From d5bd071f8dd905a4f8015137f4298f7ea09cddbd Mon Sep 17 00:00:00 2001 From: "Chong, Kwitae" Date: Wed, 23 Oct 2024 11:32:05 -0400 Subject: [PATCH] import BatchedLinearAlgebra from Picasso --- core/src/CMakeLists.txt | 1 + core/src/Cabana_BatchedLinearAlgebra.hpp | 2309 ++++++++++++++++++++ core/unit_test/CMakeLists.txt | 1 + core/unit_test/tstBatchedLinearAlgebra.hpp | 878 ++++++++ 4 files changed, 3189 insertions(+) create mode 100644 core/src/Cabana_BatchedLinearAlgebra.hpp create mode 100644 core/unit_test/tstBatchedLinearAlgebra.hpp diff --git a/core/src/CMakeLists.txt b/core/src/CMakeLists.txt index 922aac53b..56c6df97d 100644 --- a/core/src/CMakeLists.txt +++ b/core/src/CMakeLists.txt @@ -33,6 +33,7 @@ set(HEADERS_PUBLIC Cabana_Utils.hpp Cabana_VerletList.hpp Cabana_Version.hpp + Cabana_BatchedLinearAlgebra.hpp ) if(Cabana_ENABLE_ARBORX) diff --git a/core/src/Cabana_BatchedLinearAlgebra.hpp b/core/src/Cabana_BatchedLinearAlgebra.hpp new file mode 100644 index 000000000..9aed6fc2c --- /dev/null +++ b/core/src/Cabana_BatchedLinearAlgebra.hpp @@ -0,0 +1,2309 @@ +/**************************************************************************** + * Copyright (c) 2021 by the Cabana authors * + * All rights reserved. * + * * + * This file is part of the Cabana library. Cabana is distributed under a * + * BSD 3-clause license. For the licensing terms see the LICENSE file in * + * the top-level directory. * + * * + * SPDX-License-Identifier: BSD-3-Clause * + ****************************************************************************/ + +/*! + \file Cabana_Tuple.hpp + \brief Tuple of single particle information to build AoSoA +*/ +#ifndef CABANA_BATCHEDLINEARALGEBRA_HPP +#define CABANA_BATCHEDLINEARALGEBRA_HPP + +#include + +#include +#include + +namespace Cabana +{ +namespace LinearAlgebra +{ +//---------------------------------------------------------------------------// +// Overview +//---------------------------------------------------------------------------// +/* + This file implements kernel-level dense linear algebra operations using a + combination of expression templates for lazy evaluation and data structures + to hold intermediates for eager evaluations when necessary. + + The general concept in the implementation for lazy vs. eager evalations is + this: if an operation will evaluate the same expression multiple times + (e.g. evaluating the element of a matrix in matrix-matrix multiplication) + then the expressions are evaluated prior to performing the operation and the + result of the operation is a copy rather than an expression as a means of + reducing operations counts. Other operations which do not incur multiple + evaluations (e.g. matrix-matrix addition) are evaluated lazily and return an + expression as eager expressions in this case would cause excessive copy + operations. + + The syntax covers all of the basic operations on vectors and matrices one + would want to perform. Note that all product operations require the range + and domain sizes of the vectors/matrices to be compatible. In what follows, + consider A, B, and C to be matrices, x, y, and z to be vectors, and s to be + a scalar: + + Scalar assignment: A = s; x = x; + + Copy assignment: A = B; x = y; + + Addition assignment: A += B; x += y; + + Subtraction assignment: A -= B; x -= y; + + Data access: A(i,j) = s; x(i) = s; + + Matrix transpose: ~A (if A is MxN, ~A is NxM) + + Vector transpose: ~x (if x is size N, ~x is a matrix 1xN) + + Matrix-matrix addition/subtraction: C = A + B; C = A - B; + + Vector-vector addition/subtraction: z = x + y; z = x - y; + + Matrix-matrix multiplication: C = A * B; + + Matrix-vector multiplication: y = A * x; + + Vector-matrix multiplication: B = x * A; + + Scalar multiplication: B = s * A; B = A * s; y = s * x; y = x * s; + + Scalar division: B = A / s; y = x / s; + + Dot product: s = ~x * y; + + Inner product: A = x * ~y; + + Cross product: z = x % y; (3-vectors only) + + Element-wise vector multiplication: z = x & y; + + Element-wise vector division: z = x | y; + + Matrix determinants: s = !A; + + LU decomposition: A_lu = LU(A); (returns a copy of the matrix decomposed) + + Matrix inverse: A_inv = inverse(A) (returns a copy of the matrix inverted) + + NxN linear solve (A*x=b): x = A ^ b; + + General asymmetric eigendecomposition + + + We can string together multiple expressions to create a more complex + expression which could have a mixture of eager and lazy evaluation depending + on the operation type. For example, if A and B are NxN and x is of length N: + + C = 0.5 * (a + ~a) * B + (x * ~x); + + would return a matrix C that is NxN and: + + z = (0.5 * (a + ~a) * B + (x * ~x)) * y; + + would return a vector z of length N and: + + s = !C * ~y * ((0.5 * (a + ~a) * B + (x * ~x)) * y); + + would return a scalar. + */ + +//---------------------------------------------------------------------------// +// Forward declarations. +//---------------------------------------------------------------------------// +template +struct MatrixExpression; +template +struct Matrix; +template +struct MatrixView; +template +struct VectorExpression; +template +struct Vector; +template +struct VectorView; + +//---------------------------------------------------------------------------// +// Type traits. +//---------------------------------------------------------------------------// +// Matrix +template +struct is_matrix_impl : public std::false_type +{ +}; + +template +struct is_matrix_impl> : public std::true_type +{ +}; + +template +struct is_matrix_impl> : public std::true_type +{ +}; + +template +struct is_matrix_impl> : public std::true_type +{ +}; + +template +struct is_matrix : public is_matrix_impl::type>::type +{ +}; + +// Vector +template +struct is_vector_impl : public std::false_type +{ +}; + +template +struct is_vector_impl> : public std::true_type +{ +}; + +template +struct is_vector_impl> : public std::true_type +{ +}; + +template +struct is_vector_impl> : public std::true_type +{ +}; + +template +struct is_vector : public is_vector_impl::type>::type +{ +}; + +//---------------------------------------------------------------------------// +// Expression creation functions. +//---------------------------------------------------------------------------// +// Matrix +template +KOKKOS_INLINE_FUNCTION MatrixExpression +createMatrixExpression( const Func& f ) +{ + return MatrixExpression( f ); +} + +// Vector. +template +KOKKOS_INLINE_FUNCTION VectorExpression +createVectorExpression( const Func& f ) +{ + return VectorExpression( f ); +} + +//---------------------------------------------------------------------------// +// Expression containers. +//---------------------------------------------------------------------------// +// Matrix expression container. +template +struct MatrixExpression +{ + static constexpr int extent_0 = M; + static constexpr int extent_1 = N; + + using value_type = T; + using non_const_value_type = typename std::remove_cv::type; + + using eval_type = Matrix; + using copy_type = Matrix; + + Func _f; + + // Default constructor. + KOKKOS_DEFAULTED_FUNCTION + MatrixExpression() = default; + + // Create an expression from a callable object. + KOKKOS_INLINE_FUNCTION + MatrixExpression( const Func& f ) + : _f( f ) + { + } + + // Extent. + KOKKOS_INLINE_FUNCTION + constexpr int extent( const int d ) const + { + return d == 0 ? extent_0 : ( d == 1 ? extent_1 : 0 ); + } + + // Evaluate the expression at an index. + KOKKOS_INLINE_FUNCTION + value_type operator()( const int i, const int j ) const + { + return _f( i, j ); + } + + // Get a row as a vector expression. + KOKKOS_INLINE_FUNCTION + auto row( const int n ) const + { + return createVectorExpression( [=]( const int i ) + { return ( *this )( n, i ); } ); + } + + // Get a column as a vector expression. + KOKKOS_INLINE_FUNCTION + auto column( const int n ) const + { + return createVectorExpression( [=]( const int i ) + { return ( *this )( i, n ); } ); + } +}; + +//---------------------------------------------------------------------------// +// Vector expression container. +template +struct VectorExpression +{ + static constexpr int extent_0 = N; + static constexpr int extent_1 = 1; + + using value_type = T; + using non_const_value_type = typename std::remove_cv::type; + + using eval_type = Vector; + using copy_type = Vector; + + Func _f; + + // Default constructor. + KOKKOS_DEFAULTED_FUNCTION + VectorExpression() = default; + + // Create an expression from a callable object. + KOKKOS_INLINE_FUNCTION + VectorExpression( const Func& f ) + : _f( f ) + { + } + + // Extent + KOKKOS_INLINE_FUNCTION + constexpr int extent( const int ) const { return N; } + + // Evaluate the expression at an index. + KOKKOS_INLINE_FUNCTION + value_type operator()( const int i ) const { return _f( i ); } + + // Evaluate the expression at an index. 2D version for vectors treated as + // matrices. + KOKKOS_INLINE_FUNCTION + value_type operator()( const int i, int ) const { return _f( i ); } +}; + +//---------------------------------------------------------------------------// +// Matrix +//---------------------------------------------------------------------------// +// Dense matrix. +template +struct Matrix +{ + T _d[M][N]; + + static constexpr int extent_0 = M; + static constexpr int extent_1 = N; + + using value_type = T; + using non_const_value_type = typename std::remove_cv::type; + using pointer = T*; + using reference = T&; + using const_reference = const T&; + + using eval_type = MatrixView; + using copy_type = Matrix; + + // Default constructor. + KOKKOS_DEFAULTED_FUNCTION + Matrix() = default; + + // Initializer list constructor. + KOKKOS_INLINE_FUNCTION + Matrix( const std::initializer_list> data ) + { + int i = 0; + int j = 0; + for ( const auto& row : data ) + { + j = 0; + for ( const auto& value : row ) + { + _d[i][j] = value; + ++j; + } + ++i; + } + } + + // Deep copy constructor. Triggers expression evaluation. + template < + class Expression, + typename std::enable_if::value, int>::type = 0> + KOKKOS_INLINE_FUNCTION Matrix( const Expression& e ) + { + static_assert( Expression::extent_0 == extent_0, "Extents must match" ); + static_assert( Expression::extent_1 == extent_1, "Extents must match" ); + + for ( int i = 0; i < M; ++i ) +#if defined( KOKKOS_ENABLE_PRAGMA_UNROLL ) +#pragma unroll +#endif + for ( int j = 0; j < N; ++j ) + ( *this )( i, j ) = e( i, j ); + } + + // Scalar constructor. + KOKKOS_INLINE_FUNCTION + Matrix( const T value ) + { + for ( int i = 0; i < M; ++i ) +#if defined( KOKKOS_ENABLE_PRAGMA_UNROLL ) +#pragma unroll +#endif + for ( int j = 0; j < N; ++j ) + ( *this )( i, j ) = value; + } + + // Assignment operator. Triggers expression evaluation. + template + KOKKOS_INLINE_FUNCTION + typename std::enable_if::value, Matrix&>::type + operator=( const Expression& e ) + { + static_assert( Expression::extent_0 == extent_0, "Extents must match" ); + static_assert( Expression::extent_1 == extent_1, "Extents must match" ); + + for ( int i = 0; i < M; ++i ) +#if defined( KOKKOS_ENABLE_PRAGMA_UNROLL ) +#pragma unroll +#endif + for ( int j = 0; j < N; ++j ) + ( *this )( i, j ) = e( i, j ); + return *this; + } + + // Addition assignment operator. Triggers expression evaluation. + template + KOKKOS_INLINE_FUNCTION + typename std::enable_if::value, Matrix&>::type + operator+=( const Expression& e ) + { + static_assert( Expression::extent_0 == extent_0, "Extents must match" ); + static_assert( Expression::extent_1 == extent_1, "Extents must match" ); + + for ( int i = 0; i < M; ++i ) +#if defined( KOKKOS_ENABLE_PRAGMA_UNROLL ) +#pragma unroll +#endif + for ( int j = 0; j < N; ++j ) + ( *this )( i, j ) += e( i, j ); + return *this; + } + + // Subtraction assignment operator. Triggers expression evaluation. + template + KOKKOS_INLINE_FUNCTION + typename std::enable_if::value, Matrix&>::type + operator-=( const Expression& e ) + { + static_assert( Expression::extent_0 == extent_0, "Extents must match" ); + static_assert( Expression::extent_1 == extent_1, "Extents must match" ); + + for ( int i = 0; i < M; ++i ) +#if defined( KOKKOS_ENABLE_PRAGMA_UNROLL ) +#pragma unroll +#endif + for ( int j = 0; j < N; ++j ) + ( *this )( i, j ) -= e( i, j ); + return *this; + } + + // Initializer list assignment operator. + KOKKOS_INLINE_FUNCTION + Matrix& + operator=( const std::initializer_list> data ) + { + int i = 0; + int j = 0; + for ( const auto& row : data ) + { + j = 0; + for ( const auto& value : row ) + { + _d[i][j] = value; + ++j; + } + ++i; + } + return *this; + } + + // Scalar value assignment. + KOKKOS_INLINE_FUNCTION + Matrix& operator=( const T value ) + { + for ( int i = 0; i < M; ++i ) +#if defined( KOKKOS_ENABLE_PRAGMA_UNROLL ) +#pragma unroll +#endif + for ( int j = 0; j < N; ++j ) + ( *this )( i, j ) = value; + return *this; + } + + // Strides. + KOKKOS_INLINE_FUNCTION + int stride_0() const { return N; } + + KOKKOS_INLINE_FUNCTION + int stride_1() const { return 1; } + + KOKKOS_INLINE_FUNCTION + int stride( const int d ) const { return ( 0 == d ) ? N : 1; } + + // Extent + KOKKOS_INLINE_FUNCTION + constexpr int extent( const int d ) const + { + return d == 0 ? extent_0 : ( d == 1 ? extent_1 : 0 ); + } + + // Access an individual element. + KOKKOS_INLINE_FUNCTION + const_reference operator()( const int i, const int j ) const + { + return _d[i][j]; + } + + KOKKOS_INLINE_FUNCTION + reference operator()( const int i, const int j ) { return _d[i][j]; } + + // Get the raw data. + KOKKOS_INLINE_FUNCTION + pointer data() const { return const_cast( &_d[0][0] ); } + + // Get a row as a vector view. + KOKKOS_INLINE_FUNCTION + VectorView row( const int n ) const + { + return VectorView( const_cast( &_d[n][0] ), 1 ); + } + + // Get a column as a vector view. + KOKKOS_INLINE_FUNCTION + VectorView column( const int n ) const + { + return VectorView( const_cast( &_d[0][n] ), N ); + } +}; + +//---------------------------------------------------------------------------// +// Scalar overload. +template +struct Matrix +{ + T _d; + + static constexpr int extent_0 = 1; + static constexpr int extent_1 = 1; + + using value_type = T; + using non_const_value_type = typename std::remove_cv::type; + using pointer = T*; + using reference = T&; + using const_reference = const T&; + + using eval_type = MatrixView; + using copy_type = Matrix; + + // Default constructor. + KOKKOS_DEFAULTED_FUNCTION + Matrix() = default; + + // Scalar constructor. + KOKKOS_INLINE_FUNCTION + Matrix( const T value ) + : _d( value ) + { + } + + // Deep copy constructor. Triggers expression evaluation. + template < + class Expression, + typename std::enable_if::value, int>::type = 0> + KOKKOS_INLINE_FUNCTION Matrix( const Expression& e ) + { + static_assert( Expression::extent_0 == extent_0, "Extents must match" ); + static_assert( Expression::extent_1 == extent_1, "Extents must match" ); + + _d = e( 0, 0 ); + } + + // Assignment operator. Triggers expression evaluation. + template + KOKKOS_INLINE_FUNCTION + typename std::enable_if::value, Matrix&>::type + operator=( const Expression& e ) + { + static_assert( Expression::extent_0 == extent_0, "Extents must match" ); + static_assert( Expression::extent_1 == extent_1, "Extents must match" ); + + _d = e( 0, 0 ); + return *this; + } + + // Addition assignment operator. Triggers expression evaluation. + template + KOKKOS_INLINE_FUNCTION + typename std::enable_if::value, Matrix&>::type + operator+=( const Expression& e ) + { + static_assert( Expression::extent_0 == extent_0, "Extents must match" ); + static_assert( Expression::extent_1 == extent_1, "Extents must match" ); + + _d += e( 0, 0 ); + return *this; + } + + // Subtraction assignment operator. Triggers expression evaluation. + template + KOKKOS_INLINE_FUNCTION + typename std::enable_if::value, Matrix&>::type + operator-=( const Expression& e ) + { + static_assert( Expression::extent_0 == extent_0, "Extents must match" ); + static_assert( Expression::extent_1 == extent_1, "Extents must match" ); + + _d -= e( 0, 0 ); + return *this; + } + + // Scalar value assignment. + KOKKOS_INLINE_FUNCTION + Matrix& operator=( const T value ) + { + _d = value; + return *this; + } + + // Strides. + KOKKOS_INLINE_FUNCTION + int stride_0() const { return 1; } + + KOKKOS_INLINE_FUNCTION + int stride_1() const { return 1; } + + KOKKOS_INLINE_FUNCTION + int stride( const int ) const { return 1; } + + // Extent + KOKKOS_INLINE_FUNCTION + constexpr int extent( const int ) const { return 1; } + + // Access an individual element. + KOKKOS_INLINE_FUNCTION + const_reference operator()( const int, const int ) const { return _d; } + + KOKKOS_INLINE_FUNCTION + reference operator()( const int, const int ) { return _d; } + + // Get the raw data. + KOKKOS_INLINE_FUNCTION + pointer data() const { return const_cast( &_d ); } + + // Scalar conversion operator. + KOKKOS_INLINE_FUNCTION + operator value_type() const { return _d; } +}; + +template +struct Matrix +{ + T _d[3][3]; + + static constexpr int extent_0 = 3; + static constexpr int extent_1 = 3; + + using value_type = T; + using non_const_value_type = typename std::remove_cv::type; + using pointer = T*; + using reference = T&; + using const_reference = const T&; + + using eval_type = MatrixView; + using copy_type = Matrix; + + // Default constructor. + KOKKOS_DEFAULTED_FUNCTION + Matrix() = default; + + // Initializer list constructor. + KOKKOS_INLINE_FUNCTION + Matrix( const std::initializer_list> data ) + { + int i = 0; + int j = 0; + for ( const auto& row : data ) + { + j = 0; + for ( const auto& value : row ) + { + _d[i][j] = value; + ++j; + } + ++i; + } + } + + // Deep copy constructor. Triggers expression evaluation. + template < + class Expression, + typename std::enable_if::value, int>::type = 0> + KOKKOS_INLINE_FUNCTION Matrix( const Expression& e ) + { + static_assert( Expression::extent_0 == extent_0, "Extents must match" ); + static_assert( Expression::extent_1 == extent_1, "Extents must match" ); + + for ( int i = 0; i < extent_0; ++i ) +#if defined( KOKKOS_ENABLE_PRAGMA_UNROLL ) +#pragma unroll +#endif + for ( int j = 0; j < extent_1; ++j ) + ( *this )( i, j ) = e( i, j ); + } + + // Scalar constructor. + KOKKOS_INLINE_FUNCTION + Matrix( const T value ) + { + for ( int i = 0; i < extent_0; ++i ) +#if defined( KOKKOS_ENABLE_PRAGMA_UNROLL ) +#pragma unroll +#endif + for ( int j = 0; j < extent_1; ++j ) + ( *this )( i, j ) = value; + } + + // Assignment operator. Triggers expression evaluation. + template + KOKKOS_INLINE_FUNCTION + typename std::enable_if::value, Matrix&>::type + operator=( const Expression& e ) + { + static_assert( Expression::extent_0 == extent_0, "Extents must match" ); + static_assert( Expression::extent_1 == extent_1, "Extents must match" ); + + for ( int i = 0; i < extent_0; ++i ) +#if defined( KOKKOS_ENABLE_PRAGMA_UNROLL ) +#pragma unroll +#endif + for ( int j = 0; j < extent_1; ++j ) + ( *this )( i, j ) = e( i, j ); + return *this; + } + + // Addition assignment operator. Triggers expression evaluation. + template + KOKKOS_INLINE_FUNCTION + typename std::enable_if::value, Matrix&>::type + operator+=( const Expression& e ) + { + static_assert( Expression::extent_0 == extent_0, "Extents must match" ); + static_assert( Expression::extent_1 == extent_1, "Extents must match" ); + + for ( int i = 0; i < extent_0; ++i ) +#if defined( KOKKOS_ENABLE_PRAGMA_UNROLL ) +#pragma unroll +#endif + for ( int j = 0; j < extent_1; ++j ) + ( *this )( i, j ) += e( i, j ); + return *this; + } + + // Subtraction assignment operator. Triggers expression evaluation. + template + KOKKOS_INLINE_FUNCTION + typename std::enable_if::value, Matrix&>::type + operator-=( const Expression& e ) + { + static_assert( Expression::extent_0 == extent_0, "Extents must match" ); + static_assert( Expression::extent_1 == extent_1, "Extents must match" ); + + for ( int i = 0; i < extent_0; ++i ) +#if defined( KOKKOS_ENABLE_PRAGMA_UNROLL ) +#pragma unroll +#endif + for ( int j = 0; j < extent_1; ++j ) + ( *this )( i, j ) -= e( i, j ); + return *this; + } + + // Initializer list assignment operator. + KOKKOS_INLINE_FUNCTION + Matrix& + operator=( const std::initializer_list> data ) + { + int i = 0; + int j = 0; + for ( const auto& row : data ) + { + j = 0; + for ( const auto& value : row ) + { + _d[i][j] = value; + ++j; + } + ++i; + } + return *this; + } + + // Scalar value assignment. + KOKKOS_INLINE_FUNCTION + Matrix& operator=( const T value ) + { + for ( int i = 0; i < extent_0; ++i ) +#if defined( KOKKOS_ENABLE_PRAGMA_UNROLL ) +#pragma unroll +#endif + for ( int j = 0; j < extent_1; ++j ) + ( *this )( i, j ) = value; + return *this; + } + + // Strides. + KOKKOS_INLINE_FUNCTION + int stride_0() const { return extent_1; } + + KOKKOS_INLINE_FUNCTION + int stride_1() const { return 1; } + + KOKKOS_INLINE_FUNCTION + int stride( const int d ) const { return ( 0 == d ) ? extent_1 : 1; } + + // Extent + KOKKOS_INLINE_FUNCTION + constexpr int extent( const int d ) const + { + return d == 0 ? extent_0 : ( d == 1 ? extent_1 : 0 ); + } + + // Access an individual element. + KOKKOS_INLINE_FUNCTION + const_reference operator()( const int i, const int j ) const + { + return _d[i][j]; + } + + KOKKOS_INLINE_FUNCTION + reference operator()( const int i, const int j ) { return _d[i][j]; } + + // Get the raw data. + KOKKOS_INLINE_FUNCTION + pointer data() const { return const_cast( &_d[0][0] ); } + + // Get a row as a vector view. + KOKKOS_INLINE_FUNCTION + VectorView row( const int n ) const + { + return VectorView( const_cast( &_d[n][0] ), 1 ); + } + + // Get a column as a vector view. + KOKKOS_INLINE_FUNCTION + VectorView column( const int n ) const + { + return VectorView( const_cast( &_d[0][n] ), extent_1 ); + } +}; + +//---------------------------------------------------------------------------// +// View for wrapping matrix data. +// +// NOTE: Data in this view may be non-contiguous. +template +struct MatrixView +{ + T* _d; + int _stride[2]; + + static constexpr int extent_0 = M; + static constexpr int extent_1 = N; + + using value_type = T; + using non_const_value_type = typename std::remove_cv::type; + using pointer = T*; + using reference = T&; + using const_reference = const T&; + + using eval_type = MatrixView; + using copy_type = Matrix; + + // Default constructor. + KOKKOS_DEFAULTED_FUNCTION + MatrixView() = default; + + // Matrix constructor. + KOKKOS_INLINE_FUNCTION + MatrixView( const Matrix& m ) + : _d( m.data() ) + { + _stride[0] = m.stride_0(); + _stride[1] = m.stride_1(); + } + + // Pointer constructor. + KOKKOS_INLINE_FUNCTION + MatrixView( T* data, const int stride_0, const int stride_1 ) + : _d( data ) + { + _stride[0] = stride_0; + _stride[1] = stride_1; + } + + // Assignment operator. Triggers expression evaluation. + template + KOKKOS_INLINE_FUNCTION + typename std::enable_if::value, MatrixView&>::type + operator=( const Expression& e ) + { + static_assert( Expression::extent_0 == extent_0, "Extents must match" ); + static_assert( Expression::extent_1 == extent_1, "Extents must match" ); + + for ( int i = 0; i < M; ++i ) +#if defined( KOKKOS_ENABLE_PRAGMA_UNROLL ) +#pragma unroll +#endif + for ( int j = 0; j < N; ++j ) + ( *this )( i, j ) = e( i, j ); + return *this; + } + + // Addition assignment operator. Triggers expression evaluation. + template + KOKKOS_INLINE_FUNCTION + typename std::enable_if::value, MatrixView&>::type + operator+=( const Expression& e ) + { + static_assert( Expression::extent_0 == extent_0, "Extents must match" ); + static_assert( Expression::extent_1 == extent_1, "Extents must match" ); + + for ( int i = 0; i < M; ++i ) +#if defined( KOKKOS_ENABLE_PRAGMA_UNROLL ) +#pragma unroll +#endif + for ( int j = 0; j < N; ++j ) + ( *this )( i, j ) += e( i, j ); + return *this; + } + + // Subtraction assignment operator. Triggers expression evaluation. + template + KOKKOS_INLINE_FUNCTION + typename std::enable_if::value, MatrixView&>::type + operator-=( const Expression& e ) + { + static_assert( Expression::extent_0 == extent_0, "Extents must match" ); + static_assert( Expression::extent_1 == extent_1, "Extents must match" ); + + for ( int i = 0; i < M; ++i ) +#if defined( KOKKOS_ENABLE_PRAGMA_UNROLL ) +#pragma unroll +#endif + for ( int j = 0; j < N; ++j ) + ( *this )( i, j ) -= e( i, j ); + return *this; + } + + // Initializer list assignment operator. + KOKKOS_INLINE_FUNCTION + MatrixView& + operator=( const std::initializer_list> data ) + { + int i = 0; + int j = 0; + for ( const auto& row : data ) + { + j = 0; + for ( const auto& value : row ) + { + ( *this )( i, j ) = value; + ++j; + } + ++i; + } + return *this; + } + + // Scalar value assignment. + KOKKOS_INLINE_FUNCTION + MatrixView& operator=( const T value ) + { + for ( int i = 0; i < M; ++i ) +#if defined( KOKKOS_ENABLE_PRAGMA_UNROLL ) +#pragma unroll +#endif + for ( int j = 0; j < N; ++j ) + ( *this )( i, j ) = value; + return *this; + } + + // Strides. + KOKKOS_INLINE_FUNCTION + int stride_0() const { return _stride[0]; } + + // Strides. + KOKKOS_INLINE_FUNCTION + int stride_1() const { return _stride[1]; } + + KOKKOS_INLINE_FUNCTION + int stride( const int d ) const { return _stride[d]; } + + // Extent + KOKKOS_INLINE_FUNCTION + constexpr int extent( const int d ) const + { + return d == 0 ? extent_0 : ( d == 1 ? extent_1 : 0 ); + } + + // Access an individual element. + KOKKOS_INLINE_FUNCTION + const_reference operator()( const int i, const int j ) const + { + return _d[_stride[0] * i + _stride[1] * j]; + } + + KOKKOS_INLINE_FUNCTION + reference operator()( const int i, const int j ) + { + return _d[_stride[0] * i + _stride[1] * j]; + } + + // Get a row as a vector view. + KOKKOS_INLINE_FUNCTION + VectorView row( const int n ) const + { + return VectorView( const_cast( &_d[_stride[0] * n] ), + _stride[1] ); + } + + // Get a column as a vector view. + KOKKOS_INLINE_FUNCTION + VectorView column( const int n ) const + { + return VectorView( const_cast( &_d[_stride[1] * n] ), + _stride[0] ); + } + + // Get the raw data. + KOKKOS_INLINE_FUNCTION + pointer data() const { return const_cast( _d ); } +}; + +//---------------------------------------------------------------------------// +// Vector +//---------------------------------------------------------------------------// +// Dense vector. +template +struct Vector +{ + T _d[N]; + + static constexpr int extent_0 = N; + static constexpr int extent_1 = 1; + + using value_type = T; + using non_const_value_type = typename std::remove_cv::type; + using pointer = T*; + using reference = T&; + using const_reference = const T&; + + using eval_type = VectorView; + using copy_type = Vector; + + // Default constructor. + KOKKOS_DEFAULTED_FUNCTION + Vector() = default; + + // Initializer list constructor. + KOKKOS_INLINE_FUNCTION + Vector( const std::initializer_list data ) + { + int i = 0; + for ( const auto& value : data ) + { + _d[i] = value; + ++i; + } + } + + // Deep copy constructor. Triggers expression evaluation. + template < + class Expression, + typename std::enable_if::value, int>::type = 0> + KOKKOS_INLINE_FUNCTION Vector( const Expression& e ) + { + static_assert( Expression::extent_0 == extent_0, "Extents must match" ); + static_assert( Expression::extent_1 == extent_1, "Extents must match" ); + +#if defined( KOKKOS_ENABLE_PRAGMA_UNROLL ) +#pragma unroll +#endif + for ( int i = 0; i < N; ++i ) + ( *this )( i ) = e( i ); + } + + // Scalar constructor. + KOKKOS_INLINE_FUNCTION + Vector( const T value ) + { +#if defined( KOKKOS_ENABLE_PRAGMA_UNROLL ) +#pragma unroll +#endif + for ( int i = 0; i < N; ++i ) + ( *this )( i ) = value; + } + + // Deep copy assignment operator. Triggers expression evaluation. + template + KOKKOS_INLINE_FUNCTION + typename std::enable_if::value, Vector&>::type + operator=( const Expression& e ) + { + static_assert( Expression::extent_0 == extent_0, "Extents must match" ); + static_assert( Expression::extent_1 == extent_1, "Extents must match" ); + +#if defined( KOKKOS_ENABLE_PRAGMA_UNROLL ) +#pragma unroll +#endif + for ( int i = 0; i < N; ++i ) + ( *this )( i ) = e( i ); + return *this; + } + + // Addition assignment operator. Triggers expression evaluation. + template + KOKKOS_INLINE_FUNCTION + typename std::enable_if::value, Vector&>::type + operator+=( const Expression& e ) + { + static_assert( Expression::extent_0 == extent_0, "Extents must match" ); + static_assert( Expression::extent_1 == extent_1, "Extents must match" ); + +#if defined( KOKKOS_ENABLE_PRAGMA_UNROLL ) +#pragma unroll +#endif + for ( int i = 0; i < N; ++i ) + ( *this )( i ) += e( i ); + return *this; + } + + // Subtraction assignment operator. Triggers expression evaluation. + template + KOKKOS_INLINE_FUNCTION + typename std::enable_if::value, Vector&>::type + operator-=( const Expression& e ) + { + static_assert( Expression::extent_0 == extent_0, "Extents must match" ); + static_assert( Expression::extent_1 == extent_1, "Extents must match" ); + +#if defined( KOKKOS_ENABLE_PRAGMA_UNROLL ) +#pragma unroll +#endif + for ( int i = 0; i < N; ++i ) + ( *this )( i ) -= e( i ); + return *this; + } + + // Initializer list assignment operator. + KOKKOS_INLINE_FUNCTION + Vector& operator=( const std::initializer_list data ) + { + int i = 0; + for ( const auto& value : data ) + { + _d[i] = value; + ++i; + } + return *this; + } + + // Scalar value assignment. + KOKKOS_INLINE_FUNCTION + Vector& operator=( const T value ) + { +#if defined( KOKKOS_ENABLE_PRAGMA_UNROLL ) +#pragma unroll +#endif + for ( int i = 0; i < N; ++i ) + ( *this )( i ) = value; + return *this; + } + + // Normalization + KOKKOS_INLINE_FUNCTION + Vector& normalize() + { +#if defined( KOKKOS_ENABLE_PRAGMA_UNROLL ) +#pragma unroll +#endif + auto norm2 = Kokkos::sqrt( ~( *this ) * ( *this ) ); + for ( int i = 0; i < N; ++i ) + ( *this )( i ) /= norm2; + return *this; + } + + // Strides. + KOKKOS_INLINE_FUNCTION + int stride_0() const { return 1; } + + // Strides. + KOKKOS_INLINE_FUNCTION + int stride_1() const { return 0; } + + KOKKOS_INLINE_FUNCTION + int stride( const int d ) const { return ( 0 == d ) ? 1 : 0; } + + // Extent + KOKKOS_INLINE_FUNCTION + constexpr int extent( const int d ) const + { + return d == 0 ? extent_0 : ( d == 1 ? 1 : 0 ); + } + + // Access an individual element. + KOKKOS_INLINE_FUNCTION + const_reference operator()( const int i ) const { return _d[i]; } + + KOKKOS_INLINE_FUNCTION + reference operator()( const int i ) { return _d[i]; } + + // Access an individual element. 2D version for vectors treated as matrices. + KOKKOS_INLINE_FUNCTION + const_reference operator()( const int i, const int ) const { return _d[i]; } + + KOKKOS_INLINE_FUNCTION + reference operator()( const int i, const int ) { return _d[i]; } + + // Get the raw data. + KOKKOS_INLINE_FUNCTION + pointer data() const { return const_cast( &_d[0] ); } +}; + +//---------------------------------------------------------------------------// +// Scalar overload. +template +struct Vector +{ + T _d; + + static constexpr int extent_0 = 1; + static constexpr int extent_1 = 1; + + using value_type = T; + using non_const_value_type = typename std::remove_cv::type; + using pointer = T*; + using reference = T&; + using const_reference = const T&; + + using eval_type = VectorView; + using copy_type = Vector; + + // Default constructor. + KOKKOS_DEFAULTED_FUNCTION + Vector() = default; + + // Scalar constructor. + KOKKOS_INLINE_FUNCTION + Vector( const T value ) + : _d( value ) + { + } + + // Deep copy constructor. Triggers expression evaluation. + template < + class Expression, + typename std::enable_if::value, int>::type = 0> + KOKKOS_INLINE_FUNCTION Vector( const Expression& e ) + { + static_assert( Expression::extent_0 == extent_0, "Extents must match" ); + static_assert( Expression::extent_1 == extent_1, "Extents must match" ); + + _d = e( 0 ); + } + + // Deep copy assignment operator. Triggers expression evaluation. + template + KOKKOS_INLINE_FUNCTION + typename std::enable_if::value, Vector&>::type + operator=( const Expression& e ) + { + static_assert( Expression::extent_0 == extent_0, "Extents must match" ); + static_assert( Expression::extent_1 == extent_1, "Extents must match" ); + + _d = e( 0 ); + return *this; + } + + // Addition assignment operator. Triggers expression evaluation. + template + KOKKOS_INLINE_FUNCTION + typename std::enable_if::value, Vector&>::type + operator+=( const Expression& e ) + { + static_assert( Expression::extent_0 == extent_0, "Extents must match" ); + static_assert( Expression::extent_1 == extent_1, "Extents must match" ); + + _d += e( 0 ); + return *this; + } + + // Subtraction assignment operator. Triggers expression evaluation. + template + KOKKOS_INLINE_FUNCTION + typename std::enable_if::value, Vector&>::type + operator-=( const Expression& e ) + { + static_assert( Expression::extent_0 == extent_0, "Extents must match" ); + static_assert( Expression::extent_1 == extent_1, "Extents must match" ); + + _d -= e( 0 ); + return *this; + } + + // Scalar value assignment. + KOKKOS_INLINE_FUNCTION + Vector& operator=( const T value ) + { + _d = value; + return *this; + } + + // Strides. + KOKKOS_INLINE_FUNCTION + int stride_0() const { return 1; } + + KOKKOS_INLINE_FUNCTION + int stride_1() const { return 1; } + + KOKKOS_INLINE_FUNCTION + int stride( const int ) const { return 1; } + + // Extent + KOKKOS_INLINE_FUNCTION + constexpr int extent( const int ) const { return 1; } + + // Access an individual element. + KOKKOS_INLINE_FUNCTION + const_reference operator()( const int ) const { return _d; } + + KOKKOS_INLINE_FUNCTION + reference operator()( const int ) { return _d; } + + // Access an individual element. 