Skip to content

Latest commit

 

History

History
176 lines (136 loc) · 10.3 KB

README.md

File metadata and controls

176 lines (136 loc) · 10.3 KB

ODFI - Object Detection Fault Injector

DOI

1. Artifact Description

This repository contains the source code for ODFI, an annotation fault injection tool for object detection datasets in COCO-Format.

We support five types of annotation faults. Each annotation fault is listed, along with its in-tool abbreviation. You may read more about the description of each fault type in the paper.

  • Mislabelled Class (mislabel_cat)
  • Mislabelled Superclass (mislabel_super)
  • Incorrect Bounding Box (incorrect_bb)
  • Missing Annotation (remove_ann)
  • Redundant Annotation (redundant_ann)

Directory Layout

.
├── cocoextra.py                            # ODFI's custom extensions to the COCO API
├── coco_patch
│   └── coco_py.patch                       # Patches to the COCO API to allow easier visualization of bounding boxes
├── confFiles                               # Contains pre-defined YAML files for experimental configs. More info in its own README.
├── data                                    # Folder containing sample data
│   └── cocotraffic-sample                  # Folder containing sample subset (10 images) from the COCO-Traffic training dataset
│       ├── injected (create this folder)   # Temporary user created folder to hold post-injection JSON files (not part of repository)
│       ├── train_annotations.json          # JSON file containing annotation of the 10 training images from COCO-Traffic
│       └── train_images                    # Folder holding the 10 images in JPG format
├── display.py                              # Displays injected images with original and faulty annotations overlaid, side by side
├── examples
│   └── explore_coco.py                     # Example code using COCO API (not used in demo below)
├── inject.py                               # Main entry script to invoke ODFI
├── odfi.py                                 # File containing most of ODFI's injection implementation
├── README.md                               # This current file
├── test                                    # Testsuite / Demo folder
    ├── confFiles                           # Contains pre-defined YAML files for internal testing purposes only
    ├── InjectionOverObjectsTest.py         # Test script for injection over objects mode
    └── InjectionPerImageTest.py            # Test script for injection per image mode

2. Environment Setup

Dependencies

  1. Ensure you that you have Python 3+, and have the following dependencies installed.
pip install matplotlib numpy pillow scikit-image
  1. Clone the COCO API repository.
git clone https://github.com/cocodataset/cocoapi.git
  1. Copy the folder, coco_patch into the newly cloned COCO API repository.
cp -r coco_patch ./cocoapi/
cd cocoapi
  1. Apply the coco_py_patch on the repository.
git apply coco_patch/coco_py.patch
  1. Install the COCO API in editable mode.
pip install -e .
  1. COCO API should now be installed. You can confirm this by runing pip freeze.

3. Getting Started

Instructions on Running ODFI Test (Demo) Scripts

This is the easiest way to start visualizing the annotation boxes injected / perturbed by ODFI on a COCO-Formatted dataset. For your convenience, we have included a small sample of 10 images from COCO-Traffic dataset under the data folder.

NOTE: You will need GUI access (or X11 forwarding enabled if connected to a remote server) to visualize the before and after images containing injected annotations.

  1. Navigate to the test folder.
cd test
  1. Run ODFI in fault injection per image mode. This will inject exactly one fault per image. For each fault type, the before (original golden) image will appear first. After closing the before image, another window will shortly pop up. This is the after image. In the image window, you will see "After " and the name of the abbreviated fault type injected. For example, mislabel_cat-100-1 means that the mislabelled class fault has been injected once per image, on 100% of the training dataset. Close the popup image windows to proceed to the next fault injection. All tests should pass in the end.
python InjectionPerImageTest.py
  1. Run ODFI in fault injection over objects mode. This will inject into every object annotation over every single image in the dataset. For each fault type, the before (original golden) image will appear first. After closing the before image, another window will shortly pop up. This is the after image. In the image window, you will see "After " and the name of the abbreviated fault type injected. For example, mislabel_cat-100 means that the mislabelled class fault has been injected into every object annotation in the training dataset. Close the popup image windows to proceed to the next fault injection. All tests should pass in the end.
python InjectionOverObjectsTest.py

Instructions on Running ODFI on Entire Datasets

Please follow these instructions if you want to run ODFI on an entire dataset. For your convenience, we have included a small sample of 10 images from COCO-Traffic dataset under the data folder, as well as, predefined YAML files under confFiles. While you do not need to create additional YAML files for this demo, you may read more about how to setup your custom YAML file here.

  1. Create a folder to store the injected annotation JSON files.
mkdir data/cocotraffic-sample/injected
  1. Inject annotation faults of your choice into any COCO-Formatted dataset by creating a new JSON file containing the faulty injected annotations The original golden JSON file (supplied under the ann_json argument) is not modified. The .changed file will contain a dictionary of {image_id: [ann_ids]} in JSON format, where a list of all the impacted images and annotation ids are shown.

Example injecting Mislabelled Class. Change the relative paths below as appropriate.

