-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathsulfnucrate.F90
609 lines (506 loc) · 22 KB
/
sulfnucrate.F90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
! Include shortname defintions, so that the F77 code does not have to be modified to
! reference the CARMA structure.
#include "carma_globaer.h"
!! Calculates particle production rates due to nucleation <rhompe>:
!! binary homogeneous nucleation of sulfuric acid and water only
!! Numerical method follows one of the following:
!! 1. Zhao & Turco, JAS, V.26, No.5, 1995.
!! 2. Vehkamaki, H., M. Kulmala, I. Napari, K.E.J. Lehtinen,
!! C. Timmreck, M. Noppel and A. Laaksonen, 2002,
!! An improved parameterization for sulfuric acid-water nucleation
!! rates for tropospheric and stratospheric conditions,
!! J. Geophys. Res., 107, 4622, doi:10.1029/2002jd002184
!!
!!
!! @author Mike Mills, Chuck Bardeen
!! @version May-2022
subroutine sulfnucrate(carma, cstate, iz, igroup, h2o, h2so4, beta1, beta2, radius_cluster, nucbin, nucrate, rc)
use carma_precision_mod
use carma_enums_mod
use carma_constants_mod
use carma_types_mod
use carmastate_mod
use carma_mod
use sulfate_utils
implicit none
type(carma_type), intent(in) :: carma !! the carma object
type(carmastate_type), intent(inout) :: cstate !! the carma state object
integer, intent(in) :: iz !! level index
integer, intent(in) :: igroup !! group index
real(kind=f), intent(out) :: h2o !! H2O concentrations in molec/cm3
real(kind=f), intent(out) :: h2so4 !! H2SO4 concentrations in molec/cm3
real(kind=f), intent(out) :: beta1
real(kind=f), intent(out) :: beta2
real(kind=f), intent(out) :: radius_cluster !! critical radius (cm)
integer, intent(out) :: nucbin !! bin in which nucleation occurs
real(kind=f), intent(out) :: nucrate !! nucleation rate #/x/y/z/s
integer, intent(inout) :: rc !! return code, negative indicates failure
! Local declarations
integer :: i, ibin, ie
real(kind=f) :: nucrate_cgs ! binary nucleation rate, j (# cm-3 s-1)
real(kind=f) :: cnum_h2so4 ! number of h2so4 molecules in the critical nucleus
real(kind=f) :: cnum_tot ! total number of molecules in the critical nucleus
real(kind=f) :: rb ! [erg/mol]
real(kind=f) :: h2so4_cgs ! H2SO4 densities in g/cm3
real(kind=f) :: h2o_cgs ! H2O densities in g/cm3
real(kind=f) :: rh ! relative humidity (0-1)
real(kind=f) :: mass_cluster_dry ! dry mass of the cluster ()
real(kind=f) :: h2so4_bb ! bounded value of H2SO4 concentration in molec/cm3
real(kind=f) :: temp_bb ! bounded value of temperature in Kelvins
real(kind=f) :: rh_bb ! bounded value of relative humidity
real(kind=f) :: ftry
5 format(/,'microfast::WARNING - nucleation rate exceeds 5.e1: ie=', i2,', iz=',i4,',lat=', &
f7.2,',lon=',f7.2, ', rhompe=', e10.3)
! default values for outputs
nucbin = 1
nucrate = 0.0_f
nucrate_cgs = 0.0_f
radius_cluster = 0.0_f
mass_cluster_dry = 0.0_f
ftry = NOTSET
!--------------------------------------------------------------
! beta1 and beta2 are calculated and used in sulfnucrate, and output for use in sulfhetnucrate
! kT/(2*Pi*M) = [erg/mol/K]*[K]/[g/mol] = [erg/g] = [cm2/s2]
! RB[erg/mol] = RGAS[erg/mol/K] * T[K] / (2Pi)
rb = RGAS * t(iz) / 2._f / PI
! Beta[cm/s] = sqrt(RB[erg/mol] / WTMOL[g/mol])
beta1 = sqrt(rb / gwtmol(igash2so4)) ! H2SO4
beta2 = sqrt(rb / gwtmol(igash2o)) ! H2O
!--------------------------------------------------------------
! Compute H2SO4 densities in g/cm3
h2so4_cgs = gc(iz, igash2so4) / zmet(iz)
! Compute H2O densities in g/cm3
h2o_cgs = gc(iz, igash2o) / zmet(iz)
! Compute H2SO4 concentrations in molec/cm3
h2so4 = h2so4_cgs * AVG / gwtmol(igash2so4)
! Compute H2O concentrations in molec/cm3
h2o = h2o_cgs * AVG / gwtmol(igash2o)
! Compute relative humidity of water wrt liquid water
rh = (supsatl(iz, igash2o) + 1._f) !* 100._f
! Select nucleation method
select case (sulfnuclmethod)
case('ZhaoTurco')
call binary_nuc_zhao1995( carma, cstate, t(iz), wtpct(iz), rh, h2so4, h2so4_cgs, h2o, h2o_cgs, beta1, &
nucrate_cgs, mass_cluster_dry, radius_cluster, ftry, rc )
case('Vehkamaki')
if (h2so4 >= 1.0e4_f) then
temp_bb = max( 230.0_f, min( 305.0_f, t(iz) ) )
rh_bb = max( 1.0e-4_f, min( 1.0_f, rh ) )
h2so4_bb = max( 1.0e4_f, min( 1.0e11_f, h2so4 ) )
call binary_nuc_vehk2002( carma, temp_bb, rh_bb, h2so4_bb, nucrate_cgs, &
mass_cluster_dry, radius_cluster )
end if
case default
write(LUNOPRT,*)'sulfnucrate: '//trim(sulfnuclmethod)//' nucleation method no recognized'
rc = RC_ERROR
return
end select
! Calc bin # of crit nucleus
if (mass_cluster_dry.lt.rmassup(1,igroup)) then
nucbin = 1
else
nucbin = 2 + int(log(mass_cluster_dry / rmassup(1,igroup)) / log(rmrat(igroup)))
endif
! If none of the bins are large enough for the critical radius, then
! no nucleation will occur.
if (nucbin <= NBIN) then
! Scale to #z/s
nucrate = nucrate_cgs * zmet(iz)
endif
return
end subroutine sulfnucrate
!----------------------------------------------------------------------
!-----------------------------------------------------------------------
subroutine binary_nuc_vehk2002( carma, temp, rh, h2so4, &
nucrate_cgs, mass_cluster_dry, radius_cluster )
!