2D version for vectors treated as matrices. + KOKKOS_INLINE_FUNCTION + const_reference operator()( const int, const int ) const { return _d; } + + KOKKOS_INLINE_FUNCTION + reference operator()( const int, const int ) { return _d; } + + // Get the raw data. + KOKKOS_INLINE_FUNCTION + pointer data() const { return const_cast( &_d ); } + + // Scalar conversion operator. + KOKKOS_INLINE_FUNCTION + operator value_type() const { return _d; } +}; + +//---------------------------------------------------------------------------// +// View for wrapping vector data. +// +// NOTE: Data in this view may be non-contiguous. +template +struct VectorView +{ + T* _d; + int _stride; + + static constexpr int extent_0 = N; + static constexpr int extent_1 = 1; + + using value_type = T; + using non_const_value_type = typename std::remove_cv::type; + using pointer = T*; + using reference = T&; + using const_reference = const T&; + + using eval_type = VectorView; + using copy_type = Vector; + + // Default constructor. + KOKKOS_DEFAULTED_FUNCTION + VectorView() = default; + + // Vector constructor. + KOKKOS_INLINE_FUNCTION + VectorView( const Vector& v ) + : _d( v.data() ) + , _stride( v.stride_0() ) + { + } + + // Pointer constructor. + KOKKOS_INLINE_FUNCTION + VectorView( T* data, const int stride ) + : _d( data ) + , _stride( stride ) + { + } + + // Assignment operator. Triggers expression evaluation. + template + KOKKOS_INLINE_FUNCTION + typename std::enable_if::value, VectorView&>::type + operator=( const Expression& e ) + { + static_assert( Expression::extent_0 == extent_0, "Extents must match" ); + static_assert( Expression::extent_1 == extent_1, "Extents must match" ); + +#if defined( KOKKOS_ENABLE_PRAGMA_UNROLL ) +#pragma unroll +#endif + for ( int i = 0; i < N; ++i ) + ( *this )( i ) = e( i ); + return *this; + } + + // Addition assignment operator. Triggers expression evaluation. + template + KOKKOS_INLINE_FUNCTION + typename std::enable_if::value, VectorView&>::type + operator+=( const Expression& e ) + { + static_assert( Expression::extent_0 == extent_0, "Extents must match" ); + static_assert( Expression::extent_1 == extent_1, "Extents must match" ); + +#if defined( KOKKOS_ENABLE_PRAGMA_UNROLL ) +#pragma unroll +#endif + for ( int i = 0; i < N; ++i ) + ( *this )( i ) += e( i ); + return *this; + } + + // Subtraction assignment operator. Triggers expression evaluation. + template + KOKKOS_INLINE_FUNCTION + typename std::enable_if::value, VectorView&>::type + operator-=( const Expression& e ) + { + static_assert( Expression::extent_0 == extent_0, "Extents must match" ); + static_assert( Expression::extent_1 == extent_1, "Extents must match" ); + +#if defined( KOKKOS_ENABLE_PRAGMA_UNROLL ) +#pragma unroll +#endif + for ( int i = 0; i < N; ++i ) + ( *this )( i ) -= e( i ); + return *this; + } + + // Initializer list assignment operator. + KOKKOS_INLINE_FUNCTION + VectorView& operator=( const std::initializer_list data ) + { + int i = 0; + for ( const auto& value : data ) + { + ( *this )( i ) = value; + ++i; + } + return *this; + } + + // Scalar value assignment. + KOKKOS_INLINE_FUNCTION + VectorView& operator=( const T value ) + { +#if defined( KOKKOS_ENABLE_PRAGMA_UNROLL ) +#pragma unroll +#endif + for ( int i = 0; i < N; ++i ) + ( *this )( i ) = value; + return *this; + } + + // Normalization + KOKKOS_INLINE_FUNCTION + VectorView& normalize() + { +#if defined( KOKKOS_ENABLE_PRAGMA_UNROLL ) +#pragma unroll +#endif + auto norm2 = Kokkos::sqrt( ~( *this ) * ( *this ) ); + for ( int i = 0; i < N; ++i ) + ( *this )( i ) /= norm2; + return *this; + } + + // Strides. + KOKKOS_INLINE_FUNCTION + int stride_0() const { return _stride; } + + // Strides. + KOKKOS_INLINE_FUNCTION + int stride_1() const { return 0; } + + KOKKOS_INLINE_FUNCTION + int stride( const int d ) const { return ( 0 == d ) ? _stride : 0; } + + // Extent + KOKKOS_INLINE_FUNCTION + constexpr int extent( const int d ) const + { + return d == 0 ? extent_0 : ( d == 1 ? 1 : 0 ); + } + + // Access an individual element. + KOKKOS_INLINE_FUNCTION + const_reference operator()( const int i ) const { return _d[_stride * i]; } + + KOKKOS_INLINE_FUNCTION + reference operator()( const int i ) { return _d[_stride * i]; } + + // Access an individual element. 2D version for vectors treated as matrices. + KOKKOS_INLINE_FUNCTION + const_reference operator()( const int i, const int ) const + { + return _d[_stride * i]; + } + + KOKKOS_INLINE_FUNCTION + reference operator()( const int i, const int ) { return _d[_stride * i]; } + + // Get the raw data. + KOKKOS_INLINE_FUNCTION + pointer data() const { return const_cast( _d ); } +}; + +//---------------------------------------------------------------------------// +// Matrix-matrix deep copy. +//---------------------------------------------------------------------------// +template < + class MatrixA, class ExpressionB, + typename std::enable_if_t< + is_matrix::value && is_matrix::value, int> = 0> +KOKKOS_INLINE_FUNCTION void deepCopy( MatrixA& a, const ExpressionB& b ) +{ + static_assert( std::is_same::value, + "value_type must match" ); + static_assert( MatrixA::extent_0 == ExpressionB::extent_0, + "extent_0 must match" ); + static_assert( MatrixA::extent_1 == ExpressionB::extent_1, + "extent_1 must match" ); + for ( int i = 0; i < MatrixA::extent_0; ++i ) +#if defined( KOKKOS_ENABLE_PRAGMA_UNROLL ) +#pragma unroll +#endif + for ( int j = 0; j < MatrixA::extent_1; ++j ) + a( i, j ) = b( i, j ); +} + +//---------------------------------------------------------------------------// +// Vector-vector deep copy. +//---------------------------------------------------------------------------// +template < + class VectorX, class ExpressionY, + typename std::enable_if_t< + is_vector::value && is_vector::value, int> = 0> +KOKKOS_INLINE_FUNCTION void deepCopy( VectorX& x, const ExpressionY& y ) +{ + static_assert( std::is_same::value, + "value_type must match" ); + static_assert( VectorX::extent_0 == ExpressionY::extent_0, + "extent must match" ); +#if defined( KOKKOS_ENABLE_PRAGMA_UNROLL ) +#pragma unroll +#endif + for ( int i = 0; i < VectorX::extent_0; ++i ) + x( i ) = y( i ); +} + +//---------------------------------------------------------------------------// +// Transpose. +//---------------------------------------------------------------------------// +// Matrix operator. +template ::value, int> = 0> +KOKKOS_INLINE_FUNCTION auto operator~( const Expression& e ) +{ + return createMatrixExpression( + [=]( const int i, const int j ) { return e( j, i ); } ); +} + +//---------------------------------------------------------------------------// +// Vector operator. +template ::value, int> = 0> +KOKKOS_INLINE_FUNCTION auto operator~( const Expression& e ) +{ + return createMatrixExpression( + [=]( const int, const int j ) { return e( j ); } ); +} + +//---------------------------------------------------------------------------// +// Matrix-matrix addition. +//---------------------------------------------------------------------------// +template ::value && + is_matrix::value, + int> = 0> +KOKKOS_INLINE_FUNCTION auto operator+( const ExpressionA& a, + const ExpressionB& b ) +{ + static_assert( std::is_same::value, + "value_type must match" ); + static_assert( ExpressionA::extent_0 == ExpressionB::extent_0, + "extent_0 must match" ); + static_assert( ExpressionA::extent_1 == ExpressionB::extent_1, + "extent_1 must match" ); + return createMatrixExpression( + [=]( const int i, const int j ) { return a( i, j ) + b( i, j ); } ); +} + +//---------------------------------------------------------------------------// +// Matrix-matrix subtraction. +//---------------------------------------------------------------------------// +template ::value && + is_matrix::value, + int> = 0> +KOKKOS_INLINE_FUNCTION auto operator-( const ExpressionA& a, + const ExpressionB& b ) +{ + static_assert( std::is_same::value, + "value_type must match" ); + static_assert( ExpressionA::extent_0 == ExpressionB::extent_0, + "extent_0 must match" ); + static_assert( ExpressionA::extent_1 == ExpressionB::extent_1, + "extent_1 must_match" ); + return createMatrixExpression( + [=]( const int i, const int j ) { return a( i, j ) - b( i, j ); } ); +} + +//---------------------------------------------------------------------------// +// Matrix-matrix multiplication. +//---------------------------------------------------------------------------// +template +KOKKOS_INLINE_FUNCTION typename std::enable_if_t< + is_matrix::value && is_matrix::value, + Matrix> +operator*( const ExpressionA& a, const ExpressionB& b ) +{ + static_assert( std::is_same::value, + "value_type must match" ); + static_assert( ExpressionA::extent_1 == ExpressionB::extent_0, + "inner extent must match" ); + + typename ExpressionA::eval_type a_eval = a; + typename ExpressionB::eval_type b_eval = b; + Matrix + c = static_cast( 0 ); + + for ( int i = 0; i < ExpressionA::extent_0; ++i ) + for ( int j = 0; j < ExpressionB::extent_1; ++j ) +#if defined( KOKKOS_ENABLE_PRAGMA_UNROLL ) +#pragma unroll +#endif + for ( int k = 0; k < ExpressionA::extent_1; ++k ) + c( i, j ) += a_eval( i, k ) * b_eval( k, j ); + + return c; +} + +//---------------------------------------------------------------------------// +// Matrix-vector