- Install
- 1. Load kepler.gl Map
- 2. Add Data
- 3. Data Format
- 4. Customize the map
- 5. Save and load config
- 6. Match config with data
- 7. Save Map
- Demo Notebooks
- Python >= 2
- ipywidgets >= 7.0.0
To install use pip:
$ pip install keplergl
If you're on Mac, used pip install
, and you're running Notebook 5.3 and above, you don't need to run the following:
$ jupyter nbextension install --py --sys-prefix keplergl # can be skipped for notebook 5.3 and above
$ jupyter nbextension enable --py --sys-prefix keplergl # can be skipped for notebook 5.3 and above
If you are using Jupyter Lab, you will also need to install the JupyterLab extension. This require node > 10.15.0
If you use Homebrew on Mac:
$ brew install node@10
Then install jupyter labextension.
$ jupyter labextension install @jupyter-widgets/jupyterlab-manager keplergl-jupyter
- Node > 10.15.0
- Python 3
- JupyterLab>=1.0.0
- Input:
-
height
optional default:400
Height of the map display
-
data
dict
optionalDatasets as a dictionary, key is the name of the dataset. Read more on Accepted data format
-
config
dict
optionalMap config as a dictionary. The
dataId
in the layer and filter settings should match thename
of the dataset they are created under -
show_docs
bool
optionalBy default, the User Guide URL (https://docs.kepler.gl/docs/keplergl-jupyter) will be printed when a map is created. To hide the User Guide URL, set
show_docs=False
.
-
The following command will load kepler.gl widget below a cell.
The map object created here is map_1
it will be used throughout the code example in this doc.
# Load an empty map
from keplergl import KeplerGl
map_1 = KeplerGl()
map_1
You can also create the map and pass in the data or data and config at the same time. Follow the instruction to match config with data
# Load a map with data and config and height
from keplergl import KeplerGl
map_2 = KeplerGl(height=400, data={"data_1": my_df}, config=config)
map_2
- Inputs
data
required CSV, GeoJSON or DataFrame. Read more on Accepted data formatname
required Name of the data entry.
name
of the dataset will be the saved to the dataId
property of each layer
, filter
and interactionConfig
in the config.
kepler.gl expected the data to be CSV, GeoJSON, DataFrame or GeoDataFrame. You can call add_data
multiple times to add multiple datasets to kepler.gl
# DataFrame
df = pd.read_csv('hex-data.csv')
map_1.add_data(data=df, name='data_1')
# CSV
with open('csv-data.csv', 'r') as f:
csvData = f.read()
map_1.add_data(data=csvData, name='data_2')
# GeoJSON as string
with open('sf_zip_geo.json', 'r') as f:
geojson = f.read()
map_1.add_data(data=geojson, name='geojson')
Print the current data added to the map. As a Dict
map_1.data
# {'data_1': 'hex_id,value\n89283082c2fffff,64\n8928308288fffff,73\n89283082c07ffff,65\n89283082817ffff,74\n89283082c3bffff,66\n8...`,
# 'data_3': 'location, lat, lng, name\n..',
# 'data_3': '{"type": "FeatureCollecti...'}
kepler.gl supports CSV, GeoJSON, Pandas DataFrame or GeoPandas GeoDataFrame.
You can create a CSV
string by reading from a CSV file.
with open('csv-data.csv', 'r') as f:
csvData = f.read()
# csvData = "hex_id,value\n89283082c2fffff,64\n8928308288fffff,73\n89283082c07ffff,65\n89283082817ffff,74\n89283082c3bffff,66\n8..."
map_1.add_data(data=csvData, name='data_2')
According to GeoJSON Specification (RFC 7946): GeoJSON is a format for encoding a variety of geographic data structures. A GeoJSON object may represent a region of space (a Geometry
), a spatially bounded entity (a Feature), or a list of Features (a FeatureCollection
). GeoJSON supports the following geometry types: Point
, LineString
, Polygon
, MultiPoint
, MultiLineString
, MultiPolygon
, and GeometryCollection
. Features in GeoJSON contain a Geometry object and additional properties, and a FeatureCollection contains a list of Features.
kepler.gl supports all the GeoJSON types above excepts GeometryCollection
. You can pass in either a single Feature
or a FeatureCollection
. You can format the GeoJSON
either as a string
or a dict
type
feature = {
"type": "Feature",
"properties": {"name": "Coors Field"},
"geometry": {"type": "Point", "coordinates": [-104.99404, 39.75621]}
}
featureCollection = {
"type": "FeatureCollection",
"features": [{
"type": "Feature",
"geometry": {"type": "Point", "coordinates": [102.0, 0.5]},
"properties": {"prop0": "value0"}
}]
}
map_1.add_data(data=feature, name="feature")
map_1.add_data(data=featureCollection, name="feature_collection")
Geometries (Polygons, LindStrings) can be embedded into CSV or DataFrame with a GeoJSON
Json string. Use the geometry
property of a Feature
, which includes type
and coordinates
.
