-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathsedinet_models.py
325 lines (274 loc) · 10.6 KB
/
sedinet_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
## Written by Daniel Buscombe,
## MARDA Science
## daniel@mardascience.com
##> Release v1.3 (July 2020)
###===================================================
# import libraries
from sedinet_utils import *
###===================================================
def conv_block2(inp, filters=32, bn=True, pool=True, drop=True):
"""
This function generates a SediNet convolutional block
"""
# _ = Conv2D(filters=filters, kernel_size=3, activation='relu',
# kernel_initializer='he_uniform')(inp)
_ = SeparableConv2D(filters=filters, kernel_size=3, activation='relu')(inp) #kernel_initializer='he_uniform'
if bn:
_ = BatchNormalization()(_)
if pool:
_ = MaxPool2D()(_)
if drop:
_ = Dropout(0.2)(_)
return _
###===================================================
def make_cat_sedinet(ID_MAP, dropout, greyscale):
"""
This function creates an implementation of SediNet for estimating
sediment category
"""
base = BASE_CAT ##30
if greyscale==True:
input_layer = Input(shape=(IM_HEIGHT, IM_WIDTH, 1))
else:
input_layer = Input(shape=(IM_HEIGHT, IM_WIDTH, 3))
_ = conv_block2(input_layer, filters=base, bn=False, pool=False, drop=False) #x #
_ = conv_block2(_, filters=base*2, bn=False, pool=True,drop=False)
_ = conv_block2(_, filters=base*3, bn=False, pool=True,drop=False)
_ = conv_block2(_, filters=base*4, bn=False, pool=True,drop=False)
if not SHALLOW:
_ = conv_block2(_, filters=base*5, bn=False, pool=True,drop=False)
_ = conv_block2(_, filters=base*6, bn=False, pool=True,drop=False)
bottleneck = GlobalMaxPool2D()(_)
bottleneck = Dropout(dropout)(bottleneck)
# for class prediction
_ = Dense(units=CAT_DENSE_UNITS, activation='relu')(bottleneck) ##128
output = Dense(units=len(ID_MAP), activation='softmax', name='output')(_)
model = Model(inputs=input_layer, outputs=[output])
if CAT_LOSS == 'focal':
model.compile(optimizer=OPT,
loss={'output': tfa.losses.SigmoidFocalCrossEntropy() },
metrics={'output': 'accuracy'})
else:
model.compile(optimizer=OPT, #'adam',
loss={'output': CAT_LOSS}, #'categorical_crossentropy'
metrics={'output': 'accuracy'})
print("==========================================")
print('[INFORMATION] Model summary:')
model.summary()
return model
###===================================================
def make_sedinet_siso_simo(vars, greyscale, dropout):
"""
This function creates an implementation of SediNet for estimating
sediment metric on a continuous scale
"""
base = BASE_CONT ##30 ## suggested range = 20 -- 40
if greyscale==True:
input_layer = Input(shape=(IM_HEIGHT, IM_WIDTH, 1))
else:
input_layer = Input(shape=(IM_HEIGHT, IM_WIDTH, 3))
_ = conv_block2(input_layer, filters=base, bn=False, pool=False, drop=False) #x #
_ = conv_block2(_, filters=base*2, bn=False, pool=True,drop=False)
_ = conv_block2(_, filters=base*3, bn=False, pool=True,drop=False)
_ = conv_block2(_, filters=base*4, bn=False, pool=True,drop=False)
_ = conv_block2(_, filters=base*5, bn=False, pool=True,drop=False)
if not SHALLOW:
_ = conv_block2(_, filters=base*6, bn=False, pool=True,drop=False)
_ = conv_block2(_, filters=base*7, bn=False, pool=True,drop=False)
_ = BatchNormalization(axis=-1)(_)
bottleneck = GlobalMaxPool2D()(_)
bottleneck = Dropout(dropout)(bottleneck)
units = CONT_DENSE_UNITS ## suggested range 512 -- 1024
_ = Dense(units=units, activation='relu')(bottleneck)
outputs = []
for var in vars:
outputs.append(Dense(units=1, activation='linear', name=var+'_output')(_) )
if CONT_LOSS == 'pinball':
loss = dict(zip([k+"_output" for k in vars], [tfa.losses.PinballLoss(tau=.5) for k in vars]))
else: ## 'mse'
loss = dict(zip([k+"_output" for k in vars], ['mse' for k in vars])) #loss = tf.keras.losses.MeanSquaredError(reduction=tf.keras.losses.Reduction.NONE) # Sum of squared error
metrics = dict(zip([k+"_output" for k in vars], ['mae' for k in vars]))
model = Model(inputs=input_layer, outputs=outputs)
model.compile(optimizer=OPT,loss=loss, metrics=metrics)
#print("==========================================")
#print('[INFORMATION] Model summary:')
#model.summary()
return model
# ###===================================================
# def conv_block_mbn(x, filters=32, alpha=1):
# """
# This function generates a sedinet convolutional block based on a
# mobilenet base model
# """
# x = DepthwiseConv2D((3, 3), strides=(1, 1), padding='same', use_bias=False)(x)
# x = BatchNormalization()(x)
# x = Activation('relu')(x)
# x = Conv2D(int(filters * alpha), (1, 1), strides=(1, 1), padding='same', use_bias=False)(x)
# x = BatchNormalization()(x)
# x = Activation('relu')(x)
# return x
# ###===================================================
# def make_mlp(dim): #dense_neurons
# # define our MLP network
# dense_neurons = 4
# mlp = Sequential()
# mlp.add(Dense(8, input_dim=dim, activation="relu"))
# mlp.add(Dense(dense_neurons, activation="relu"))
# return mlp
# ###===================================================
# def conv_block(x, filters=32):
# """
# This function generates a custom sedinet convolutional block
# """
# x = Conv2D(filters=filters, kernel_size=3, activation='relu',
# kernel_initializer='he_uniform')(x)
# #x = BatchNormalization()(x)
# x = MaxPool2D()(x)
# #x = Dropout(0.2)(x)
# return x
#
# ###===================================================
# def make_sedinet_miso_mimo(greyscale, dropout):
# """
# This function creates a mobilenetv1 style implementation of sedinet
# for estimating metric on a continuous scale
# """
#
# # create the sedinet model
# if greyscale==True:
# input_layer = Input(shape=(IM_HEIGHT, IM_WIDTH, 1))
# else:
# input_layer = Input(shape=(IM_HEIGHT, IM_WIDTH, 3))
#
# img_input = BatchNormalization(axis=-1)(input_layer) #x #
# alpha=1
#
# x = Conv2D(int(32 * alpha), (3, 3), strides=(2, 2), padding='same', use_bias=False)(img_input)
# x = BatchNormalization()(x)
# x = Activation('relu')(x)
#
# for k in [64,128,128,256,256,512]:
# x = conv_block_mbn(x, filters=k, alpha=alpha)
#
# if not SHALLOW:
# for i in range(5):
# x = conv_block_mbn(x, filters=512, alpha=alpha)
#
# for k in [1024,1024]:
# x = conv_block_mbn(x, filters=k, alpha=alpha)
#
# x = MaxPool2D()(x)
#
# x = BatchNormalization(axis=-1)(x)
# bottleneck = GlobalMaxPool2D()(x)
# bottleneck = Dropout(dropout)(bottleneck)
#
# model = Model(input_layer, bottleneck)
#
# return model
#
#########
####===================================================
#def make_sedinet_custom_siso_simo(vars, greyscale):
# """
# This function creates a custom implementation of sedinet
# for estimating metric on a continuous scale
# """
#
# base = 16
# if greyscale==True:
# input_layer = Input(shape=(IM_HEIGHT, IM_WIDTH, 1))
# else:
# input_layer = Input(shape=(IM_HEIGHT, IM_WIDTH, 3))
# input_layer = BatchNormalization(axis=-1)(input_layer)
#
# x = conv_block(input_layer, filters=base)
# x = conv_block(x, filters=base*2)
# x = conv_block(x, filters=base*3)
# x = conv_block(x, filters=base*4)
#
# x = BatchNormalization(axis=-1)(x)
# bottleneck = GlobalMaxPool2D()(x)
# bottleneck = Dropout(dropout)(bottleneck)
# units = 1024
# x = Dense(units=units, activation='relu')(bottleneck)
# outputs = []
# for var in vars:
# outputs.append(Dense(units=1, activation='linear', name=var+'_output')(x) )
# loss = dict(zip([k+"_output" for k in vars], ['mse' for k in vars]))
# metrics = dict(zip([k+"_output" for k in vars], ['mae' for k in vars]))
# model = Model(inputs=input_layer, outputs=outputs)
# model.compile(optimizer=opt, loss=loss, metrics=metrics)
# #print("==========================================")
# #print('[INFORMATION] Model summary:')
# #model.summary()
# return model
####===================================================
#def make_sedinet_siso_simo(vars, greyscale, dropout):
# """
# This function creates a mobilenetv1 style implementation of sedinet
# for estimating metric on a continuous scale
# """
# if greyscale==True:
# input_layer = Input(shape=(IM_HEIGHT, IM_WIDTH, 1))
# else:
# input_layer = Input(shape=(IM_HEIGHT, IM_WIDTH, 3))
#
# img_input = BatchNormalization(axis=-1)(input_layer)
# alpha=1
#
# x = Conv2D(int(32 * alpha), (3, 3), strides=(2, 2), padding='same', use_bias=False)(img_input)
# x = BatchNormalization()(x)
# x = Activation('relu')(x)
#
# for k in [64,128,128,256,256,512]:
# x = conv_block_mbn(x, filters=k, alpha=alpha)
# if not shallow:
# for i in range(5):
# x = conv_block_mbn(x, filters=512, alpha=alpha)
# for k in [1024,1024]:
# x = conv_block_mbn(x, filters=k, alpha=alpha)
#
# x = MaxPool2D()(x)
#
# x = BatchNormalization(axis=-1)(x)
# bottleneck = GlobalMaxPool2D()(x)
# bottleneck = Dropout(dropout)(bottleneck)
# units = 1024
# x = Dense(units=units, activation='relu')(bottleneck)
# outputs = []
# for var in vars:
# outputs.append(Dense(units=1, activation='linear', name=var+'_output')(x) )
# loss = dict(zip([k+"_output" for k in vars], ['mse' for k in vars]))
# metrics = dict(zip([k+"_output" for k in vars], ['mae' for k in vars]))
# model = Model(inputs=input_layer, outputs=outputs)
# model.compile(optimizer=opt, loss=loss, metrics=metrics)
# #print("==========================================")
# #print('[INFORMATION] Model summary:')
# #model.summary()
# return model
####===================================================
#def make_sedinet_custom_miso_mimo(vars, greyscale):
# """
# This function creates a custom implementation of sedinet for estimating metric on a continuous scale
# """
#
# base = 16
# if greyscale==True:
# input_layer = Input(shape=(IM_HEIGHT, IM_WIDTH, 1))
# else:
# input_layer = Input(shape=(IM_HEIGHT, IM_WIDTH, 3))
#
# input_layer = BatchNormalization(axis=-1)(input_layer)
#
# x = conv_block(input_layer, filters=base)
# x = conv_block(x, filters=base*2)
# x = conv_block(x, filters=base*3)
# x = conv_block(x, filters=base*4)
#
# x = BatchNormalization(axis=-1)(x)
# bottleneck = GlobalMaxPool2D()(x)
# bottleneck = Dropout(dropout)(bottleneck)
# model = Model(input_layer, bottleneck)
# return model
#