multiplication +//---------------------------------------------------------------------------// +template +KOKKOS_INLINE_FUNCTION typename std::enable_if_t< + is_matrix::value && is_vector::value, + Vector> +operator*( const ExpressionA& a, const ExpressionX& x ) +{ + static_assert( std::is_same::value, + "value_type must match" ); + static_assert( ExpressionA::extent_1 == ExpressionX::extent_0, + "inner extent must match" ); + + typename ExpressionA::eval_type a_eval = a; + typename ExpressionX::eval_type x_eval = x; + Vector y = + static_cast( 0 ); + + for ( int i = 0; i < ExpressionA::extent_0; ++i ) +#if defined( KOKKOS_ENABLE_PRAGMA_UNROLL ) +#pragma unroll +#endif + for ( int j = 0; j < ExpressionA::extent_1; ++j ) + y( i ) += a_eval( i, j ) * x_eval( j ); + + return y; +} + +//---------------------------------------------------------------------------// +// Vector-matrix multiplication. (i.e. vector-vector transpose multiplication) +//---------------------------------------------------------------------------// +template +KOKKOS_INLINE_FUNCTION typename std::enable_if_t< + is_matrix::value && is_vector::value, + Matrix> +operator*( const ExpressionX& x, const ExpressionA& a ) +{ + static_assert( std::is_same::value, + "value_type must match" ); + static_assert( 1 == ExpressionA::extent_0, "inner extent must match" ); + + typename ExpressionA::eval_type a_eval = a; + typename ExpressionX::eval_type x_eval = x; + Matrix + y; + + for ( int i = 0; i < ExpressionX::extent_0; ++i ) +#if defined( KOKKOS_ENABLE_PRAGMA_UNROLL ) +#pragma unroll +#endif + for ( int j = 0; j < ExpressionA::extent_1; ++j ) + y( i, j ) = x_eval( i ) * a_eval( 0, j ); + + return y; +} + +//---------------------------------------------------------------------------// +// Vector-vector addition. +//---------------------------------------------------------------------------// +template ::value && + is_vector::value, + int> = 0> +KOKKOS_INLINE_FUNCTION auto operator+( const ExpressionX& x, + const ExpressionY& y ) +{ + static_assert( std::is_same::value, + "value_type must match" ); + static_assert( ExpressionX::extent_0 == ExpressionY::extent_0, + "extent must match" ); + return createVectorExpression( + [=]( const int i ) { return x( i ) + y( i ); } ); +} + +//---------------------------------------------------------------------------// +// Vector-vector subtraction. +//---------------------------------------------------------------------------// +template ::value && + is_vector::value, + int> = 0> +KOKKOS_INLINE_FUNCTION auto operator-( const ExpressionX& x, + const ExpressionY& y ) +{ + static_assert( std::is_same::value, + "value_type must match" ); + static_assert( ExpressionX::extent_0 == ExpressionY::extent_0, + "extent must match" ); + return createVectorExpression( + [=]( const int i ) { return x( i ) - y( i ); } ); +} + +//---------------------------------------------------------------------------// +// Vector products. +//---------------------------------------------------------------------------// +// Cross product +template +KOKKOS_INLINE_FUNCTION + typename std::enable_if_t::value && + is_vector::value, + Vector> + operator%( const ExpressionX& x, const ExpressionY& y ) +{ + static_assert( std::is_same::value, + "value_type must match" ); + static_assert( ExpressionX::extent_0 == 3, + "cross product is for 3-vectors" ); + static_assert( ExpressionY::extent_0 == 3, + "cross product is for 3-vectors" ); + typename ExpressionX::eval_type x_eval = x; + typename ExpressionY::eval_type y_eval = y; + return Vector{ + x_eval( 1 ) * y_eval( 2 ) - x_eval( 2 ) * y_eval( 1 ), + x_eval( 2 ) * y_eval( 0 ) - x_eval( 0 ) * y_eval( 2 ), + x_eval( 0 ) * y_eval( 1 ) - x_eval( 1 ) * y_eval( 0 ) }; +} + +//---------------------------------------------------------------------------// +// Element-wise multiplication. +template ::value && + is_vector::value, + int> = 0> +KOKKOS_INLINE_FUNCTION auto operator&( const ExpressionX& x, + const ExpressionY& y ) +{ + static_assert( std::is_same::value, + "value_type must match" ); + static_assert( ExpressionX::extent_0 == ExpressionY::extent_0, + "extent_0 must match" ); + return createVectorExpression( + [=]( const int i ) { return x( i ) * y( i ); } ); +} + +//---------------------------------------------------------------------------// +// Element-wise division. +template ::value && + is_vector::value, + int> = 0> +KOKKOS_INLINE_FUNCTION auto operator|( const ExpressionX& x, + const ExpressionY& y ) +{ + static_assert( std::is_same::value, + "value_type must match" ); + static_assert( ExpressionX::extent_0 == ExpressionY::extent_0, + "extent must match" ); + return createVectorExpression( + [=]( const int i ) { return x( i ) / y( i ); } ); +} + +//---------------------------------------------------------------------------// +// Scalar multiplication. +//---------------------------------------------------------------------------// +// Matrix. +template ::value, int> = 0> +KOKKOS_INLINE_FUNCTION auto +operator*( const typename ExpressionA::value_type& s, const ExpressionA& a ) +{ + return createMatrixExpression( + [=]( const int i, const int j ) { return s * a( i, j ); } ); +} + +template ::value, int> = 0> +KOKKOS_INLINE_FUNCTION auto +operator*( const ExpressionA& a, const typename ExpressionA::value_type& s ) +{ + return s * a; +} + +//---------------------------------------------------------------------------// +// Vector. +template ::value, int> = 0> +KOKKOS_INLINE_FUNCTION auto +operator*( const typename ExpressionX::value_type& s, const ExpressionX& x ) +{ + return createVectorExpression( + [=]( const int i ) { return s * x( i ); } ); +} + +template ::value, int> = 0> +KOKKOS_INLINE_FUNCTION auto +operator*( const ExpressionX& x, const typename ExpressionX::value_type& s ) +{ + return s * x; +} + +//---------------------------------------------------------------------------// +// Scalar division. +//---------------------------------------------------------------------------// +// Matrix. +template ::value, int> = 0> +KOKKOS_INLINE_FUNCTION auto +operator/( const ExpressionA& a, const typename ExpressionA::value_type& s ) +{ + auto s_inv = static_cast( 1 ) / s; + return s_inv * a; +} + +//---------------------------------------------------------------------------// +// Vector. +template ::value, int> = 0> +KOKKOS_INLINE_FUNCTION auto +operator/( const ExpressionX& x, const typename ExpressionX::value_type& s ) +{ + auto s_inv = static_cast( 1 ) / s; + return s_inv * x; +} + +//---------------------------------------------------------------------------// +// Matrix determinants. +//---------------------------------------------------------------------------// +// 2x2 specialization +template +KOKKOS_INLINE_FUNCTION + typename std::enable_if_t::value && + Expression::extent_0 == 2 && + Expression::extent_1 == 2, + typename Expression::value_type> + operator!( const Expression& a ) +{ + return a( 0, 0 ) * a( 1, 1 ) - a( 0, 1 ) * a( 1, 0 ); +} + +//---------------------------------------------------------------------------// +// 3x3 specialization +template +KOKKOS_INLINE_FUNCTION + typename std::enable_if_t::value && + Expression::extent_0 == 3 && + Expression::extent_1 == 3, + typename Expression::value_type> + operator!( const Expression& a ) +{ + return a( 0, 0 ) * a( 1, 1 ) * a( 2, 2 ) + + a( 0, 1 ) * a( 1, 2 ) * a( 2, 0 ) + + a( 0, 2 ) * a( 1, 0 ) * a( 2, 1 ) - + a( 0, 2 ) * a( 1, 1 ) * a( 2, 0 ) - + a( 0, 1 ) * a( 1, 0 ) * a( 2, 2 ) - + a( 0, 0 ) * a( 1, 2 ) * a( 2, 1 ); +} + +//---------------------------------------------------------------------------// +// LU decomposition. +//---------------------------------------------------------------------------// +template +KOKKOS_INLINE_FUNCTION + typename std::enable_if_t::value, + typename ExpressionA::copy_type> + LU( const ExpressionA& a ) +{ + using value_type = typename ExpressionA::value_type; + constexpr int m = ExpressionA::extent_0; + constexpr int n = ExpressionA::extent_1; + constexpr int k = ( m < n ? m : n ); + + typename ExpressionA::copy_type lu = a; + + for ( int p = 0; p < k; ++p ) + { + const int iend = m - p; + const int jend = n - p; + + const value_type diag = lu( p, p ); + + for ( int i = 1; i < iend; ++i ) + { + lu( i + p, p ) /= diag; +#if defined( KOKKOS_ENABLE_PRAGMA_UNROLL ) +#pragma unroll +#endif + for ( int j = 1; j < jend; ++j ) + lu( i + p, j + p ) -= lu( i + p, p ) * lu( p, j + p ); + } + } + + return lu; +} + +//---------------------------------------------------------------------------// +// Matrix trace +//---------------------------------------------------------------------------// +template +KOKKOS_INLINE_FUNCTION + typename std::enable_if_t::value, + typename ExpressionA::value_type> + trace( const ExpressionA& a ) +{ + static_assert( ExpressionA::extent_1 == ExpressionA::extent_0, + "matrix must be square" ); + + typename ExpressionA::value_type trace = 0.0; +#if defined( KOKKOS_ENABLE_PRAGMA_UNROLL ) +#pragma unroll +#endif + for ( int i = 0; i < ExpressionA::extent_0; ++i ) + trace += a( i, i ); + return trace; +} + +//---------------------------------------------------------------------------// +// Identity +//---------------------------------------------------------------------------// +template +KOKKOS_INLINE_FUNCTION + typename std::enable_if_t::value, void> + identity( ExpressionA& a ) +{ + static_assert( ExpressionA::extent_1 == ExpressionA::extent_0, + "matrix must be square" ); + a = static_cast( 0 ); +#if defined( KOKKOS_ENABLE_PRAGMA_UNROLL ) +#pragma unroll +#endif + for ( int i = 0; i < ExpressionA::extent_0; ++i ) + a( i, i ) = static_cast( 1 ); +} + +//---------------------------------------------------------------------------// +// Diagonal matrix. +//---------------------------------------------------------------------------// +template ::value, int> = 0> +KOKKOS_INLINE_FUNCTION auto diagonal( const ExpressionX& x ) +{ + return createMatrixExpression( + [=]( const int i, const int j ) + { + return ( i == j ) + ? x( i ) + : static_cast( 0 ); + } ); +} + +//---------------------------------------------------------------------------// +// Matrix inverse. +//---------------------------------------------------------------------------// +// 2x2 specialization with determinant given. +template +KOKKOS_INLINE_FUNCTION + typename std::enable_if_t::value && + ExpressionA::extent_0 == 2 && + ExpressionA::extent_1 == 2, + typename ExpressionA::copy_type> + inverse( const ExpressionA& a, + const typename ExpressionA::value_type& a_det ) +{ + typename ExpressionA::eval_type a_eval = a; + + auto a_det_inv = static_cast( 1 ) / a_det; + + Matrix a_inv; + + a_inv( 0, 0 ) = a_eval( 1, 1 ) * a_det_inv; + a_inv( 