You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Hello, dear developers. I have a pressing problem now.I am a beginner in this field, and I have the following problems when running demo:
The following are tips:
E:\Coding\workbench\test14\mmdetection\mmdet\models\builder.py:50: UserWarning: train_cfg and test_cfg is deprecated, please specify them in model
warnings.warn(
E:\Coding\PyEnv\test14\lib\site-packages\mmcv\utils\misc.py:333: UserWarning: "out_size" is deprecated in `RoIAlign.__init__`, please use "output_size" instead
warnings.warn(
E:\Coding\PyEnv\test14\lib\site-packages\mmcv\utils\misc.py:333: UserWarning: "sample_num" is deprecated in `RoIAlign.__init__`, please use "sampling_ratio" instead
warnings.warn(
load checkpoint from local path: epoch_36.pth
The model and loaded state dict do not match exactly
unexpected key in source state_dict: bbox_head.0.fc_cls.weight, bbox_head.0.fc_cls.bias, bbox_head.0.fc_reg.weight, bbox_head.0.fc_reg.bias, bbox_head.0.shared_fcs.0.weight, bbox_head.0.shared_fcs.0.bias, bbox_head.0.shared_fcs.1.weight, bbox_head.0.shared_fcs.1.bias, bbox_head.1.fc_cls.weight, bbox_head.1.fc_cls.bias, bbox_head.1.fc_reg.weight, bbox_head.1.fc_reg.bias, bbox_head.1.shared_fcs.0.weight, bbox_head.1.shared_fcs.0.bias, bbox_head.1.shared_fcs.1.weight, bbox_head.1.shared_fcs.1.bias, bbox_head.2.fc_cls.weight, bbox_head.2.fc_cls.bias, bbox_head.2.fc_reg.weight, bbox_head.2.fc_reg.bias, bbox_head.2.shared_fcs.0.weight, bbox_head.2.shared_fcs.0.bias, bbox_head.2.shared_fcs.1.weight, bbox_head.2.shared_fcs.1.bias, mask_head.0.convs.0.conv.weight, mask_head.0.convs.0.conv.bias, mask_head.0.convs.1.conv.weight, mask_head.0.convs.1.conv.bias, mask_head.0.convs.2.conv.weight, mask_head.0.convs.2.conv.bias, mask_head.0.convs.3.conv.weight, mask_head.0.convs.3.conv.bias, mask_head.0.upsample.weight, mask_head.0.upsample.bias, mask_head.0.conv_logits.weight, mask_head.0.conv_logits.bias, mask_head.1.convs.0.conv.weight, mask_head.1.convs.0.conv.bias, mask_head.1.convs.1.conv.weight, mask_head.1.convs.1.conv.bias, mask_head.1.convs.2.conv.weight, mask_head.1.convs.2.conv.bias, mask_head.1.convs.3.conv.weight, mask_head.1.convs.3.conv.bias, mask_head.1.upsample.weight, mask_head.1.upsample.bias, mask_head.1.conv_logits.weight, mask_head.1.conv_logits.bias, mask_head.2.convs.0.conv.weight, mask_head.2.convs.0.conv.bias, mask_head.2.convs.1.conv.weight, mask_head.2.convs.1.conv.bias, mask_head.2.convs.2.conv.weight, mask_head.2.convs.2.conv.bias, mask_head.2.convs.3.conv.weight, mask_head.2.convs.3.conv.bias, mask_head.2.upsample.weight, mask_head.2.upsample.bias, mask_head.2.conv_logits.weight, mask_head.2.conv_logits.bias
missing keys in source state_dict: roi_head.bbox_head.0.fc_cls.weight, roi_head.bbox_head.0.fc_cls.bias, roi_head.bbox_head.0.fc_reg.weight, roi_head.bbox_head.0.fc_reg.bias, roi_head.bbox_head.0.shared_fcs.0.weight, roi_head.bbox_head.0.shared_fcs.0.bias, roi_head.bbox_head.0.shared_fcs.1.weight, roi_head.bbox_head.0.shared_fcs.1.bias, roi_head.bbox_head.1.fc_cls.weight, roi_head.bbox_head.1.fc_cls.bias, roi_head.bbox_head.1.fc_reg.weight, roi_head.bbox_head.1.fc_reg.bias, roi_head.bbox_head.1.shared_fcs.0.weight, roi_head.bbox_head.1.shared_fcs.0.bias, roi_head.bbox_head.1.shared_fcs.1.weight, roi_head.bbox_head.1.shared_fcs.1.bias, roi_head.bbox_head.2.fc_cls.weight, roi_head.bbox_head.2.fc_cls.bias, roi_head.bbox_head.2.fc_reg.weight, roi_head.bbox_head.2.fc_reg.bias, roi_head.bbox_head.2.shared_fcs.0.weight, roi_head.bbox_head.2.shared_fcs.0.bias, roi_head.bbox_head.2.shared_fcs.1.weight, roi_head.bbox_head.2.shared_fcs.1.bias, roi_head.mask_head.0.convs.0.conv.weight, roi_head.mask_head.0.convs.0.conv.bias, roi_head.mask_head.0.convs.1.conv.weight, roi_head.mask_head.0.convs.1.conv.bias, roi_head.mask_head.0.convs.2.conv.weight, roi_head.mask_head.0.convs.2.conv.bias, roi_head.mask_head.0.convs.3.conv.weight, roi_head.mask_head.0.convs.3.conv.bias, roi_head.mask_head.0.upsample.weight, roi_head.mask_head.0.upsample.bias, roi_head.mask_head.0.conv_logits.weight, roi_head.mask_head.0.conv_logits.bias, roi_head.mask_head.1.convs.0.conv.weight, roi_head.mask_head.1.convs.0.conv.bias, roi_head.mask_head.1.convs.1.conv.weight, roi_head.mask_head.1.convs.1.conv.bias, roi_head.mask_head.1.convs.2.conv.weight, roi_head.mask_head.1.convs.2.conv.bias, roi_head.mask_head.1.convs.3.conv.weight, roi_head.mask_head.1.convs.3.conv.bias, roi_head.mask_head.1.upsample.weight, roi_head.mask_head.1.upsample.bias, roi_head.mask_head.1.conv_logits.weight, roi_head.mask_head.1.conv_logits.bias, roi_head.mask_head.2.convs.0.conv.weight, roi_head.mask_head.2.convs.0.conv.bias, roi_head.mask_head.2.convs.1.conv.weight, roi_head.mask_head.2.convs.1.conv.bias, roi_head.mask_head.2.convs.2.conv.weight, roi_head.mask_head.2.convs.2.conv.bias, roi_head.mask_head.2.convs.3.conv.weight, roi_head.mask_head.2.convs.3.conv.bias, roi_head.mask_head.2.upsample.weight, roi_head.mask_head.2.upsample.bias, roi_head.mask_head.2.conv_logits.weight, roi_head.mask_head.2.conv_logits.bias
E:\Coding\workbench\test14\mmdetection\mmdet\datasets\utils.py:64: UserWarning: "ImageToTensor" pipeline is replaced by "DefaultFormatBundle" for batch inference. It is recommended to manually replace it in the test data pipeline in your config file.
warnings.warn(
E:\Coding\PyEnv\test14\lib\site-packages\torch\nn\functional.py:2970: UserWarning: Default upsampling behavior when mode=bilinear is changed to align_corners=False since 0.4.0. Please specify align_corners=True if the old behavior is desired. See the documentation of nn.Upsample for details.
warnings.warn("Default upsampling behavior when mode={} is changed "
E:\Coding\workbench\test14\mmdetection\mmdet\models\dense_heads\rpn_head.py:191: UserWarning: In rpn_proposal or test_cfg, nms_thr has been moved to a dict named nms as iou_threshold, max_num has been renamed as max_per_img, name of original arguments and the way to specify iou_threshold of NMS will be deprecated.
warnings.warn(
The displayed result is the original image.
After querying the data and browsing the code of the display result function, I found that the show_result_pyplot() function in MMDetection 1.2.0/MMDET/APIs/Influence.py used in master has a class_names parameter, but the mmdetection2.12.0 I used does not have this parameter. I don't know what to do next to make the demo display the correct result. It may not be just the problem of this function, but the pre-training model uses the specified epoch_36.pth. ..
I hope you can take the time to guide me.
The following is my configuration environment:
PC:windows11
mmdetection:v2.12.0
mmvc:1.4.0
torch:1.5.0
torchvision==0.6.0
cuda:10.1
pillow:9.4.0
The text was updated successfully, but these errors were encountered:
Hello, dear developers. I have a pressing problem now.I am a beginner in this field, and I have the following problems when running demo:
The following are tips:
The displayed result is the original image.
After querying the data and browsing the code of the display result function, I found that the show_result_pyplot() function in MMDetection 1.2.0/MMDET/APIs/Influence.py used in master has a class_names parameter, but the mmdetection2.12.0 I used does not have this parameter. I don't know what to do next to make the demo display the correct result. It may not be just the problem of this function, but the pre-training model uses the specified epoch_36.pth. ..
I hope you can take the time to guide me.
The following is my configuration environment:
PC:windows11
mmdetection:v2.12.0
mmvc:1.4.0
torch:1.5.0
torchvision==0.6.0
cuda:10.1
pillow:9.4.0
The text was updated successfully, but these errors were encountered: