-
Notifications
You must be signed in to change notification settings - Fork 0
/
blizzard2.py
executable file
·160 lines (139 loc) · 7.55 KB
/
blizzard2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
#!/usr/bin/env python
# Author: Duncan Tormey
# Email: dut@stowers.org or duncantormey@gmail.com
from __future__ import print_function
from __future__ import division
from collections import Counter
import pandas as pd
class MicrosatellitePopulation(object):
"""
Class for calculating iternal relatedness and homozygosity by loci for a set of individuals
micosatellite genotypes. Also provides a a way to filter data prior to analysis.
"""
def __init__(self, data_file_path, split_id=True):
self.data_file_path = data_file_path
self.genotypes_df = pd.read_excel(self.data_file_path)
if split_id:
self.genotypes_df.columns = ['sample_id', 'size_1', 'size_2', 'height_1', 'height_2']
self.genotypes_df['sample_name'] = self.genotypes_df['sample_id'].apply(lambda x: x.split('-')[0])
self.genotypes_df['micro_sat'] = self.genotypes_df['sample_id'].apply(lambda x: x.split('-')[1])
else:
self.genotypes_df.columns = ['sample_name', 'micro_sat', 'size_1', 'size_2', 'height_1', 'height_2']
self.genotypes_df.size_2.fillna(self.genotypes_df.size_1, inplace=True)
self.genotypes_df.drop_duplicates(inplace=True)
self.population_sizes = {}
self.sat_bins = {}
self.population_intervals = {}
self.binned_population_sizes = {}
self.population_size_frequencies = {}
def remove_microsattelite(self, micro_sat):
"""Removes a specific microsatellite from all individuals in population data"""
self.genotypes_df = self.genotypes_df[self.genotypes_df.micro_sat != micro_sat]
def remove_sample(self, sample_name):
"""Removes a individual based on sample name from the population"""
self.genotypes_df = self.genotypes_df[self.genotypes_df.sample_name != sample_name]
self.genotypes_df = self.genotypes_df[self.genotypes_df.sample_name != str(sample_name)]
def get_population_sizes(self):
"""Populates the population sizes dictionary with all alleles across all animals"""
for sat in self.genotypes_df.micro_sat.unique():
size_dist = \
self.genotypes_df[self.genotypes_df.micro_sat == sat].filter(regex='size').stack().reset_index()[
0].tolist()
size_dist = [round(size) for size in size_dist]
self.population_sizes[sat] = size_dist
def get_sat_bins(self):
"""Determines the number of bins for each microsatellite, based on 3 nucleotide windows"""
for sat in self.population_sizes:
bins = round(float(max(self.population_sizes[sat]) -
min(self.population_sizes[sat])) / 3.0)
if bins <= 0:
bins = 1
self.sat_bins[sat] = bins
def get_population_intervals(self):
"""Determines the intervals for the number of bins for each microsatellite based on
self.get_sat_bins"""
for sat in self.population_sizes:
out, bins = pd.cut(self.population_sizes[sat],
bins=self.sat_bins[sat],
retbins=True)
intervals = [
tuple(
float(i)
for i in str(o).translate(None, "()[]").split(', ')
)
for o in set(out)
]
self.population_intervals[sat] = intervals
def in_interval(self, size, intervals):
"""This is method that takes a allele and list of intervals and returns the interval in
which the allele resides"""
matched = None
for interval in intervals:
if interval[0] < size <= interval[1]:
matched = interval[1]
break
return matched
def get_binned_population_sizes(self):
"""Assigns each of the alleles in population_sizes to an interval"""
for sat in self.population_sizes:
self.binned_population_sizes[sat] = [self.in_interval(size, self.population_intervals[sat])
for size in self.population_sizes[sat]]
def get_population_size_frequencies(self):
"""Determines the frequency of each allele in binned_population_sizes."""
self.population_size_frequencies = {
key: {
k: float(v) / float(len(val))
for k, v in Counter(val).items()
}
for key, val in self.binned_population_sizes.items()
}
def bin_data(self):
"""Bins thea data for each sample"""
self.get_population_sizes()
self.get_sat_bins()
self.get_population_intervals()
self.get_binned_population_sizes()
self.get_population_size_frequencies()
self.genotypes_df['binned_size_1'] = self.genotypes_df.apply(lambda x:
self.in_interval(round(x['size_1']),
self.population_intervals[
x['micro_sat']]),
axis=1)
self.genotypes_df['binned_size_2'] = self.genotypes_df.apply(lambda x:
self.in_interval(round(x['size_2']),
self.population_intervals[
x['micro_sat']]),
axis=1)
def calc_internal_relatedness(self):
"""Calculates internal relatedness and homozygosity by loci for each sample"""
self.bin_data()
self.ir_df = []
for sample_name in self.genotypes_df.sample_name.unique():
l_df = self.genotypes_df[self.genotypes_df.sample_name == sample_name]
e_homo = 0
e_hetero = 0
num_hom_loci = 0
num_loci = 0
l_df.fillna(0.0, inplace=True)
for row in l_df.itertuples():
if row.binned_size_1 != 0.0 and row.binned_size_2 != 0.0:
num_loci += 1
if row.binned_size_1 == row.binned_size_2:
num_hom_loci += 1
e_homo += self.population_size_frequencies[row.micro_sat][row.binned_size_1]
e_homo += self.population_size_frequencies[row.micro_sat][row.binned_size_2]
else:
e_hetero += self.population_size_frequencies[row.micro_sat][row.binned_size_1]
e_hetero += self.population_size_frequencies[row.micro_sat][row.binned_size_2]
score = e_homo / (e_hetero + e_homo)
ir = (2 * num_hom_loci - (e_homo + e_hetero)) / (2 * num_loci - (e_homo + e_hetero))
self.ir_df.append({'sample_name': sample_name, 'homozygosity_by_loci': score,
'internal_relatedness': ir, 'num_hom_loci': num_hom_loci,
'total_loci': num_loci})
self.ir_df = pd.DataFrame(self.ir_df)
self.ir_df = self.ir_df[['sample_name', 'homozygosity_by_loci',
'internal_relatedness', 'num_hom_loci', 'total_loci']]
self.ir_df = self.ir_df.sort_values('internal_relatedness', ascending=False)
self.ir_df.reset_index(inplace=True, drop=True)
if __name__ == '__main__':
print('')