0, 1 ) = -a_eval( 0, 1 ) * a_det_inv; + a_inv( 1, 0 ) = -a_eval( 1, 0 ) * a_det_inv; + a_inv( 1, 1 ) = a_eval( 0, 0 ) * a_det_inv; + + return a_inv; +} + +//---------------------------------------------------------------------------// +// 2x2 specialization. +template +KOKKOS_INLINE_FUNCTION + typename std::enable_if_t::value && + ExpressionA::extent_0 == 2 && + ExpressionA::extent_1 == 2, + typename ExpressionA::copy_type> + inverse( const ExpressionA& a ) +{ + typename ExpressionA::eval_type a_eval = a; + return inverse( a_eval, !a_eval ); +} + +//---------------------------------------------------------------------------// +// 3x3 specialization with determinant given. +template +KOKKOS_INLINE_FUNCTION + typename std::enable_if_t::value && + ExpressionA::extent_0 == 3 && + ExpressionA::extent_1 == 3, + typename ExpressionA::copy_type> + inverse( const ExpressionA& a, + const typename ExpressionA::value_type& a_det ) +{ + typename ExpressionA::eval_type a_eval = a; + + auto a_det_inv = static_cast( 1 ) / a_det; + + Matrix a_inv; + + a_inv( 0, 0 ) = + ( a_eval( 1, 1 ) * a_eval( 2, 2 ) - a_eval( 1, 2 ) * a_eval( 2, 1 ) ) * + a_det_inv; + a_inv( 0, 1 ) = + ( a_eval( 0, 2 ) * a_eval( 2, 1 ) - a_eval( 0, 1 ) * a_eval( 2, 2 ) ) * + a_det_inv; + a_inv( 0, 2 ) = + ( a_eval( 0, 1 ) * a_eval( 1, 2 ) - a_eval( 0, 2 ) * a_eval( 1, 1 ) ) * + a_det_inv; + + a_inv( 1, 0 ) = + ( a_eval( 1, 2 ) * a_eval( 2, 0 ) - a_eval( 1, 0 ) * a_eval( 2, 2 ) ) * + a_det_inv; + a_inv( 1, 1 ) = + ( a_eval( 0, 0 ) * a_eval( 2, 2 ) - a_eval( 0, 2 ) * a_eval( 2, 0 ) ) * + a_det_inv; + a_inv( 1, 2 ) = + ( a_eval( 0, 2 ) * a_eval( 1, 0 ) - a_eval( 0, 0 ) * a_eval( 1, 2 ) ) * + a_det_inv; + + a_inv( 2, 0 ) = + ( a_eval( 1, 0 ) * a_eval( 2, 1 ) - a_eval( 1, 1 ) * a_eval( 2, 0 ) ) * + a_det_inv; + a_inv( 2, 1 ) = + ( a_eval( 0, 1 ) * a_eval( 2, 0 ) - a_eval( 0, 0 ) * a_eval( 2, 1 ) ) * + a_det_inv; + a_inv( 2, 2 ) = + ( a_eval( 0, 0 ) * a_eval( 1, 1 ) - a_eval( 0, 1 ) * a_eval( 1, 0 ) ) * + a_det_inv; + + return a_inv; +} + +//---------------------------------------------------------------------------// +// 3x3 specialization. +template +KOKKOS_INLINE_FUNCTION + typename std::enable_if_t::value && + ExpressionA::extent_0 == 3 && + ExpressionA::extent_1 == 3, + typename ExpressionA::copy_type> + inverse( const ExpressionA& a ) +{ + typename ExpressionA::eval_type a_eval = a; + return inverse( a_eval, !a_eval ); +} + +//---------------------------------------------------------------------------// +// General case. +template +KOKKOS_INLINE_FUNCTION typename std::enable_if_t< + is_matrix::value && + !( ExpressionA::extent_0 == 2 && ExpressionA::extent_1 == 2 ) && + !( ExpressionA::extent_0 == 3 && ExpressionA::extent_1 == 3 ), + typename ExpressionA::copy_type> +inverse( const ExpressionA& a ) +{ + Matrix + ident; + identity( ident ); + return a ^ ident; +} + +//---------------------------------------------------------------------------// +// Matrix exponential +// Adapted from D. Gebremedhin and C. Weatherford +// https://arxiv.org/abs/1606.08395 +//---------------------------------------------------------------------------// +template +KOKKOS_INLINE_FUNCTION + typename std::enable_if_t::value, + typename ExpressionA::copy_type> + exponential( const ExpressionA& a ) +{ + static_assert( ExpressionA::extent_1 == ExpressionA::extent_0, + "matrix must be square" ); + Matrix + ident; + identity( ident ); + + auto a2 = a * a; + auto a3 = a2 * a; + auto a4 = a3 * a; + + double alpha = 4.955887515892002289e-14; + Kokkos::Array, 4> c; + c = { + Kokkos::Array{ 3599.994262347704951, 862.0738730089864644, + -14.86233950714664427, -4.881331340410683266, + 1.0 }, + Kokkos::Array{ 1693.461215815646064, 430.8068649851425321, + 77.58934041908401266, 7.763092503482958289, + 1.0 }, + Kokkos::Array{ 1478.920917621023984, 387.7896702475912482, + 98.78409444643527097, 9.794888991082968084, + 1.0 }, + Kokkos::Array{ 2237.981769593417334, 545.9089563171489062, + 37.31797993128430013, 3.323349845844756893, + 1.0 }, + }; + + auto ai1 = c[0][0] * ident + c[0][1] * a + c[0][2] * a2 + c[0][3] * a3 + + c[0][4] * a4; + auto ai2 = c[1][0] * ident + c[1][1] * a + c[1][2] * a2 + c[1][3] * a3 + + c[1][4] * a4; + auto ai3 = c[2][0] * ident + c[2][1] * a + c[2][2] * a2 + c[2][3] * a3 + + c[2][4] * a4; + auto ai4 = c[3][0] * ident + c[3][1] * a + c[3][2] * a2 + c[3][3] * a3 + + c[3][4] * a4; + + return alpha * ( ai1 * ai2 * ai3 * ai4 ); +} + +//---------------------------------------------------------------------------// +// Linear solve. +//---------------------------------------------------------------------------// +// 2x2 specialization. Single and multiple RHS supported. +template +KOKKOS_INLINE_FUNCTION typename std::enable_if_t< + is_matrix::value && + ( is_matrix::value || is_vector::value ) && + ExpressionA::extent_0 == 2 && ExpressionA::extent_1 == 2, + typename ExpressionB::copy_type> +operator^( const ExpressionA& a, const ExpressionB& b ) +{ + return inverse( a ) * b; +} + +//---------------------------------------------------------------------------// +// 3x3 specialization. Single and multiple RHS supported. +template +KOKKOS_INLINE_FUNCTION typename std::enable_if_t< + is_matrix::value && + ( is_matrix::value || is_vector::value ) && + ExpressionA::extent_0 == 3 && ExpressionA::extent_1 == 3, + typename ExpressionB::copy_type> +operator^( const ExpressionA& a, const ExpressionB& b ) +{ + return inverse( a ) * b; +} + +//---------------------------------------------------------------------------// +// General case. Single and multiple RHS supported. +template +KOKKOS_INLINE_FUNCTION typename std::enable_if_t< + is_matrix::value && + ( is_matrix::value || is_vector::value ) && + !( ExpressionA::extent_0 == 2 && ExpressionA::extent_1 == 2 ) && + !( ExpressionA::extent_0 == 3 && ExpressionA::extent_1 == 3 ), + typename ExpressionB::copy_type> +operator^( const ExpressionA& a, const ExpressionB& b ) +{ + static_assert( std::is_same::value, + "value_type must be the same" ); + static_assert( ExpressionA::extent_1 == ExpressionB::extent_0, + "Inner extent must match" ); + static_assert( ExpressionA::extent_1 == ExpressionA::extent_0, + "matrix must be square" ); + + using value_type = typename ExpressionA::value_type; + constexpr int m = ExpressionB::extent_0; + constexpr int n = ExpressionB::extent_1; + + // Compute LU decomposition. + auto a_lu = LU( a ); + + // Create RHS/LHS + typename ExpressionB::copy_type x = b; + + // Solve Ly = b for y where y = Ux + for ( int p = 0; p < m; ++p ) + { + const int iend = m - p; + const int jend = n; + + for ( int i = 1; i < iend; ++i ) +#if defined( KOKKOS_ENABLE_PRAGMA_UNROLL ) +#pragma unroll +#endif + for ( int j = 0; j < jend; ++j ) + x( i + p, j ) -= a_lu( i + p, p ) * x( p, j ); + } + + // Solve Ux = y for x. + for ( int p = ( m - 1 ); p >= 0; --p ) + { + const int iend = p; + const int jend = n; + + const value_type diag = a_lu( p, p ); + +#if defined( KOKKOS_ENABLE_PRAGMA_UNROLL ) +#pragma unroll +#endif + for ( int j = 0; j < n; ++j ) + x( p, j ) /= diag; + + if ( p > 0 ) + { + for ( int i = 0; i < iend; ++i ) +#if defined( KOKKOS_ENABLE_PRAGMA_UNROLL ) +#pragma unroll +#endif + for ( int j = 0; j < jend; ++j ) + x( i, j ) -= a_lu( i, p ) * x( p, j ); + } + } + + return x; +} + +//---------------------------------------------------------------------------// + +} // end namespace LinearAlgebra + +//---------------------------------------------------------------------------// +// Type aliases. +//---------------------------------------------------------------------------// + +template +using Mat2 = LinearAlgebra::Matrix; +template +using MatView2 = LinearAlgebra::MatrixView; +template +using Vec2 = LinearAlgebra::Vector; +template +using VecView2 = LinearAlgebra::VectorView; + +template +using Mat3 = LinearAlgebra::Matrix; +template +using MatView3 = LinearAlgebra::MatrixView; +template +using Vec3 = LinearAlgebra::Vector; +template +using VecView3 = LinearAlgebra::VectorView; + +//---------------------------------------------------------------------------// + +} // end namespace Cabana + +#endif // end Cabana_BATCHEDLINEARALGEBRA_HPP diff --git a/core/unit_test/CMakeLists.txt b/core/unit_test/CMakeLists.txt index 3ce03e729..2fbd1b845 100644 --- a/core/unit_test/CMakeLists.txt +++ b/core/unit_test/CMakeLists.txt @@ -31,6 +31,7 @@ set(SERIAL_TESTS Slice Sort Tuple + BatchedLinearAlgebra ) if(Cabana_ENABLE_ARBORX) diff --git a/core/unit_test/tstBatchedLinearAlgebra.hpp b/core/unit_test/tstBatchedLinearAlgebra.hpp new file mode 100644 index 000000000..0bc9a5c85 --- /dev/null +++ b/core/unit_test/tstBatchedLinearAlgebra.hpp @@ -0,0 +1,878 @@ +/**************************************************************************** + * Copyright (c) 2021 by the Cabana authors * + * All rights reserved. * + * * + * This file is part of the Cabana library. Cabana is distributed under a * + * BSD 3-clause license. For the licensing terms see the LICENSE file in * + * the top-level directory. * + * * + * SPDX-License-Identifier: BSD-3-Clause * + ****************************************************************************/ + +#include + +#include +#include + +#include + +#include + +using namespace Cabana; + +namespace Test +{ +//---------------------------------------------------------------------------// +void matrixTest() +{ + // Check a basic matrix. + LinearAlgebra::Matrix a = { { 1.2, -3.5, 5.4 }, + { 8.6, 2.6, -0.1 } }; + EXPECT_EQ( a.stride_0(), 3 ); + EXPECT_EQ( a.stride_1(), 1 ); + EXPECT_EQ( a.stride( 0 ), 3 ); + EXPECT_EQ( a.stride( 1 ), 1 ); + EXPECT_EQ( a.extent( 0 ), 2 ); + EXPECT_EQ( a.extent( 1 ), 3 ); + + EXPECT_EQ( a( 0, 0 ), 1.2 ); + EXPECT_EQ( a( 0, 1 ), -3.5 ); + EXPECT_EQ( a( 0, 2 ), 5.4 ); + EXPECT_EQ( a( 1, 0 ), 8.6 ); + EXPECT_EQ( a( 1, 1 ), 2.6 ); + EXPECT_EQ( a( 1, 2 ), -0.1 ); + + // Check rows. + for ( int i = 0; i < 2; ++i ) + { + auto row = a.row( i ); + EXPECT_EQ( row.stride_0(), 1 ); + EXPECT_EQ( row.stride( 0 ), 1 ); + EXPECT_EQ( row.extent( 0 ), 3 ); + for ( int j = 0; j < 3; ++j ) + EXPECT_EQ( row( j ), a( i, j ) ); + } + + // Check columns. + for ( int j = 0; j < 3; ++j ) + { + auto column = a.column( j ); + EXPECT_EQ( column.stride_0(), 3 ); + EXPECT_EQ( column.stride( 0 ), 3 ); + EXPECT_EQ( column.extent( 0 ), 2 ); + for ( int i = 0; i < 2; ++i ) + EXPECT_EQ( column( i ), a( i, j ) ); + } + + // Check matrix view. + LinearAlgebra::MatrixView a_view( a.data(), a.stride_0(), + a.stride_1() ); + EXPECT_EQ( a_view.stride_0(), 3 ); + EXPECT_EQ( a_view.stride_1(), 1 ); + EXPECT_EQ( a_view.stride( 0 ), 3 ); + EXPECT_EQ( a_view.stride( 1 ), 1 ); + EXPECT_EQ( a_view.extent( 0 ), 2 ); + EXPECT_EQ( a_view.extent( 1 ), 3 ); + + EXPECT_EQ( a_view( 