-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathfeature_extraction.py
176 lines (149 loc) · 6.54 KB
/
feature_extraction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import numpy as np
import cPickle
import os
from scipy import signal
from scikits.audiolab import wavread
import librosa
import utils as cfg
from hat.preprocessing import mat_2d_to_3d,reshape_3d_to_4d
from scipy.fftpack import fft
from scipy.signal import lfilter, hamming
from scipy.fftpack.realtransforms import dct
from scikits.talkbox import segment_axis
from numpy import abs, sum, linspace
from numpy.fft import rfft
import wavio
#for wavs48 do mean i.e, convert stereo to mono
#for wavs16 dont do mean
def readwav( path ):
Struct = wavio.read( path )
wav = Struct.data.astype(float) / np.power(2, Struct.sampwidth*8-1)
fs = Struct.rate
return wav, fs
def feature_normalize(feature_data):
mean = np.mean(feature_data, axis=0)
std = np.std(feature_data, axis=0)
N = feature_data.shape[0]
S1 = np.sum(feature_data, axis=0)
S2 = np.sum(feature_data ** 2, axis=0)
mean=S1/N
std=np.sqrt((N * S2 - (S1 * S1)) / (N * (N - 1)))
mean = np.reshape(mean, [1, -1])
std = np.reshape(std, [1, -1])
feature_data=((feature_data-mean)/std)
return feature_data
def cqt_lib(wav_fd,fe_fd):
names = [ na for na in os.listdir(wav_fd) if na.endswith('.wav') ]
names = sorted(names)
for na in names:
path = wav_fd + '/' + na
wav, sr = librosa.load( path ,sr=16000.)
if ( wav.ndim==2 ):
wav = np.mean( wav, axis=-1 )
assert sr==16000.
cqt=librosa.core.cqt(y=wav, hop_length=512,sr=sr, n_bins=80, bins_per_octave=12, window='hamming')
cqt=cqt.T
# cqt=np.log10(cqt)
cqt=feature_normalize(cqt)
cqt=np.log10(cqt)
out_path = fe_fd + '/' + na[0:-4] + '.f'
cPickle.dump( cqt, open(out_path, 'wb'), protocol=cPickle.HIGHEST_PROTOCOL )
##################################################mel kong uncle with 64 coefficients############################################
def mel(wav_fd,fe_fd,n_delete):
names = [ na for na in os.listdir(wav_fd) if na.endswith('.wav') ]
names = sorted(names)
for na in names:
path = wav_fd + '/' + na
wav,sr=librosa.load(path,sr=16000.)
if ( wav.ndim==2 ):
wav = np.mean( wav, axis=-1 )
assert sr==16000.
ham_win = np.hamming(1024)
[f, t, X] = signal.spectral.spectrogram( wav, fs=sr,window=ham_win, nperseg=1024, noverlap=0, detrend=False, return_onesided=True, mode='magnitude' )
X = X.T
if globals().get('melW') is None:
global melW
melW = librosa.filters.mel( sr=sr, n_fft=1024, n_mels=60, fmin=0., fmax=sr/2. )
melW /= np.max(melW, axis=-1)[:,None]
X = np.dot( X, melW.T )
X = X[:, n_delete:]
X=feature_normalize(X)
out_path = fe_fd + '/' + na[0:-4] + '.f'
cPickle.dump( X, open(out_path, 'wb'), protocol=cPickle.HIGHEST_PROTOCOL )
def logmel_lib_delta(wav_fd,fe_fd):
names = [ na for na in os.listdir(wav_fd) if na.endswith('.wav') ]
names = sorted(names)
for na in names:
path = wav_fd + '/' + na
wav, sr = librosa.load( path )
if ( wav.ndim==2 ):
wav = np.mean( wav, axis=-1 )
# assert fs==44100
nceps=13
if True:
stft = np.abs(librosa.stft(wav, n_fft=1024 , hop_length=512, win_length=1024, window='hamming', center=True))
MFCCs = np.log(1+librosa.feature.melspectrogram(wav, sr=sr,S=stft,n_mels=40, n_fft=1024, hop_length=512, power=2))
MFCCs=MFCCs.T
#MFCCs = dct(MFCCs, type=2, norm='ortho', axis=-1)[:, :nceps]
mfcc_delta=librosa.feature.delta(MFCCs, width=9, order=1, axis=-1, trim=True)[:, :nceps]
mfcc_acc=librosa.feature.delta(MFCCs, width=9, order=2, axis=-1, trim=True)[:, :nceps]
MFCCs=np.hstack((MFCCs,mfcc_delta,mfcc_acc))
MFCCs-=np.mean(MFCCs)
MFCCs/=np.std(MFCCs, axis=0)
print MFCCs.shape
out_path = fe_fd + '/' + na[0:-4] + '.f'
cPickle.dump(MFCCs, open(out_path, 'wb'), protocol=cPickle.HIGHEST_PROTOCOL)
def logmel_kong(wav_fd,fe_fd,n_delete):
names = [ na for na in os.listdir(wav_fd) if na.endswith('.wav') ]
names = sorted(names)
for na in names:
path = wav_fd + '/' + na
wav, sr = librosa.load( path , sr=16000.)
if ( wav.ndim==2 ):
wav = np.mean( wav, axis=-1 )
assert sr==16000.
ham_win = np.hamming(1024)
[f, t, X] = signal.spectral.spectrogram( wav, fs=sr,window=ham_win, nperseg=1024, noverlap=0, detrend=False, return_onesided=True, mode='magnitude' )
X = X.T
# if globals().get('melW') is None:
global melW
melW = librosa.filters.mel( sr, n_fft=1024, n_mels=40, fmin=0., fmax=sr/2. )
# print 'gLU'
melW /= np.max(melW, axis=-1)[:,None]
X = np.dot( X, melW.T )
X = np.log(X + 1e-8)
X = X[:, n_delete:]
X=feature_normalize(X) # DONT MOVE THIS ANYWHERE
# print X.shape
out_path = fe_fd + '/' + na[0:-4] + '.f'
cPickle.dump( X, open(out_path, 'wb'), protocol=cPickle.HIGHEST_PROTOCOL )
def CreateFolder( fd ):
if not os.path.exists(fd):
os.makedirs(fd)
def extract(f):
if f=='mel':
mel(cfg.wav_fd_train,cfg.fe_mel_fd,n_delete=0)
mel(cfg.wav_fd_test,cfg.fe_eva_mel_fd,n_delete=0)
elif f=='cqt':
cqt_lib(cfg.wav_fd_train,cfg.fe_cqt_fd)
cqt_lib(cfg.wav_fd_test,cfg.fe_eva_cqt_fd)
elif f=='logmel_kong':
logmel_kong(cfg.wav_fd_train,cfg.fe_logmel_kong_fd,n_delete=0)
logmel_kong(cfg.wav_fd_test,cfg.fe_eva_logmel_kong_fd,n_delete=0)
elif f=='logmel_lib_delta':
logmel_lib_delta(cfg.wav_fd_test,cfg.fe_eva_logmel_libd_fd)
logmel_lib_delta(cfg.wav_fd_train,cfg.fe_logmel_libd_fd)
if __name__ == "__main__":
# CreateFolder('Fe')
CreateFolder(cfg.fe_cqt_fd)
CreateFolder(cfg.fe_logmel_libd_fd)
CreateFolder(cfg.fe_mel_fd)
CreateFolder(cfg.fe_logmel_kong_fd)
# CreateFolder('Fe_eva')
CreateFolder(cfg.fe_eva_cqt_fd)
CreateFolder(cfg.fe_eva_logmel_libd_fd)
CreateFolder(cfg.fe_eva_mel_fd)
CreateFolder(cfg.fe_eva_logmel_kong_fd)
features=['logmel_kong','cqt']
for f in features:
extract(f)