-
Notifications
You must be signed in to change notification settings - Fork 12
/
sigmoid.py
140 lines (96 loc) · 4.12 KB
/
sigmoid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
from __future__ import division
from load_cifar import *
import numpy as np
imagearray, labelarray = load_batch()
#print imagearray.shape # (10000, 3072) 3072 = 3, 32, 32
#print labelarray.shape # (10000,)
train_set_x, train_set_y, test_set_x, test_set_y = create_datasets(imagearray, labelarray)
#print train_set_x.shape # (3072, 200)
#print train_set_y.shape # (1, 200)
def sigmoid(z):
s = 1/(1+np.exp(-z))
return s
def initialize_with_zeros(dim):
w = np.zeros((dim,1))
b = 0
assert(w.shape == (dim, 1))
assert(isinstance(b, float) or isinstance(b, int))
return w, b
def propagate(w, b, X, Y):
m = X.shape[1]
A = sigmoid(np.dot(w.T,X)+b) # compute activation
cost = (1./m) * (-np.dot(Y,np.log(A).T) - np.dot(1-Y, np.log(1-A).T)) # compute cost
# BACKWARD PROPAGATION (TO FIND GRAD)
dw = 1/m * np.dot(X,(A-Y).T)
db = 1/m * np.sum(A-Y)
assert(dw.shape == w.shape)
assert(db.dtype == float)
cost = np.squeeze(cost)
assert(cost.shape == ())
grads = {"dw": dw,
"db": db}
return grads, cost
# This function optimizes w and b by running a gradient descent algorithm
def optimize(w, b, X, Y, num_iterations, learning_rate, print_cost = False):
costs = []
for i in range(num_iterations):
# Cost and gradient calculation (~ 1-4 lines of code)
grads, cost = propagate(w, b, X, Y)
# Retrieve derivatives from grads
dw = grads["dw"]
db = grads["db"]
# update rule (~ 2 lines of code)
w = w - learning_rate * dw
b = b - learning_rate * db
# Record the costs
if i % 100 == 0:
costs.append(cost)
# Print the cost every 100 training examples
if print_cost and i % 100 == 0:
print ("Cost after iteration %i: %f" %(i, cost))
params = {"w": w,
"b": b}
grads = {"dw": dw,
"db": db}
return params, grads, costs
# Predict whether the label is 0 or 1 using learned logistic regression parameters (w, b)
def predict(w, b, X):
m = X.shape[1]
Y_prediction = np.zeros((1,m))
w = w.reshape(X.shape[0], 1)
# Compute vector "A" predicting the probabilities of a cat being present in the picture
A = sigmoid(np.dot(w.T,X)+b)
for i in range(A.shape[1]):
# Convert probabilities A[0,i] to actual predictions p[0,i]
if (A[0,i] <= 0.5):
Y_prediction[0,i] = 0
else:
Y_prediction[0,i] = 1
assert(Y_prediction.shape == (1, m))
return Y_prediction
# Builds the logistic regression model by calling the function you've implemented previously
def model(X_train, Y_train, X_test, Y_test, num_iterations = 2000, learning_rate = 0.5, print_cost = False):
# initialize parameters with zeros (~ 1 line of code)
w, b = initialize_with_zeros(X_train.shape[0])
# Gradient descent (~ 1 line of code)
parameters, grads, costs = optimize(w, b, X_train, Y_train, num_iterations, learning_rate, print_cost)
# Retrieve parameters w and b from dictionary "parameters"
w = parameters["w"]
b = parameters["b"]
# Predict test/train set examples (~ 2 lines of code)
Y_prediction_test = predict(w, b, X_test)
Y_prediction_train = predict(w, b, X_train)
# Print train/test Errors
print("train accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_train - Y_train)) * 100))
print("test accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_test - Y_test)) * 100))
d = {"costs": costs,
"Y_prediction_test": Y_prediction_test,
"Y_prediction_train" : Y_prediction_train,
"w" : w,
"b" : b,
"learning_rate" : learning_rate,
"num_iterations": num_iterations}
return d
if __name__ == '__main__':
d = model(train_set_x, train_set_y, test_set_x, test_set_y, num_iterations = 2000, learning_rate = 0.005, print_cost = True)
#predict(d["w"], d["b"], x)