From 93be8a89a840a819bc4bf70d9167caebd60795a9 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Ricardo=20Monta=C3=B1ana=20G=C3=B3mez?= Date: Sun, 17 Apr 2022 19:47:58 +0200 Subject: [PATCH] Graphviz (#52) * Add graphviz representation of the tree * Complete graphviz test Add comments to some tests * Add optional title to tree graph * Add fontcolor keyword to nodes of the tree * Add color keyword to arrows of graph * Update version file to 1.2.4 --- stree/Splitter.py | 22 +++++++++++++++ stree/Strees.py | 17 +++++++++++ stree/_version.py | 2 +- stree/tests/Stree_test.py | 59 +++++++++++++++++++++++++++++++++++++++ 4 files changed, 99 insertions(+), 1 deletion(-) diff --git a/stree/Splitter.py b/stree/Splitter.py index 2829503..da58b07 100644 --- a/stree/Splitter.py +++ b/stree/Splitter.py @@ -145,6 +145,28 @@ def make_predictor(self): except IndexError: self._class = None + def graph(self): + """ + Return a string representing the node in graphviz format + """ + output = "" + count_values = np.unique(self._y, return_counts=True) + if self.is_leaf(): + output += ( + f'N{id(self)} [shape=box style=filled label="' + f"class={self._class} impurity={self._impurity:.3f} " + f'classes={count_values[0]} samples={count_values[1]}"];\n' + ) + else: + output += ( + f'N{id(self)} [label="#features={len(self._features)} ' + f"classes={count_values[0]} samples={count_values[1]} " + f'({sum(count_values[1])})" fontcolor=black];\n' + ) + output += f"N{id(self)} -> N{id(self.get_up())} [color=black];\n" + output += f"N{id(self)} -> N{id(self.get_down())} [color=black];\n" + return output + def __str__(self) -> str: count_values = np.unique(self._y, return_counts=True) if self.is_leaf(): diff --git a/stree/Strees.py b/stree/Strees.py index ccb1044..64329e3 100644 --- a/stree/Strees.py +++ b/stree/Strees.py @@ -476,6 +476,23 @@ def __iter__(self) -> Siterator: tree = None return Siterator(tree) + def graph(self, title="") -> str: + """Graphviz code representing the tree + + Returns + ------- + str + graphviz code + """ + output = ( + "digraph STree {\nlabel=\nfontsize=30\nfontcolor=blue\nlabelloc=t\n" + ) + for node in self: + output += node.graph() + output += "}\n" + return output + def __str__(self) -> str: """String representation of the tree diff --git a/stree/_version.py b/stree/_version.py index 10aa336..b3f9ac7 100644 --- a/stree/_version.py +++ b/stree/_version.py @@ -1 +1 @@ -__version__ = "1.2.3" +__version__ = "1.2.4" diff --git a/stree/tests/Stree_test.py b/stree/tests/Stree_test.py index 3813de4..63c210f 100644 --- a/stree/tests/Stree_test.py +++ b/stree/tests/Stree_test.py @@ -358,6 +358,7 @@ def test_predict_feature_dimensions(self): # Tests of score def test_score_binary(self): + """Check score for binary classification.""" X, y = load_dataset(self._random_state) accuracies = [ 0.9506666666666667, @@ -380,6 +381,7 @@ def test_score_binary(self): self.assertAlmostEqual(accuracy_expected, accuracy_score) def test_score_max_features(self): + """Check score using max_features.""" X, y = load_dataset(self._random_state) clf = Stree( kernel="liblinear", @@ -391,6 +393,7 @@ def test_score_max_features(self): self.assertAlmostEqual(0.9453333333333334, clf.score(X, y)) def test_bogus_splitter_parameter(self): + """Check that bogus splitter parameter raises exception.""" clf = Stree(splitter="duck") with self.assertRaises(ValueError): clf.fit(*load_dataset()) @@ -446,6 +449,7 @@ def test_multiclass_classifier_integrity(self): self.assertListEqual([47], resdn[1].tolist()) def test_score_multiclass_rbf(self): + """Test score for multiclass classification with rbf kernel.""" X, y = load_dataset( random_state=self._random_state, n_classes=3, @@ -463,6 +467,7 @@ def test_score_multiclass_rbf(self): self.assertEqual(1.0, clf2.fit(X, y).score(X, y)) def test_score_multiclass_poly(self): + """Test score for multiclass classification with poly kernel.""" X, y = load_dataset( random_state=self._random_state, n_classes=3, @@ -484,6 +489,7 @@ def test_score_multiclass_poly(self): self.assertEqual(1.0, clf2.fit(X, y).score(X, y)) def test_score_multiclass_liblinear(self): + """Test score for multiclass classification with liblinear kernel.""" X, y = load_dataset( random_state=self._random_state, n_classes=3, @@ -509,6 +515,7 @@ def test_score_multiclass_liblinear(self): self.assertEqual(1.0, clf2.fit(X, y).score(X, y)) def test_score_multiclass_sigmoid(self): + """Test score for multiclass classification with sigmoid kernel.""" X, y = load_dataset( random_state=self._random_state, n_classes=3, @@ -529,6 +536,7 @@ def test_score_multiclass_sigmoid(self): self.assertEqual(0.9662921348314607, clf2.fit(X, y).score(X, y)) def test_score_multiclass_linear(self): + """Test score for multiclass classification with linear kernel.""" warnings.filterwarnings("ignore", category=ConvergenceWarning) warnings.filterwarnings("ignore", category=RuntimeWarning) X, y = load_dataset( @@ -556,11 +564,13 @@ def test_score_multiclass_linear(self): self.assertEqual(1.0, clf2.fit(X, y).score(X, y)) def test_zero_all_sample_weights(self): + """Test exception raises when all sample weights are zero.""" X, y = load_dataset(self._random_state) with self.assertRaises(ValueError): Stree().fit(X, y, np.zeros(len(y))) def test_mask_samples_weighted_zero(self): + """Check that the weighted zero samples are masked.""" X = np.array( [ [1, 1], @@ -588,6 +598,7 @@ def test_mask_samples_weighted_zero(self): self.assertEqual(model2.score(X, y, w), 1) def test_depth(self): + """Check depth of the tree.""" X, y = load_dataset( random_state=self._random_state, n_classes=3, @@ -603,6 +614,7 @@ def test_depth(self): self.assertEqual(4, clf.depth_) def test_nodes_leaves(self): + """Check number of nodes and leaves.""" X, y = load_dataset( random_state=self._random_state, n_classes=3, @@ -622,6 +634,7 @@ def test_nodes_leaves(self): self.assertEqual(6, leaves) def test_nodes_leaves_artificial(self): + """Check leaves of artificial dataset.""" n1 = Snode(None, [1, 2, 3, 4], [1, 0, 1, 1], [], 0.0, "test1") n2 = Snode(None, [1, 2, 3, 4], [1, 0, 1, 1], [], 0.0, "test2") n3 = Snode(None, [1, 2, 3, 4], [1, 0, 1, 1], [], 0.0, "test3") @@ -640,12 +653,14 @@ def test_nodes_leaves_artificial(self): self.assertEqual(2, leaves) def test_bogus_multiclass_strategy(self): + """Check invalid multiclass strategy.""" clf = Stree(multiclass_strategy="other") X, y = load_wine(return_X_y=True) with self.assertRaises(ValueError): clf.fit(X, y) def test_multiclass_strategy(self): + """Check multiclass strategy.""" X, y = load_wine(return_X_y=True) clf_o = Stree(multiclass_strategy="ovo") clf_r = Stree(multiclass_strategy="ovr") @@ -655,6 +670,7 @@ def test_multiclass_strategy(self): self.assertEqual(0.9269662921348315, score_r) def test_incompatible_hyperparameters(self): + """Check incompatible hyperparameters.""" X, y = load_wine(return_X_y=True) clf = Stree(kernel="liblinear", multiclass_strategy="ovo") with self.assertRaises(ValueError): @@ -664,5 +680,48 @@ def test_incompatible_hyperparameters(self): clf.fit(X, y) def test_version(self): + """Check STree version.""" clf = Stree() self.assertEqual(__version__, clf.version()) + + def test_graph(self): + """Check graphviz representation of the tree.""" + X, y = load_wine(return_X_y=True) + clf = Stree(random_state=self._random_state) + + expected_head = ( + "digraph STree {\nlabel=\nfontsize=30\n" + "fontcolor=blue\nlabelloc=t\n" + ) + expected_tail = ( + ' [shape=box style=filled label="class=1 impurity=0.000 ' + 'classes=[1] samples=[1]"];\n}\n' + ) + self.assertEqual(clf.graph(), expected_head + "}\n") + clf.fit(X, y) + computed = clf.graph() + computed_head = computed[: len(expected_head)] + num = -len(expected_tail) + computed_tail = computed[num:] + self.assertEqual(computed_head, expected_head) + self.assertEqual(computed_tail, expected_tail) + + def test_graph_title(self): + X, y = load_wine(return_X_y=True) + clf = Stree(random_state=self._random_state) + expected_head = ( + "digraph STree {\nlabel=\nfontsize=30\n" + "fontcolor=blue\nlabelloc=t\n" + ) + expected_tail = ( + ' [shape=box style=filled label="class=1 impurity=0.000 ' + 'classes=[1] samples=[1]"];\n}\n' + ) + self.assertEqual(clf.graph("Sample title"), expected_head + "}\n") + clf.fit(X, y) + computed = clf.graph("Sample title") + computed_head = computed[: len(expected_head)] + num = -len(expected_tail) + computed_tail = computed[num:] + self.assertEqual(computed_head, expected_head) + self.assertEqual(computed_tail, expected_tail)