
for(int i=0;i<=Degree;i++){q.coefficients[i]=p1.coefficients[i]-p2.coefficients[i];}
}
template<int Degree>
void Polynomial<Degree>::Negate(const Polynomial& in,Polynomial& out){
out=in;
for(int i=0;i<=Degree;i++){out.coefficients[i]=-out.coefficients[i];}
}
template<int Degree>
Polynomial<Degree> Polynomial<Degree>::operator - (void) const{
Polynomial q=*this;
for(int i=0;i<=Degree;i++){q.coefficients[i]=-q.coefficients[i];}
return q;
}
template<int Degree>
template<int Degree2>
__host__ __device__ Polynomial<Degree+Degree2> Polynomial<Degree>::operator * (const Polynomial<Degree2>& p) const{
Polynomial<Degree+Degree2> q;
for(int i=0;i<=Degree;i++){for(int j=0;j<=Degree2;j++){q.coefficients[i+j]+=coefficients[i]*p.coefficients[j];}}
return q;
}
template<int Degree>
Polynomial<Degree>& Polynomial<Degree>::operator += (const float& s){
coefficients[0]+=s;
return *this;
}
template<int Degree>
Polynomial<Degree>& Polynomial<Degree>::operator -= (const float& s){
coefficients[0]-=s;
return *this;
}
template<int Degree>
Polynomial<Degree>& Polynomial<Degree>::operator *= (const float& s){
for(int i=0;i<=Degree;i++){coefficients[i]*=s;}
return *this;
}
template<int Degree>
Polynomial<Degree>& Polynomial<Degree>::operator /= (const float& s){
for(int i=0;i<=Degree;i++){coefficients[i]/=s;}
return *this;
}
template<int Degree>
Polynomial<Degree> Polynomial<Degree>::operator + (const float& s) const{
Polynomial<Degree> q=*this;
q.coefficients[0]+=s;
return q;
}
template<int Degree>
Polynomial<Degree> Polynomial<Degree>::operator - (const float& s) const{
Polynomial q=*this;
q.coefficients[0]-=s;
return q;
}
template<int Degree>
Polynomial<Degree> Polynomial<Degree>::operator * (const float& s) const{
Polynomial q;
for(int i=0;i<=Degree;i++){q.coefficients[i]=coefficients[i]*s;}
return q;
}
template<int Degree>
Polynomial<Degree> Polynomial<Degree>::operator / (const float& s) const{
Polynomial q(Degree);
for(int i=0;i<=Degree;i++){q.coefficients[i]=coefficients[i]/s;}
return q;
}
template<int Degree>
__host__ __device__ Polynomial<Degree> Polynomial<Degree>::scale(const float& s) const{
Polynomial q=*this;
float s2=1.0;
for(int i=0;i<=Degree;i++){
q.coefficients[i]*=s2;
s2/=s;
}
return q;
}
template<int Degree>
__host__ __device__ Polynomial<Degree> Polynomial<Degree>::shift(const float& t) const{
Polynomial<Degree> q;
for(int i=0;i<=Degree;i++){
float temp=1;
for(int j=i;j>=0;j--){
q.coefficients[j]+=coefficients[i]*temp;
temp*=-t*j;
temp/=(i-j+1);
}
}
return q;
}
template<int Degree>
void Polynomial<Degree>::printnl(void) const{
for(int j=0;j<=Degree;j++){
printf("%6.4f x^%d ",coefficients[j],j);
if(j<Degree && coefficients[j+1]>=0){printf("+");}
}
printf("\n");
}
template<int Degree>
void Polynomial<Degree>::getSolutions(const float& c,std::vector<float>& roots,const float& EPS) const {
float r[4][2];
int rCount=0;
roots.clear();
switch(Degree){
case 1:
rCount=Factor(coefficients[1],coefficients[0]-c,r,EPS);
break;
case 2:
rCount=Factor(coefficients[2],coefficients[1],coefficients[0]-c,r,EPS);
break;
case 3:
rCount=Factor(coefficients[3],coefficients[2],coefficients[1],coefficients[0]-c,r,EPS);
break;
// case 4:
// rCount=Factor(coefficients[4],coefficients[3],coefficients[2],coefficients[1],coefficients[0]-c,r,EPS);
// break;
default:
printf("Can't solve polynomial of degree: %d\n",Degree);
}
for(int i=0;i<rCount;i++){
if(fabs(r[i][1])<=EPS){
roots.push_back(r[i][0]);
//printf("%d] %f\t%f\n",i,r[i][0],(*this)(r[i][0])-c);
}
}
}