0, 0 ), 1.2 ); + EXPECT_EQ( a_view( 0, 1 ), -3.5 ); + EXPECT_EQ( a_view( 0, 2 ), 5.4 ); + EXPECT_EQ( a_view( 1, 0 ), 8.6 ); + EXPECT_EQ( a_view( 1, 1 ), 2.6 ); + EXPECT_EQ( a_view( 1, 2 ), -0.1 ); + + // Check view rows. + for ( int i = 0; i < 2; ++i ) + { + auto row = a_view.row( i ); + EXPECT_EQ( row.extent( 0 ), 3 ); + for ( int j = 0; j < 3; ++j ) + EXPECT_EQ( row( j ), a_view( i, j ) ); + } + + // Check view columns. + for ( int j = 0; j < 3; ++j ) + { + auto column = a.column( j ); + EXPECT_EQ( column.extent( 0 ), 2 ); + for ( int i = 0; i < 2; ++i ) + EXPECT_EQ( column( i ), a_view( i, j ) ); + } + + // Check a deep copy. + auto a_c = a; + EXPECT_EQ( a_c.stride_0(), 3 ); + EXPECT_EQ( a_c.stride_1(), 1 ); + EXPECT_EQ( a_c.stride( 0 ), 3 ); + EXPECT_EQ( a_c.stride( 1 ), 1 ); + EXPECT_EQ( a_c.extent( 0 ), 2 ); + EXPECT_EQ( a_c.extent( 1 ), 3 ); + + EXPECT_EQ( a_c( 0, 0 ), 1.2 ); + EXPECT_EQ( a_c( 0, 1 ), -3.5 ); + EXPECT_EQ( a_c( 0, 2 ), 5.4 ); + EXPECT_EQ( a_c( 1, 0 ), 8.6 ); + EXPECT_EQ( a_c( 1, 1 ), 2.6 ); + EXPECT_EQ( a_c( 1, 2 ), -0.1 ); + + // Check a shallow transpose copy. + auto a_t = ~a; + EXPECT_EQ( a_t.extent( 0 ), 3 ); + EXPECT_EQ( a_t.extent( 1 ), 2 ); + + EXPECT_EQ( a_t( 0, 0 ), 1.2 ); + EXPECT_EQ( a_t( 1, 0 ), -3.5 ); + EXPECT_EQ( a_t( 2, 0 ), 5.4 ); + EXPECT_EQ( a_t( 0, 1 ), 8.6 ); + EXPECT_EQ( a_t( 1, 1 ), 2.6 ); + EXPECT_EQ( a_t( 2, 1 ), -0.1 ); + + // Check expression rows. + for ( int i = 0; i < 3; ++i ) + { + auto row = a_t.row( i ); + EXPECT_EQ( row.extent( 0 ), 2 ); + for ( int j = 0; j < 2; ++j ) + EXPECT_EQ( row( j ), a_t( i, j ) ); + } + + // Check expression columns. + for ( int j = 0; j < 2; ++j ) + { + auto column = a_t.column( j ); + EXPECT_EQ( column.extent( 0 ), 3 ); + for ( int i = 0; i < 3; ++i ) + EXPECT_EQ( column( i ), a_t( i, j ) ); + } + + // Check transpose of transpose shallow copy. + auto a_t_t = ~a_t; + EXPECT_EQ( a_t_t.extent( 0 ), 2 ); + EXPECT_EQ( a_t_t.extent( 1 ), 3 ); + + EXPECT_EQ( a_t_t( 0, 0 ), 1.2 ); + EXPECT_EQ( a_t_t( 0, 1 ), -3.5 ); + EXPECT_EQ( a_t_t( 0, 2 ), 5.4 ); + EXPECT_EQ( a_t_t( 1, 0 ), 8.6 ); + EXPECT_EQ( a_t_t( 1, 1 ), 2.6 ); + EXPECT_EQ( a_t_t( 1, 2 ), -0.1 ); + + // Check a transpose deep copy. + LinearAlgebra::Matrix a_t_c = ~a; + EXPECT_EQ( a_t_c.stride_0(), 2 ); + EXPECT_EQ( a_t_c.stride_1(), 1 ); + EXPECT_EQ( a_t_c.stride( 0 ), 2 ); + EXPECT_EQ( a_t_c.stride( 1 ), 1 ); + EXPECT_EQ( a_t_c.extent( 0 ), 3 ); + EXPECT_EQ( a_t_c.extent( 1 ), 2 ); + + EXPECT_EQ( a_t_c( 0, 0 ), 1.2 ); + EXPECT_EQ( a_t_c( 1, 0 ), -3.5 ); + EXPECT_EQ( a_t_c( 2, 0 ), 5.4 ); + EXPECT_EQ( a_t_c( 0, 1 ), 8.6 ); + EXPECT_EQ( a_t_c( 1, 1 ), 2.6 ); + EXPECT_EQ( a_t_c( 2, 1 ), -0.1 ); + + // Check scalar assignment and operator(). + a = 43.3; + for ( int i = 0; i < 2; ++i ) + for ( int j = 0; j < 3; ++j ) + { + EXPECT_EQ( a( i, j ), 43.3 ); + + a( i, j ) = -10.2; + EXPECT_EQ( a( i, j ), -10.2 ); + } + + // Check default initialization. + LinearAlgebra::Matrix b; + EXPECT_EQ( b.stride_0(), 2 ); + EXPECT_EQ( b.stride_1(), 1 ); + EXPECT_EQ( b.stride( 0 ), 2 ); + EXPECT_EQ( b.stride( 1 ), 1 ); + EXPECT_EQ( b.extent( 0 ), 1 ); + EXPECT_EQ( b.extent( 1 ), 2 ); + + // Check scalar constructor. + LinearAlgebra::Matrix c = 32.3; + for ( int i = 0; i < 2; ++i ) + for ( int j = 0; j < 3; ++j ) + EXPECT_EQ( c( i, j ), 32.3 ); + + // Check scalar multiplication. + auto d = 2.0 * c; + for ( int i = 0; i < 2; ++i ) + for ( int j = 0; j < 3; ++j ) + EXPECT_EQ( d( i, j ), 64.6 ); + + // Check scalar division. + auto e = d / 2.0; + for ( int i = 0; i < 2; ++i ) + for ( int j = 0; j < 3; ++j ) + EXPECT_EQ( e( i, j ), 32.3 ); + + // Check addition assignment. + LinearAlgebra::Matrix f = e; + f += d; + for ( int i = 0; i < 2; ++i ) + for ( int j = 0; j < 3; ++j ) + EXPECT_DOUBLE_EQ( f( i, j ), 96.9 ); + + // Check subtraction assignment. + f -= d; + for ( int i = 0; i < 2; ++i ) + for ( int j = 0; j < 3; ++j ) + EXPECT_DOUBLE_EQ( f( i, j ), 32.3 ); + + // Check identity + LinearAlgebra::Matrix I; + LinearAlgebra::identity( I ); + for ( int i = 0; i < 3; ++i ) + for ( int j = 0; j < 3; ++j ) + EXPECT_DOUBLE_EQ( I( i, j ), ( i == j ) ? 1.0 : 0.0 ); + + // Check trace. + auto tr_I = LinearAlgebra::trace( I ); + EXPECT_DOUBLE_EQ( 3.0, tr_I ); + + // Check deep copy. + LinearAlgebra::Matrix g; + LinearAlgebra::deepCopy( g, f ); + for ( int i = 0; i < 2; ++i ) + for ( int j = 0; j < 3; ++j ) + EXPECT_DOUBLE_EQ( g( i, j ), 32.3 ); + + // 1x1 matrix test. + LinearAlgebra::Matrix obo = 3.2; + obo += ~obo * obo; + EXPECT_DOUBLE_EQ( 13.44, obo( 0, 0 ) ); + obo -= ~obo * obo; + EXPECT_DOUBLE_EQ( -167.1936, obo( 0, 0 ) ); + obo = 12.0; + EXPECT_DOUBLE_EQ( 12.0, obo( 0, 0 ) ); + LinearAlgebra::Matrix obo2 = ~obo * obo; + EXPECT_DOUBLE_EQ( 144.0, obo2( 0, 0 ) ); +} + +//---------------------------------------------------------------------------// +void vectorTest() +{ + // Make a basic vector. + LinearAlgebra::Vector x = { 1.2, -3.5, 5.4 }; + EXPECT_EQ( x.stride_0(), 1 ); + EXPECT_EQ( x.stride( 0 ), 1 ); + EXPECT_EQ( x.extent( 0 ), 3 ); + + // normalize + auto x_copy = x; + auto norm2 = std::sqrt( ~x_copy * x_copy ); + x_copy.normalize(); + + EXPECT_EQ( x_copy( 0 ), x( 0 ) / norm2 ); + EXPECT_EQ( x_copy( 1 ), x( 1 ) / norm2 ); + EXPECT_EQ( x_copy( 2 ), x( 2 ) / norm2 ); + + EXPECT_EQ( x( 0 ), 1.2 ); + EXPECT_EQ( x( 1 ), -3.5 ); + EXPECT_EQ( x( 2 ), 5.4 ); + + // Check a vector view. + LinearAlgebra::VectorView x_view( x.data(), x.stride_0() ); + EXPECT_EQ( x_view.stride_0(), 1 ); + EXPECT_EQ( x_view.stride( 0 ), 1 ); + EXPECT_EQ( x_view.extent( 0 ), 3 ); + + EXPECT_EQ( x_view( 0 ), 1.2 ); + EXPECT_EQ( x_view( 1 ), -3.5 ); + EXPECT_EQ( x_view( 2 ), 5.4 ); + + // Check a shallow copy + auto x_c = x; + EXPECT_EQ( x_c.stride_0(), 1 ); + EXPECT_EQ( x_c.stride( 0 ), 1 ); + EXPECT_EQ( x_c.extent( 0 ), 3 ); + + EXPECT_EQ( x_c( 0 ), 1.2 ); + EXPECT_EQ( x_c( 1 ), -3.5 ); + EXPECT_EQ( x_c( 2 ), 5.4 ); + + // Check scalar assignment and operator() + x = 43.3; + for ( int i = 0; i < 3; ++i ) + { + EXPECT_EQ( x( i ), 43.3 ); + + x( i ) = -10.2; + EXPECT_EQ( x( i ), -10.2 ); + } + + // Check default initialization + LinearAlgebra::Vector y; + EXPECT_EQ( y.stride_0(), 1 ); + EXPECT_EQ( y.stride( 0 ), 1 ); + EXPECT_EQ( y.extent( 0 ), 2 ); + + // Check scalar constructor. + LinearAlgebra::Vector c = 32.3; + for ( int i = 0; i < 3; ++i ) + EXPECT_EQ( c( i ), 32.3 ); + + // Check scalar multiplication. + auto d = 2.0 * c; + for ( int i = 0; i < 3; ++i ) + EXPECT_EQ( d( i ), 64.6 ); + + // Check scalar division. + auto z = d / 2.0; + for ( int i = 0; i < 3; ++i ) + EXPECT_EQ( z( i ), 32.3 ); + + // Check cross product. + LinearAlgebra::Vector e0 = { 1.0, 0.0, 0.0 }; + LinearAlgebra::Vector e1 = { 0.0, 1.0, 0.0 }; + auto e2 = e0 % e1; + EXPECT_EQ( e2( 0 ), 0.0 ); + EXPECT_EQ( e2( 1 ), 0.0 ); + EXPECT_EQ( e2( 2 ), 1.0 ); + + // Check element product. + LinearAlgebra::Vector f = { 2.0, 1.0 }; + LinearAlgebra::Vector g = { 4.0, 2.0 }; + auto h = f & g; + EXPECT_EQ( h( 0 ), 8.0 ); + EXPECT_EQ( h( 1 ), 2.0 ); + + // Check element division. + auto j = f | g; + EXPECT_EQ( j( 0 ), 0.5 ); + EXPECT_EQ( j( 1 ), 0.5 ); + + // Check addition assignment. + LinearAlgebra::Vector q = z; + q += d; + for ( int i = 0; i < 3; ++i ) + EXPECT_DOUBLE_EQ( q( i ), 96.9 ); + + // Check subtraction assignment. + q -= d; + for ( int i = 0; i < 3; ++i ) + EXPECT_DOUBLE_EQ( q( i ), 32.3 ); + + // Check diagonal matrix construction. + auto q_diag = LinearAlgebra::diagonal( q ); + for ( int i = 0; i < 3; ++i ) + for ( int j = 0; j < 3; ++j ) + EXPECT_DOUBLE_EQ( q_diag( i, j ), ( i == j ) ? q( i ) : 0.0 ); + + // Check deep copy. + LinearAlgebra::Vector w; + LinearAlgebra::deepCopy( w, q ); + for ( int i = 0; i < 3; ++i ) + EXPECT_DOUBLE_EQ( w( i ), 32.3 ); + + // Size 1 vector test. + // FIXME: construction of length 1 vector fails with NVCC. + /* + LinearAlgebra::Vector sov = 3.2; + sov += ~sov * sov; + EXPECT_DOUBLE_EQ( 13.44, sov( 0 ) ); + sov -= ~sov * sov; + EXPECT_DOUBLE_EQ( -167.1936, sov( 0 ) ); + sov = 12.0; + EXPECT_DOUBLE_EQ( 12.0, sov( 0 ) ); + LinearAlgebra::Vector sov2 = ~sov * sov; + EXPECT_DOUBLE_EQ( 144.0, sov2( 0 ) ); + */ +} + +//---------------------------------------------------------------------------// +void viewTest() +{ + double m[2][3] = { { 1.2, -3.5, 5.4 }, { 8.6, 2.6, -0.1 } }; + LinearAlgebra::MatrixView a( &m[0][0], 3, 1 ); + EXPECT_EQ( a.stride_0(), 3 ); + EXPECT_EQ( a.stride_1(), 1 ); + EXPECT_EQ( a.stride( 0 ), 3 ); + EXPECT_EQ( a.stride( 1 ), 1 ); + EXPECT_EQ( a.extent( 0 ), 2 ); + EXPECT_EQ( a.extent( 1 ), 3 ); + + EXPECT_EQ( a( 0, 0 ), 1.2 ); + EXPECT_EQ( a( 0, 1 ), -3.5 ); + EXPECT_EQ( a( 0, 2 ), 5.4 ); + EXPECT_EQ( a( 1, 0 ), 8.6 ); + EXPECT_EQ( a( 1, 1 ), 2.6 ); + EXPECT_EQ( a( 1, 2 ), -0.1 ); + + double v[6] = { 0.0, 1.0, 2.0, 3.0, 4.0, 5.0 }; + + LinearAlgebra::VectorView x1( &v[0], 1 ); + EXPECT_EQ( x1.stride_0(), 1 ); + EXPECT_EQ( x1.stride( 0 ), 1 ); + EXPECT_EQ( x1.extent( 0 ), 6 ); + for ( int i = 0; i < 6; ++i ) + EXPECT_EQ( x1( i ), 1.0 * i ); + + LinearAlgebra::VectorView x2( &v[0], 2 ); + EXPECT_EQ( x2.stride_0(), 2 ); + EXPECT_EQ( x2.stride( 0 ), 2 ); + EXPECT_EQ( x2.extent( 0 ), 3 ); + for ( int i = 0; i < 3; ++i ) + EXPECT_EQ( x2( i ), 2.0 * i ); + + LinearAlgebra::VectorView x3( &v[1], 3 ); + EXPECT_EQ( x3.stride_0(), 3 ); + EXPECT_EQ( x2.stride( 0 ), 2 ); + EXPECT_EQ( x3.extent( 0 ), 2 ); + for ( int i = 0; i < 2; ++i ) + EXPECT_EQ( x3( i ), 1.0 + 3.0 * i ); + + // normalize + auto norm2 = std::sqrt( ~x1 * x1 ); + x1.normalize(); + for ( int i = 0; i < x1.extent( 0 ); ++i ) + EXPECT_EQ( x1( i ), 1.0 * i / norm2 ); +} + +//---------------------------------------------------------------------------// +void matAddTest() +{ + LinearAlgebra::Matrix a = { { 2.0, 1.0 } }; + LinearAlgebra::Matrix b = { { 2.0, 3.0 } }; + + auto c = a + b; + EXPECT_EQ( c.extent( 0 ), 1 ); + EXPECT_EQ( c.extent( 1 ), 2 ); + EXPECT_EQ( c( 0, 0 ), 4.0 ); + EXPECT_EQ( c( 0, 1 ), 4.0 ); + + auto d = ~a + ~b; + EXPECT_EQ( d.extent( 0 ), 2 ); + EXPECT_EQ( d.extent( 1 ), 1 ); + EXPECT_EQ( d( 0, 0 ), 4.0 ); + EXPECT_EQ( d( 1, 0 ), 4.0 ); + + LinearAlgebra::Matrix e = { { 2.0 }, { 3.0 } }; + + auto f = ~a + e; + EXPECT_EQ( f.extent( 0 ), 2 ); + EXPECT_EQ( f.extent( 1 ), 1 ); + EXPECT_EQ( f( 0, 0 ), 4.0 ); + EXPECT_EQ( f( 1, 0 ), 4.0 ); + + auto g = a + ~e; + EXPECT_EQ( g.extent( 0 ), 1 ); + EXPECT_EQ( g.extent( 1 ), 2 ); + EXPECT_EQ( g( 0, 0 ), 4.0 ); + EXPECT_EQ( g( 0, 1 ), 4.0 ); +} + +//---------------------------------------------------------------------------// +void matSubTest() +{ + LinearAlgebra::Matrix a = { { 2.0, 1.0 } }; + LinearAlgebra::Matrix b = { { 2.0, 3.0 } }; + + auto c = a - b; + EXPECT_EQ( c.extent( 0 ), 1 ); + EXPECT_EQ( c.extent( 