Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

The show_result_pyplot() function using the newer version of MMdet has missing parameters. #173

Open
wlhpange opened this issue Mar 25, 2023 · 3 comments

Comments

@wlhpange
Copy link

Hello, dear developers. I have a pressing problem now.I am a beginner in this field, and I have the following problems when running demo:
The following are tips:

E:\Coding\workbench\test14\mmdetection\mmdet\models\builder.py:50: UserWarning: train_cfg and test_cfg is deprecated, please specify them in model
  warnings.warn(
E:\Coding\PyEnv\test14\lib\site-packages\mmcv\utils\misc.py:333: UserWarning: "out_size" is deprecated in `RoIAlign.__init__`, please use "output_size" instead
  warnings.warn(
E:\Coding\PyEnv\test14\lib\site-packages\mmcv\utils\misc.py:333: UserWarning: "sample_num" is deprecated in `RoIAlign.__init__`, please use "sampling_ratio" instead
  warnings.warn(

load checkpoint from local path: epoch_36.pth
The model and loaded state dict do not match exactly

unexpected key in source state_dict: bbox_head.0.fc_cls.weight, bbox_head.0.fc_cls.bias, bbox_head.0.fc_reg.weight, bbox_head.0.fc_reg.bias, bbox_head.0.shared_fcs.0.weight, bbox_head.0.shared_fcs.0.bias, bbox_head.0.shared_fcs.1.weight, bbox_head.0.shared_fcs.1.bias, bbox_head.1.fc_cls.weight, bbox_head.1.fc_cls.bias, bbox_head.1.fc_reg.weight, bbox_head.1.fc_reg.bias, bbox_head.1.shared_fcs.0.weight, bbox_head.1.shared_fcs.0.bias, bbox_head.1.shared_fcs.1.weight, bbox_head.1.shared_fcs.1.bias, bbox_head.2.fc_cls.weight, bbox_head.2.fc_cls.bias, bbox_head.2.fc_reg.weight, bbox_head.2.fc_reg.bias, bbox_head.2.shared_fcs.0.weight, bbox_head.2.shared_fcs.0.bias, bbox_head.2.shared_fcs.1.weight, bbox_head.2.shared_fcs.1.bias, mask_head.0.convs.0.conv.weight, mask_head.0.convs.0.conv.bias, mask_head.0.convs.1.conv.weight, mask_head.0.convs.1.conv.bias, mask_head.0.convs.2.conv.weight, mask_head.0.convs.2.conv.bias, mask_head.0.convs.3.conv.weight, mask_head.0.convs.3.conv.bias, mask_head.0.upsample.weight, mask_head.0.upsample.bias, mask_head.0.conv_logits.weight, mask_head.0.conv_logits.bias, mask_head.1.convs.0.conv.weight, mask_head.1.convs.0.conv.bias, mask_head.1.convs.1.conv.weight, mask_head.1.convs.1.conv.bias, mask_head.1.convs.2.conv.weight, mask_head.1.convs.2.conv.bias, mask_head.1.convs.3.conv.weight, mask_head.1.convs.3.conv.bias, mask_head.1.upsample.weight, mask_head.1.upsample.bias, mask_head.1.conv_logits.weight, mask_head.1.conv_logits.bias, mask_head.2.convs.0.conv.weight, mask_head.2.convs.0.conv.bias, mask_head.2.convs.1.conv.weight, mask_head.2.convs.1.conv.bias, mask_head.2.convs.2.conv.weight, mask_head.2.convs.2.conv.bias, mask_head.2.convs.3.conv.weight, mask_head.2.convs.3.conv.bias, mask_head.2.upsample.weight, mask_head.2.upsample.bias, mask_head.2.conv_logits.weight, mask_head.2.conv_logits.bias