# GeoJson Feature geometry
geometryString = {
'type': 'Polygon',
'coordinates': [[[-74.158491,40.835947],[-74.148473,40.834522],[-74.142598,40.833128],[-74.151923,40.832074],[-74.158491,40.835947]]]
}
# create json string
json_str = json.dumps(geometryString)
# create data frame
df_with_geometry = pd.DataFrame({
'id': [1],
'geometry_string': [json_str]
})
# add to map
map_1.add_data(df_with_geometry, "df_with_geometry")
kepler.gl accepts pandas.DataFrame
df = pd.DataFrame(
{'City': ['Buenos Aires', 'Brasilia', 'Santiago', 'Bogota', 'Caracas'],
'Latitude': [-34.58, -15.78, -33.45, 4.60, 10.48],
'Longitude': [-58.66, -47.91, -70.66, -74.08, -66.86]})
w1.add_data(data=df, name='cities')
kepler.gl accepts geopandas.GeoDataFrame, it automatically converts the current geometry
column from shapely to wkt string and re-projects geometries to latitude and longitude (EPSG:4326) if the active geometry
column is in a different projection.
url = 'http://eric.clst.org/assets/wiki/uploads/Stuff/gz_2010_us_040_00_500k.json'
country_gdf = geopandas.read_file(url)
w1.add_data(data=country_gdf, name="state")
You can embed geometries (Polygon, LineStrings etc) into CSV or DataFrame using WKT
# WKT
wkt_str = 'POLYGON ((-74.158491 40.835947, -74.130031 40.819962, -74.148818 40.830916, -74.151923 40.832074, -74.158491 40.835947))'
df_w_wkt = pd.DataFrame({
'id': [1],
'wkt_string': [wkt_str]
})
map_1.add_data(df_w_wkt, "df_w_wkt")
Interact with kepler.gl and customize layers and filters. Map data and config will be stored locally to the widget state. To make sure the map state is saved, select Widgets > Save Notebook Widget State
, before shutting down the kernel.
you can print your current map configuration at any time in the notebook
map_1.config
## {u'config': {u'mapState': {u'bearing': 2.6192893401015205,
# u'dragRotate': True,
# u'isSplit': False,
# u'latitude': 37.76209132041332,
# u'longitude': -122.42590232651203,
Config can be copied from the side panel with the {}
icon.
When the map is final, you can copy this config and load it later to reproduce the same map. Follow the instruction to match config with data.
- Directly apply config to the map.
config = {
'version': 'v1',
'config': {
'mapState': {
'latitude': 37.76209132041332,
'longitude': -122.42590232651203,
'zoom': 12.32053899007826
}
...
}
},
map_1.add_data(data=df, name='data_1')
map_1.config = config
- Load it when creating the map
map_1 = KeplerGl(height=400, data={'data_1': my_df}, config=config)
If want to load the map next time with this saved config, the easiest way to do is to save the it to a file and use the magic command %run to load it w/o cluttering up your notebook.
# Save map_1 config to a file
with open('hex_config.py', 'w') as f:
f.write('config = {}'.format(map_1.config))
# load the config
%run hex_config.py
All layers, filters and tooltips are associated with a specific dataset. Therefore the data
and config
in the map has to be able to match each other. The name
of the dataset is assigned to:
dataId
oflayer.config
,dataId
offilter
- key in
interactionConfig.tooltip.fieldToShow
.
You can use the same config on another dataset with the same name and schema.
When you click in the map and change settings, config is saved to widget state. Closing the notebook and reopen it will reload current map. However, you need to manually select Widget > Save Notebook Widget State
before shut downing the kernel to make sure it will be reloaded.
- input
data
: optional A data dictionary {"name": data}, if not provided, will use current map dataconfig
: optional map config dictionary, if not provided, will use current map configfile_name
: optional the html file name, default iskeplergl_map.html
read_only
: optional ifread_only
isTrue
, hide side panel to disable map customization
You can export your current map as an interactive html file.
# this will save current map
map_1.save_to_html(file_name='first_map.html')
# this will save map with provided data and config
map_1.save_to_html(data={'data_1': df}, config=config, file_name='first_map.html')
# this will save map with the interaction panel disabled
map_1.save_to_html(file_name='first_map.html', read_only=True)
- input
data
: optional A data dictionary {"name": data}, if not provided, will use current map dataconfig
: optional map config dictionary, if not provided, will use current map configread_only
: optional ifread_only
isTrue
, hide side panel to disable map customization
You can also directly serve the current map via a flask app. To do that return kepler’s map HTML representation. Here is an example on how to do that:
from flask import Flask
app = Flask(__name__)
@app.route('/')
def index():
return map_1._repr_html_()
if __name__ == '__main__':
app.run(debug=True)
- Load kepler.gl: Load kepler.gl widget, add data and config
- Geometry as String: Embed Polygon geometries as
GeoJson
andWKT
inside aCSV
- GeoJSON: Load GeoJSON to kepler.gl
- DataFrame: Load DataFrame to kepler.gl
- GeoDataFrame: Load GeoDataFrame to kepler.gl
keplergl is currently only published to PyPI, and unfortunately I use a Mac. If you encounter errors installing it on windows. This issue might shed some light. Follow this issue for conda support.
Make sure you are using node 8.15.0. and you have installed @jupyter-widgets/jupyterlab-manager
. Depends on your JupyterLab version. You might need to install the specific version of jupyterlab-manager. with jupyter labextension install @jupyter-widgets/jupyterlab-manager@0.31
. When use it in Jupyter lab, keplergl is only supported in JupyterLab > 1.0 and Python 3.
Run jupyter labextension install keplergl-jupyter --debug
and copy console output before creating an issue.
If you are running install
and uninstall
several times. You should run.
jupyter lab clean
jupyter lab build
If you see this error during install labextension
$ FATAL ERROR: CALL_AND_RETRY_LAST Allocation failed - JavaScript heap out of memory
run
$ export NODE_OPTIONS=--max-old-space-size=4096
Run jupyter labextension list
You should see below. (Version may vary)
JupyterLab v1.1.4
Known labextensions:
app dir: /Users/xxx/jupyter-python3/ENV3/share/jupyter/lab
@jupyter-widgets/jupyterlab-manager v1.0.2 enabled OK
keplergl-jupyter v0.1.0 enabled OK
Python
python==3.7.4
notebook==6.0.3
jupyterlab==2.1.2
ipywidgets==7.5.1
Node (Only for JupyterLab)
node==8.15.0
yarn==1.7.0