1 ), 2 ); + EXPECT_EQ( c( 0, 0 ), 0.0 ); + EXPECT_EQ( c( 0, 1 ), -2.0 ); + + auto d = ~a - ~b; + EXPECT_EQ( d.extent( 0 ), 2 ); + EXPECT_EQ( d.extent( 1 ), 1 ); + EXPECT_EQ( d( 0, 0 ), 0.0 ); + EXPECT_EQ( d( 1, 0 ), -2.0 ); + + LinearAlgebra::Matrix e = { { 2.0 }, { 3.0 } }; + + auto f = ~a - e; + EXPECT_EQ( f.extent( 0 ), 2 ); + EXPECT_EQ( f.extent( 1 ), 1 ); + EXPECT_EQ( f( 0, 0 ), 0.0 ); + EXPECT_EQ( f( 1, 0 ), -2.0 ); + + auto g = a - ~e; + EXPECT_EQ( g.extent( 0 ), 1 ); + EXPECT_EQ( g.extent( 1 ), 2 ); + EXPECT_EQ( g( 0, 0 ), 0.0 ); + EXPECT_EQ( g( 0, 1 ), -2.0 ); +} + +//---------------------------------------------------------------------------// +void matMatTest() +{ + // Square test. + LinearAlgebra::Matrix a = { { 2.0, 1.0 }, { 2.0, 1.0 } }; + LinearAlgebra::Matrix b = { { 2.0, 3.0 }, { 2.0, -1.0 } }; + + auto c = a * b; + EXPECT_EQ( c.extent( 0 ), 2 ); + EXPECT_EQ( c.extent( 1 ), 2 ); + EXPECT_EQ( c( 0, 0 ), 6.0 ); + EXPECT_EQ( c( 0, 1 ), 5.0 ); + EXPECT_EQ( c( 1, 0 ), 6.0 ); + EXPECT_EQ( c( 1, 1 ), 5.0 ); + + c = ~a * b; + EXPECT_EQ( c( 0, 0 ), 8.0 ); + EXPECT_EQ( c( 0, 1 ), 4.0 ); + EXPECT_EQ( c( 1, 0 ), 4.0 ); + EXPECT_EQ( c( 1, 1 ), 2.0 ); + + c = a * ~b; + EXPECT_EQ( c( 0, 0 ), 7.0 ); + EXPECT_EQ( c( 0, 1 ), 3.0 ); + EXPECT_EQ( c( 1, 0 ), 7.0 ); + EXPECT_EQ( c( 1, 1 ), 3.0 ); + + c = ~a * ~b; + EXPECT_EQ( c( 0, 0 ), 10.0 ); + EXPECT_EQ( c( 0, 1 ), 2.0 ); + EXPECT_EQ( c( 1, 0 ), 5.0 ); + EXPECT_EQ( c( 1, 1 ), 1.0 ); + + // Non square test. + LinearAlgebra::Matrix f = { { 3.0 }, { 1.0 } }; + LinearAlgebra::Matrix g = { { 2.0, 1.0 } }; + + auto h = f * g; + EXPECT_EQ( h.extent( 0 ), 2 ); + EXPECT_EQ( h.extent( 1 ), 2 ); + EXPECT_EQ( h( 0, 0 ), 6.0 ); + EXPECT_EQ( h( 0, 1 ), 3.0 ); + EXPECT_EQ( h( 1, 0 ), 2.0 ); + EXPECT_EQ( h( 1, 1 ), 1.0 ); + + auto j = f * ~f; + EXPECT_EQ( j.extent( 0 ), 2 ); + EXPECT_EQ( j.extent( 1 ), 2 ); + EXPECT_EQ( j( 0, 0 ), 9.0 ); + EXPECT_EQ( j( 0, 1 ), 3.0 ); + EXPECT_EQ( j( 1, 0 ), 3.0 ); + EXPECT_EQ( j( 1, 1 ), 1.0 ); + + auto k = ~f * f; + EXPECT_EQ( k.extent( 0 ), 1 ); + EXPECT_EQ( k.extent( 1 ), 1 ); + EXPECT_EQ( k( 0, 0 ), 10.0 ); + + auto m = ~f * ~g; + EXPECT_EQ( m.extent( 0 ), 1 ); + EXPECT_EQ( m.extent( 1 ), 1 ); + EXPECT_EQ( m( 0, 0 ), 7.0 ); +} + +//---------------------------------------------------------------------------// +void matVecTest() +{ + // Square test. + LinearAlgebra::Matrix a = { { 3.0, 2.0 }, { 1.0, 2.0 } }; + LinearAlgebra::Vector x = { 3.0, 1.0 }; + + auto y = a * x; + EXPECT_EQ( y.extent( 0 ), 2 ); + EXPECT_EQ( y( 0 ), 11.0 ); + EXPECT_EQ( y( 1 ), 5.0 ); + + y = ~a * x; + EXPECT_EQ( y( 0 ), 10.0 ); + EXPECT_EQ( y( 1 ), 8.0 ); + + auto b = ~x * a; + EXPECT_EQ( b.extent( 0 ), 1 ); + EXPECT_EQ( b.extent( 1 ), 2 ); + EXPECT_EQ( b( 0, 0 ), 10.0 ); + EXPECT_EQ( b( 0, 1 ), 8.0 ); + + b = ~x * ~a; + EXPECT_EQ( b( 0, 0 ), 11.0 ); + EXPECT_EQ( b( 0, 1 ), 5.0 ); + + // Non square test. + LinearAlgebra::Matrix c = { { 1.0, 2.0 } }; + LinearAlgebra::Vector f = { 3.0, 2.0 }; + + auto g = c * f; + EXPECT_EQ( g.extent( 0 ), 1 ); + EXPECT_EQ( g( 0 ), 7.0 ); + + auto h = ~f * ~c; + EXPECT_EQ( h.extent( 0 ), 1 ); + EXPECT_EQ( h.extent( 1 ), 1 ); + EXPECT_EQ( h( 0, 0 ), 7.0 ); + + LinearAlgebra::Matrix j = { { 1.0 }, { 2.0 } }; + + auto k = ~j * f; + EXPECT_EQ( k.extent( 0 ), 1 ); + EXPECT_EQ( k( 0 ), 7.0 ); + + auto l = ~f * j; + EXPECT_EQ( l.extent( 0 ), 1 ); + EXPECT_EQ( k( 0 ), 7.0 ); +} + +//---------------------------------------------------------------------------// +void vecAddTest() +{ + LinearAlgebra::Vector a = { 2.0, 1.0 }; + LinearAlgebra::Vector b = { 2.0, 3.0 }; + + auto c = a + b; + EXPECT_EQ( c( 0 ), 4.0 ); + EXPECT_EQ( c( 1 ), 4.0 ); +} + +//---------------------------------------------------------------------------// +void vecSubTest() +{ + LinearAlgebra::Vector a = { 2.0, 1.0 }; + LinearAlgebra::Vector b = { 2.0, 3.0 }; + + auto c = a - b; + EXPECT_EQ( c( 0 ), 0.0 ); + EXPECT_EQ( c( 1 ), -2.0 ); +} + +//---------------------------------------------------------------------------// +void vecVecTest() +{ + LinearAlgebra::Vector x = { 1.0, 2.0 }; + LinearAlgebra::Vector y = { 2.0, 3.0 }; + + auto dot = ~x * y; + EXPECT_EQ( dot.extent( 0 ), 1 ); + EXPECT_EQ( dot.extent( 1 ), 1 ); + EXPECT_EQ( dot, 8.0 ); + + auto inner = x * ~y; + EXPECT_EQ( inner.extent( 0 ), 2 ); + EXPECT_EQ( inner.extent( 1 ), 2 ); + EXPECT_EQ( inner( 0, 0 ), 2.0 ); + EXPECT_EQ( inner( 0, 1 ), 3.0 ); + EXPECT_EQ( inner( 1, 0 ), 4.0 ); + EXPECT_EQ( inner( 1, 1 ), 6.0 ); +} + +//---------------------------------------------------------------------------// +void expressionTest() +{ + LinearAlgebra::Matrix a = { { 2.0, 1.0 }, { 2.0, 1.0 } }; + LinearAlgebra::Matrix i = { { 1.0, 0.0 }, { 0.0, 1.0 } }; + LinearAlgebra::Vector x = { 1.0, 2.0 }; + + auto op1 = a + ~a; + EXPECT_EQ( op1( 0, 0 ), 4.0 ); + EXPECT_EQ( op1( 0, 1 ), 3.0 ); + EXPECT_EQ( op1( 1, 0 ), 3.0 ); + EXPECT_EQ( op1( 1, 1 ), 2.0 ); + + auto op2 = 0.5 * ( a + ~a ); + EXPECT_EQ( op2( 0, 0 ), 2.0 ); + EXPECT_EQ( op2( 0, 1 ), 1.5 ); + EXPECT_EQ( op2( 1, 0 ), 1.5 ); + EXPECT_EQ( op2( 1, 1 ), 1.0 ); + + auto op3 = 0.5 * ( a + ~a ) * i; + EXPECT_EQ( op3( 0, 0 ), 2.0 ); + EXPECT_EQ( op3( 0, 1 ), 1.5 ); + EXPECT_EQ( op3( 1, 0 ), 1.5 ); + EXPECT_EQ( op3( 1, 1 ), 1.0 ); + + auto op4 = x * ~x; + EXPECT_EQ( op4( 0, 0 ), 1.0 ); + EXPECT_EQ( op4( 0, 1 ), 2.0 ); + EXPECT_EQ( op4( 1, 0 ), 2.0 ); + EXPECT_EQ( op4( 1, 1 ), 4.0 ); + + auto op5 = 0.5 * ( a + ~a ) * i + ( x * ~x ); + EXPECT_EQ( op5( 0, 0 ), 3.0 ); + EXPECT_EQ( op5( 0, 1 ), 3.5 ); + EXPECT_EQ( op5( 1, 0 ), 3.5 ); + EXPECT_EQ( op5( 1, 1 ), 5.0 ); +} + +//---------------------------------------------------------------------------// +template +void linearSolveTest() +{ + LinearAlgebra::Matrix A; + LinearAlgebra::Vector x0; + + std::default_random_engine engine( 349305 ); + std::uniform_real_distribution dist( 0.0, 1.0 ); + for ( int i = 0; i < N; ++i ) + x0( i ) = dist( engine ); + for ( int i = 0; i < N; ++i ) + for ( int j = 0; j < N; ++j ) + A( i, j ) = dist( engine ); + + double eps = 1.0e-12; + + auto b = A * x0; + auto x1 = A ^ b; + for ( int i = 0; i < N; ++i ) + EXPECT_NEAR( x0( i ), x1( i ), eps ); + + auto c = ~A * x0; + auto x2 = ~A ^ c; + for ( int i = 0; i < N; ++i ) + EXPECT_NEAR( x0( i ), x2( i ), eps ); +} + +//---------------------------------------------------------------------------// +void matrixExponentialTest() +{ + // Test a random 3x3 matrix exponentiation + LinearAlgebra::Matrix A; + A = { { 0.261653840929, 0.276910681439, 0.374636284772 }, + { 0.024295417821, 0.570296571637, 0.431548657634 }, + { 0.535801487928, 0.192472912864, 0.948361671535 } }; + + auto A_exp = LinearAlgebra::exponential( A ); + + double eps = 1.0e-12; + + EXPECT_NEAR( A_exp( 0, 0 ), 1.493420196372, eps ); + EXPECT_NEAR( A_exp( 0, 1 ), 0.513684901522, eps ); + EXPECT_NEAR( A_exp( 0, 2 ), 0.848390478207, eps ); + EXPECT_NEAR( A_exp( 1, 0 ), 0.255994538136, eps ); + EXPECT_NEAR( A_exp( 1, 1 ), 1.880234291898, eps ); + EXPECT_NEAR( A_exp( 1, 2 ), 0.981626296936, eps ); + EXPECT_NEAR( A_exp( 2, 0 ), 1.057456162099, eps ); + EXPECT_NEAR( A_exp( 2, 1 ), 0.57315415314, eps ); + EXPECT_NEAR( A_exp( 2, 2 ), 2.914674968894, eps ); + + // Test the exp(0) = 1 identity (for matrices) + LinearAlgebra::Matrix B_zeros; + B_zeros = 0.0; + + auto B_exp = LinearAlgebra::exponential( B_zeros ); + + EXPECT_NEAR( B_exp( 0, 0 ), 1.0, eps ); + EXPECT_NEAR( B_exp( 0, 1 ), 0.0, eps ); + EXPECT_NEAR( B_exp( 1, 0 ), 0.0, eps ); + EXPECT_NEAR( B_exp( 1, 1 ), 1.0, eps ); +} + +//---------------------------------------------------------------------------// +template +void kernelTest() +{ + int size = 10; + Kokkos::View view_a( + "a", size ); + Kokkos::View view_x0( + "x0", size ); + Kokkos::View view_x1( + "x1", size ); + Kokkos::View view_x2( + "x2", size ); + + Kokkos::Random_XorShift64_Pool pool( 3923423 ); + Kokkos::fill_random( view_a, pool, 1.0 ); + Kokkos::fill_random( view_x0, pool, 1.0 ); + + Kokkos::parallel_for( + "test_la_kernel", Kokkos::RangePolicy( 0, size ), + KOKKOS_LAMBDA( const int i ) { + // Get views. + LinearAlgebra::MatrixView A_v( + &view_a( i, 0, 0 ), view_a.stride_1(), view_a.stride_2() ); + LinearAlgebra::VectorView x0_v( &view_x0( i, 0 ), + view_x0.stride_1() ); + LinearAlgebra::VectorView x1_v( &view_x1( i, 0 ), + view_x1.stride_1() ); + LinearAlgebra::VectorView x2_v( &view_x2( i, 0 ), + view_x2.stride_1() ); + + // Gather. + typename decltype( A_v )::copy_type A = A_v; + typename decltype( x0_v )::copy_type x0 = x0_v; + typename decltype( x1_v )::copy_type x1 = x1_v; + typename decltype( x2_v )::copy_type x2 = x2_v; + + // Create a composite operator via an expression. + auto op = 0.75 * ( A + 0.5 * ~A ); + + // Do work. + auto b = op * x0; + x1 = op ^ b; + + auto c = ~op * x0; + x2 = ~op ^ c; + + // Scatter + x1_v = x1; + x2_v = x2; + } ); + + auto x0_host = + Kokkos::create_mirror_view_and_copy( Kokkos::HostSpace(), view_x0 ); + auto x1_host = + Kokkos::create_mirror_view_and_copy( Kokkos::HostSpace(), view_x1 ); + auto x2_host = + Kokkos::create_mirror_view_and_copy( Kokkos::HostSpace(), view_x2 ); + + double eps = 1.0e-11; + for ( int i = 0; i < size; ++i ) + for ( int d = 0; d < N; ++d ) + { + EXPECT_NEAR( x0_host( i, d ), x1_host( i, d ), eps ); + EXPECT_NEAR( x0_host( i, d ), x2_host( i, d ), eps ); + } +} + +//---------------------------------------------------------------------------// +// RUN TESTS +//---------------------------------------------------------------------------// +TEST( TEST_CATEGORY, matrix_test ) { matrixTest(); } + +TEST( TEST_CATEGORY, vector_test ) { vectorTest(); } + +TEST( TEST_CATEGORY, view_test ) { viewTest(); } + +TEST( TEST_CATEGORY, matadd_test ) { matAddTest(); } + +TEST( TEST_CATEGORY, matsub_test ) { matSubTest(); } + +TEST( TEST_CATEGORY, matmat_test ) { matMatTest(); } + +TEST( TEST_CATEGORY, matVec_test ) { matVecTest(); } + +TEST( TEST_CATEGORY, vecsub_test ) { vecSubTest(); } + +TEST( TEST_CATEGORY, vecvec_test ) { vecVecTest(); } + +TEST( TEST_CATEGORY, vecVec_test ) { vecVecTest(); } + +TEST( TEST_CATEGORY, expression_test ) { expressionTest(); } + +TEST( TEST_CATEGORY, linearSolve_test ) +{ + linearSolveTest<2>(); + linearSolveTest<2>(); + linearSolveTest<4>(); + linearSolveTest<10>(); + linearSolveTest<20>(); +} + +TEST( TEST_CATEGORY, kernelTest ) +{ + kernelTest<2>(); + kernelTest<3>(); + kernelTest<4>(); + kernelTest<10>(); + kernelTest<20>(); +} + +TEST( TEST_CATEGORY, matrixExponential_test ) { matrixExponentialTest(); } + +// FIXME_KOKKOSKERNELS +// TEST( TEST_CATEGORY, eigendecomposition_test ) { eigendecompositionTest(); } + +//---------------------------------------------------------------------------// + +} // end namespace Test