  • Using long options:
python inject.py --ann_json ~/ODFI/data/cocotraffic-sample/train_annotations.json --images_path ~/ODFI/data/cocotraffic-sample/train_images --odfi_yaml ~/ODFI/confFiles/mislabel_cat-10.yaml --output ~/ODFI/data/cocotraffic-sample/injected/mislabel_cat-10.json --change_file ~/ODFI/data/cocotraffic-sample/injected/mislabel_cat-10.changed
  • Using short options:
python inject.py -a ~/ODFI/data/cocotraffic-sample/train_annotations.json -i ~/ODFI/data/cocotraffic-sample/train_images -y ~/ODFI/confFiles/mislabel_cat-10.yaml -o ~/ODFI/data/cocotraffic-sample/injected/mislabel_cat-10.json -c ~/ODFI/data/cocotraffic-sample/injected/mislabel_cat-10.changed
  1. Display the before and after images with annotations overlayed, side-by-side. You should see the injected annotations marked in red on the After (right) side plot. display.py will cycle through every image, affected by fault injection.
python display.py -a ~/ODFI/data/cocotraffic-sample/train_annotations.json -i ~/ODFI/data/cocotraffic-sample/train_images -o ~/ODFI/data/cocotraffic-sample/injected/mislabel_cat-10.json -c ~/ODFI/data/cocotraffic-sample/injected/mislabel_cat-10.changed
  1. Try running this for other fault types.
  • Redundant Annotation
python inject.py -a ~/ODFI/data/cocotraffic-sample/train_annotations.json -i ~/ODFI/data/cocotraffic-sample/train_images -y ~/ODFI/confFiles/redundant_ann-10.yaml -o ~/ODFI/data/cocotraffic-sample/injected/redundant_ann-10.json -c ~/ODFI/data/cocotraffic-sample/injected/redundant_ann-10.changed
python display.py -a ~/ODFI/data/cocotraffic-sample/train_annotations.json -i ~/ODFI/data/cocotraffic-sample/train_images -o ~/ODFI/data/cocotraffic-sample/injected/redundant_ann-10.json -c ~/ODFI/data/cocotraffic-sample/injected/redundant_ann-10.changed
  • Missing Annotation
python inject.py -a ~/ODFI/data/cocotraffic-sample/train_annotations.json -i ~/ODFI/data/cocotraffic-sample/train_images -y ~/ODFI/confFiles/remove_ann-10.yaml -o ~/ODFI/data/cocotraffic-sample/injected/remove_ann-10.json -c ~/ODFI/data/cocotraffic-sample/injected/remove_ann-10.changed
python display.py -a ~/ODFI/data/cocotraffic-sample/train_annotations.json -i ~/ODFI/data/cocotraffic-sample/train_images -o ~/ODFI/data/cocotraffic-sample/injected/remove_ann-10.json -c ~/ODFI/data/cocotraffic-sample/injected/remove_ann-10.changed
  • Incorrect Bounding Box
python inject.py -a ~/ODFI/data/cocotraffic-sample/train_annotations.json -i ~/ODFI/data/cocotraffic-sample/train_images -y ~/ODFI/confFiles/incorrect_bb-10.yaml -o ~/ODFI/data/cocotraffic-sample/injected/incorrect_bb-10.json -c ~/ODFI/data/cocotraffic-sample/injected/incorrect_bb-10.changed
python display.py -a ~/ODFI/data/cocotraffic-sample/train_annotations.json -i ~/ODFI/data/cocotraffic-sample/train_images -o ~/ODFI/data/cocotraffic-sample/injected/incorrect_bb-10.json -c ~/ODFI/data/cocotraffic-sample/injected/incorrect_bb-10.changed
  • Mislabelled Superclass
python inject.py -a ~/ODFI/data/cocotraffic-sample/train_annotations.json -i ~/ODFI/data/cocotraffic-sample/train_images -y ~/ODFI/confFiles/mislabel_super-10.yaml -o ~/ODFI/data/cocotraffic-sample/injected/mislabel_super-10.json -c ~/ODFI/data/cocotraffic-sample/injected/mislabel_super-10.changed
python display.py -a ~/ODFI/data/cocotraffic-sample/train_annotations.json -i ~/ODFI/data/cocotraffic-sample/train_images -o ~/ODFI/data/cocotraffic-sample/injected/mislabel_super-10.json -c ~/ODFI/data/cocotraffic-sample/injected/mislabel_super-10.changed

Citation

Please cite the following paper if you use our tool.

@inproceedings{Chan2023_ODFI,
  author    = {Chan, Abraham and Gujarati, Arpan and Pattabiraman, Karthik and Gopalakrishnan, Sathish},
  title     = {{Evaluating the Effect of Common Annotation Faults on Object Detection Techniques}},
  booktitle = {2023 IEEE 34th International Symposium on Software Reliability Engineering (ISSRE)},
  year      = {2023}
}