missing keys in source state_dict: roi_head.bbox_head.0.fc_cls.weight, roi_head.bbox_head.0.fc_cls.bias, roi_head.bbox_head.0.fc_reg.weight, roi_head.bbox_head.0.fc_reg.bias, roi_head.bbox_head.0.shared_fcs.0.weight, roi_head.bbox_head.0.shared_fcs.0.bias, roi_head.bbox_head.0.shared_fcs.1.weight, roi_head.bbox_head.0.shared_fcs.1.bias, roi_head.bbox_head.1.fc_cls.weight, roi_head.bbox_head.1.fc_cls.bias, roi_head.bbox_head.1.fc_reg.weight, roi_head.bbox_head.1.fc_reg.bias, roi_head.bbox_head.1.shared_fcs.0.weight, roi_head.bbox_head.1.shared_fcs.0.bias, roi_head.bbox_head.1.shared_fcs.1.weight, roi_head.bbox_head.1.shared_fcs.1.bias, roi_head.bbox_head.2.fc_cls.weight, roi_head.bbox_head.2.fc_cls.bias, roi_head.bbox_head.2.fc_reg.weight, roi_head.bbox_head.2.fc_reg.bias, roi_head.bbox_head.2.shared_fcs.0.weight, roi_head.bbox_head.2.shared_fcs.0.bias, roi_head.bbox_head.2.shared_fcs.1.weight, roi_head.bbox_head.2.shared_fcs.1.bias, roi_head.mask_head.0.convs.0.conv.weight, roi_head.mask_head.0.convs.0.conv.bias, roi_head.mask_head.0.convs.1.conv.weight, roi_head.mask_head.0.convs.1.conv.bias, roi_head.mask_head.0.convs.2.conv.weight, roi_head.mask_head.0.convs.2.conv.bias, roi_head.mask_head.0.convs.3.conv.weight, roi_head.mask_head.0.convs.3.conv.bias, roi_head.mask_head.0.upsample.weight, roi_head.mask_head.0.upsample.bias, roi_head.mask_head.0.conv_logits.weight, roi_head.mask_head.0.conv_logits.bias, roi_head.mask_head.1.convs.0.conv.weight, roi_head.mask_head.1.convs.0.conv.bias, roi_head.mask_head.1.convs.1.conv.weight, roi_head.mask_head.1.convs.1.conv.bias, roi_head.mask_head.1.convs.2.conv.weight, roi_head.mask_head.1.convs.2.conv.bias, roi_head.mask_head.1.convs.3.conv.weight, roi_head.mask_head.1.convs.3.conv.bias, roi_head.mask_head.1.upsample.weight, roi_head.mask_head.1.upsample.bias, roi_head.mask_head.1.conv_logits.weight, roi_head.mask_head.1.conv_logits.bias, roi_head.mask_head.2.convs.0.conv.weight, roi_head.mask_head.2.convs.0.conv.bias, roi_head.mask_head.2.convs.1.conv.weight, roi_head.mask_head.2.convs.1.conv.bias, roi_head.mask_head.2.convs.2.conv.weight, roi_head.mask_head.2.convs.2.conv.bias, roi_head.mask_head.2.convs.3.conv.weight, roi_head.mask_head.2.convs.3.conv.bias, roi_head.mask_head.2.upsample.weight, roi_head.mask_head.2.upsample.bias, roi_head.mask_head.2.conv_logits.weight, roi_head.mask_head.2.conv_logits.bias


E:\Coding\workbench\test14\mmdetection\mmdet\datasets\utils.py:64: UserWarning: "ImageToTensor" pipeline is replaced by "DefaultFormatBundle" for batch inference. It is recommended to manually replace it in the test data pipeline in your config file.
  warnings.warn(
E:\Coding\PyEnv\test14\lib\site-packages\torch\nn\functional.py:2970: UserWarning: Default upsampling behavior when mode=bilinear is changed to align_corners=False since 0.4.0. Please specify align_corners=True if the old behavior is desired. See the documentation of nn.Upsample for details.
  warnings.warn("Default upsampling behavior when mode={} is changed "
E:\Coding\workbench\test14\mmdetection\mmdet\models\dense_heads\rpn_head.py:191: UserWarning: In rpn_proposal or test_cfg, nms_thr has been moved to a dict named nms as iou_threshold, max_num has been renamed as max_per_img, name of original arguments and the way to specify iou_threshold of NMS will be deprecated.
  warnings.warn(

The displayed result is the original image.

After querying the data and browsing the code of the display result function, I found that the show_result_pyplot() function in MMDetection 1.2.0/MMDET/APIs/Influence.py used in master has a class_names parameter, but the mmdetection2.12.0 I used does not have this parameter. I don't know what to do next to make the demo display the correct result. It may not be just the problem of this function, but the pre-training model uses the specified epoch_36.pth. ..
I hope you can take the time to guide me.

The following is my configuration environment:
PC:windows11
mmdetection:v2.12.0
mmvc:1.4.0
torch:1.5.0
torchvision==0.6.0
cuda:10.1
pillow:9.4.0

@wlhpange
Copy link
Author

In addition, this is the code I used.

from mmdet.apis import init_detector, inference_detector, show_result_pyplot
import mmcv
# Load model
config_file = 'CascadeTabNet/Config/cascade_mask_rcnn_hrnetv2p_w32_20e_v2.py'
checkpoint_file = 'epoch_36.pth'
model = init_detector(config_file, checkpoint_file, device='cuda:0')

# Test a single image 
img = "CascadeTabNet/Demo/demo.png"

# Run Inference
result = inference_detector(model, img)
# Visualization results
show_result_pyplot(model,img, result,score_thr=0.85)

@wlhpange
Copy link
Author

Do I need to retrain the data set in this environment?
But the previous pre-training model can't be used!

@ZCappuccino
Copy link

Hello, I have encountered the same problem as you. Have you solved it now?

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants