-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlighting.py
260 lines (203 loc) · 9.04 KB
/
lighting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
#!/usr/bin/env python
# encoding: utf-8
"""
Author(s): Matthew Loper
See LICENCE.txt for licensing and contact information.
"""
__all__ = ['LambertianPointLight', 'SphericalHarmonics']
import os, sys, logging
import numpy as np
import scipy.sparse as sp
import scipy
from chumpy.utils import row, col
import chumpy as ch
from chumpy.ch import Ch
from opendr.geometry import VertNormals
from chumpy import multiply, maximum
import time
logger = logging.getLogger(__name__)
def real_sh_coeff(xyz_samples):
d_sqrt_pi = 2*np.sqrt(np.pi)
real_coeff = np.zeros((len(xyz_samples), 9))
real_coeff[:,0] = 1/d_sqrt_pi
real_coeff[:,1] = (np.sqrt(3)/d_sqrt_pi)*xyz_samples[:,0]
real_coeff[:,2] = (np.sqrt(3)/d_sqrt_pi)*xyz_samples[:,2]
real_coeff[:,3] = (np.sqrt(3)/d_sqrt_pi)*xyz_samples[:,1]
real_coeff[:,4] = (np.sqrt(15)/d_sqrt_pi)*xyz_samples[:,0]*xyz_samples[:,1]
real_coeff[:,5] = (np.sqrt(15)/d_sqrt_pi)*xyz_samples[:,1]*xyz_samples[:,2]
real_coeff[:,6] = (np.sqrt(5)/(2*d_sqrt_pi))*(3*xyz_samples[:,2]**2-1)
real_coeff[:,7] = (np.sqrt(15)/d_sqrt_pi)*xyz_samples[:,0]*xyz_samples[:,2]
real_coeff[:,8] = (np.sqrt(15)/(2*d_sqrt_pi))*(xyz_samples[:,0]**2 - xyz_samples[:,1]**2)
return real_coeff
class SphericalHarmonics(Ch):
dterms = 'vn', 'components'
terms = ['light_color']
d_sqrt_pi = 2*np.sqrt(np.pi)
K = np.array([
1./d_sqrt_pi,
np.sqrt(3)/d_sqrt_pi,
np.sqrt(3)/d_sqrt_pi,
np.sqrt(3)/d_sqrt_pi,
np.sqrt(15)/d_sqrt_pi,
np.sqrt(15)/d_sqrt_pi,
np.sqrt(5)/(2*d_sqrt_pi),
np.sqrt(15)/d_sqrt_pi,
np.sqrt(15)/(2*d_sqrt_pi)])
@property
def num_channels(self):
return self.light_color.size
def on_changed(self, which):
if 'vn' in which:
vn = self.vn.r.reshape((-1,3))
# Conversion from normals to spherical harmonics found in...
# http://en.wikipedia.org/wiki/Spherical_coordinate_system#Cartesian_coordinates
self.theta = np.arccos(vn[:,2])
self.phi = np.arctan2(vn[:,1], vn[:,0])
# vnswapped = np.swapaxes(vn, 0,1)
self.sh_coeffs = real_sh_coeff(vn)
self.num_verts = self.sh_coeffs.shape[0]
if 'light_color' in which or self.mtx.shape[1] != self.num_verts:
nc = self.num_channels
IS = np.arange(self.num_verts*nc)
JS = np.repeat(np.arange(self.num_verts), nc)
data = (row(self.light_color)*np.ones((self.num_verts, nc))).ravel()
self.mtx = sp.csc_matrix((data, (IS,JS)), shape=(self.num_verts*nc, self.num_verts))
def compute_r(self):
comps = self.components.r
n = len(comps)
result = self.mtx.dot(self.sh_coeffs[:,:n].dot(col(self.components.r)))
result[result<0] = 0
return result.reshape((-1,self.num_channels))
def compute_dr_wrt(self, wrt):
comps = np.zeros(9)
comps[:len(self.components.r)] = self.components.r
comps = comps * self.K.ravel()
if wrt is self.vn:
vn = self.vn.r.reshape((-1,3))
# vn = np.swapaxes(vn, 0,1)
#real_coeff[:,1] = (np.sqrt(3)/d_sqrt_pi)*xyz_samples[:,0]
VS0 = np.ones(self.sh_coeffs.shape[0]) * comps[1]
#real_coeff[:,2] = (np.sqrt(3)/d_sqrt_pi)*xyz_samples[:,2]
VS1 = np.ones(self.sh_coeffs.shape[0]) * comps[3]
#real_coeff[:,3] = (np.sqrt(3)/d_sqrt_pi)*xyz_samples[:,1]
VS2 = np.ones(self.sh_coeffs.shape[0]) * comps[2]
#real_coeff[:,4] = (np.sqrt(15)/d_sqrt_pi)*xyz_samples[:,0]*xyz_samples[:,1]
VS0 += vn[:,1] * comps[4]
VS1 += vn[:,0] * comps[4]
#real_coeff[:,5] = (np.sqrt(15)/d_sqrt_pi)*xyz_samples[:,1]*xyz_samples[:,2]
VS1 += vn[:,2]*comps[5]
VS2 += vn[:,1]*comps[5]
#real_coeff[:,6] = (np.sqrt(5)/2*d_sqrt_pi)*(3*xyz_samples[:,2]**2-1)
VS2 += 6*vn[:,2] * comps[6]
#real_coeff[:,7] = (np.sqrt(15)/d_sqrt_pi)*xyz_samples[:,0]*xyz_samples[:,2]
VS0 += vn[:,2] * comps[7]
VS2 += vn[:,0] * comps[7]
#real_coeff[:,8] = (np.sqrt(15)/(2*d_sqrt_pi))*(xyz_samples[:,0]**2 - xyz_samples[:,1]**2)
VS0 += 2. * vn[:,0] * comps[8]
VS1 -= 2. * vn[:,1] * comps[8]
rng = np.arange(self.sh_coeffs.shape[0])
IS = np.concatenate((rng, rng, rng))
JS = np.concatenate((rng*3, rng*3+1, rng*3+2))
data = np.concatenate((VS0, VS1, VS2))
result = self.mtx.dot(sp.csc_matrix((data, (IS, JS))))
elif wrt is self.components:
comps = self.components.r
n = len(comps)
result = self.mtx.dot(self.sh_coeffs[:,:n])
else:
return None
which = np.nonzero(self.r.ravel()>0)[0]
data = np.ones_like(which)
gr_equal_zero = sp.csc_matrix((data, (which, which)), shape=(self.r.size, self.r.size))
return gr_equal_zero.dot(result)
def lambertian_spotlight(v, vn, pos, dir, spot_exponent, camcoord=False, camera_t=None, camera_rt=None):
"""
:param v: vertices
:param vn: vertex normals
:param light_pos: light position
:param light_dir: light direction
:param spot_exponent: spot exponent (a la opengl)
:param camcoord: if True, then pos and dir are wrt the camera
:param camera_t: 3-vector indicating translation of camera
:param camera_rt: 3-vector indicating direction of camera
:return: Vx1 array of brightness
"""
if camcoord: # Transform pos and dir from camera to world coordinate system
assert(camera_t is not None and camera_rt is not None)
from opendr.geometry import Rodrigues
rot = Rodrigues(rt=camera_rt)
pos = rot.T.dot(pos-camera_t)
dir = rot.T.dot(dir)
dir = dir / ch.sqrt(ch.sum(dir**2.))
v_minus_light = v - pos.reshape((1,3))
v_distances = ch.sqrt(ch.sum(v_minus_light**2, axis=1))
v_minus_light_normed = v_minus_light / v_distances.reshape((-1,1))
cosangle = v_minus_light_normed.dot(dir.reshape((3,1)))
light_dot_normal = ch.sum(vn*v_minus_light_normed, axis=1)
light_dot_normal.label = 'light_dot_normal'
cosangle.label = 'cosangle'
result = light_dot_normal.ravel() * cosangle.ravel()**spot_exponent
result = result / v_distances ** 2.
result = maximum(result, 0.0)
return result
# Pol Optimize to use GPU perhaps.
class LambertianPointLight(Ch):
terms = 'f', 'num_verts', 'light_color'
dterms = 'light_pos', 'v', 'vc', 'vn'
def on_changed(self, which):
if not hasattr(self, '_lpl'):
self.add_dterm('_lpl', maximum(multiply(a=multiply()), 0.0))
if not hasattr(self, 'ldn'):
self.ldn = LightDotNormal(self.v.r.size/3)
if not hasattr(self, 'vn'):
logger.info('LambertianPointLight using auto-normals. This will be slow for derivative-free computations.')
self.vn = VertNormals(f=self.f, v=self.v)
self.vn.needs_autoupdate = True
if 'v' in which and hasattr(self.vn, 'needs_autoupdate') and self.vn.needs_autoupdate:
self.vn.v = self.v
ldn_args = {k: getattr(self, k) for k in which if k in ('light_pos', 'v', 'vn')}
if len(ldn_args) > 0:
self.ldn.set(**ldn_args)
self._lpl.a.a.a = self.ldn.reshape((-1,1))
if 'num_verts' in which or 'light_color' in which:
# nc = self.num_channels
# IS = np.arange(self.num_verts*nc)
# JS = np.repeat(np.arange(self.num_verts), 3)
# data = (row(self.light_color)*np.ones((self.num_verts, 3))).ravel()
# mtx = sp.csc_matrix((data, (IS,JS)), shape=(self.num_verts*3, self.num_verts))
self._lpl.a.a.b = self.light_color.reshape((1,self.num_channels))
if 'vc' in which:
self._lpl.a.b = self.vc.reshape((-1,self.num_channels))
@property
def num_channels(self):
return self.light_color.size
def compute_r(self):
self._call_on_changed()
return self._lpl.r
def compute_dr_wrt(self, wrt):
self._call_on_changed()
if wrt is self._lpl:
return 1
# def compute_light_repeat(num_verts):
# IS = np.arange(num_verts*3)
# JS = IS % 3
# data = np.ones_like(IS, dtype=np.float64)
# ij = np.vstack((row(IS), row(JS)))
# return sp.csc_matrix((data, ij), shape=(num_verts*3, 3))
# Pol: Optimize using Numba and CPU/GPU maybe?
def LightDotNormal(num_verts):
def normalize_rows(v):
b=ch.sqrt(ch.sum(v.reshape((-1,3))**2, axis=1)).reshape((-1,1))
return v/b.compute_r()
sum_rows = lambda v : ch.sum(v.reshape((-1,3)), axis=1)
def f(light_pos, v, vn):
light_pos=light_pos[0,]
a=np.array([light_pos,light_pos,light_pos])
v=v[0,]
b=np.array([v,v,v])
return sum_rows(normalize_rows(a - b)* vn.reshape((-1, 3)))
return Ch(f)
def main():
pass
if __name__ == '__main__':
main()