! calculates binary nucleation rate and critical cluster size
! using the parameterization in
! Vehkamäki, H., M. Kulmala, I. Napari, K.E.J. Lehtinen,
! C. Timmreck, M. Noppel and A. Laaksonen, 2002,
! An improved parameterization for sulfuric acid-water nucleation
! rates for tropospheric and stratospheric conditions,
! J. Geophys. Res., 107, 4622, doi:10.1029/2002jd002184
!
use carma_precision_mod
use carma_enums_mod
use carma_constants_mod
use carma_types_mod
use carmastate_mod
use carma_mod
use sulfate_utils
implicit none
! subr arguments (in)
type(carma_type), intent(in) :: carma !! the carma object
real(kind=f), intent(in) :: temp ! temperature (k)
real(kind=f), intent(in) :: rh ! relative humidity (0-1)
real(kind=f), intent(in) :: h2so4 ! concentration of h2so4 (molecules cm-3)
! subr arguments (out)
real(kind=f), intent(out) :: nucrate_cgs ! binary nucleation rate, j (# cm-3 s-1)
real(kind=f), intent(out) :: mass_cluster_dry ! the mass of cluster (g)
real(kind=f), intent(out) :: radius_cluster ! the radius of cluster (cm)
! local variables
real(kind=f) :: crit_x
real(kind=f) :: acoe, bcoe, ccoe, dcoe, ecoe, fcoe, gcoe, hcoe, icoe, jcoe
real(kind=f) :: tmpa, tmpb
real(kind=f) :: cnum_h2so4 ! number of h2so4 molecules in the critical nucleus
real(kind=f) :: cnum_tot ! total number of molecules in the critical nucleus
! executable
! calc sulfuric acid mole fraction in critical cluster
crit_x = 0.740997_f - 0.00266379_f * temp &
- 0.00349998_f * log (h2so4) &
+ 0.0000504022_f * temp * log (h2so4) &
+ 0.00201048_f * log (rh) &
- 0.000183289_f * temp * log (rh) &
+ 0.00157407_f * (log (rh)) ** 2.0_f &
- 0.0000179059_f * temp * (log (rh)) ** 2.0_f &
+ 0.000184403_f * (log (rh)) ** 3.0_f &
- 1.50345e-6_f * temp * (log (rh)) ** 3.0_f
! calc nucleation rate
acoe = 0.14309_f+2.21956_f*temp &
- 0.0273911_f * temp**2.0_f &
+ 0.0000722811_f * temp**3.0_f + 5.91822_f/crit_x
bcoe = 0.117489_f + 0.462532_f *temp &
- 0.0118059_f * temp**2.0_f &
+ 0.0000404196_f * temp**3.0_f + 15.7963_f/crit_x
ccoe = -0.215554_f-0.0810269_f * temp &
+ 0.00143581_f * temp**2.0_f &
- 4.7758e-6_f * temp**3.0_f &
- 2.91297_f/crit_x
dcoe = -3.58856_f+0.049508_f * temp &
- 0.00021382_f * temp**2.0_f &
+ 3.10801e-7_f * temp**3.0_f &
- 0.0293333_f/crit_x
ecoe = 1.14598_f - 0.600796_f * temp &
+ 0.00864245_f * temp**2.0_f &
- 0.0000228947_f * temp**3.0_f &
- 8.44985_f/crit_x
fcoe = 2.15855_f + 0.0808121_f * temp &
-0.000407382_f * temp**2.0_f &
-4.01957e-7_f * temp**3.0_f &
+ 0.721326_f/crit_x
gcoe = 1.6241_f - 0.0160106_f * temp &
+ 0.0000377124_f * temp**2.0_f &
+ 3.21794e-8_f * temp**3.0_f &
- 0.0113255_f/crit_x
hcoe = 9.71682_f - 0.115048_f * temp &
+ 0.000157098_f * temp**2.0_f &
+ 4.00914e-7_f * temp**3.0_f &
+ 0.71186_f/crit_x
icoe = -1.05611_f + 0.00903378_f * temp &
- 0.0000198417_f * temp**2.0_f &
+ 2.46048e-8_f * temp**3.0_f &
- 0.0579087_f/crit_x
jcoe = -0.148712_f + 0.00283508_f * temp &
- 9.24619e-6_f * temp**2.0_f &
+ 5.00427e-9_f * temp**3.0_f &
- 0.0127081_f/crit_x
tmpa = ( &
acoe &
+ bcoe * log (rh) &
+ ccoe * ( log (rh))**2.0_f &
+ dcoe * ( log (rh))**3.0_f &
+ ecoe * log (h2so4) &
+ fcoe * (log (rh)) * (log (h2so4)) &
+ gcoe * ((log (rh) ) **2.0_f) &
* (log (h2so4)) &
+ hcoe * (log (h2so4)) **2.0_f &
+ icoe * log (rh) &
* ((log (h2so4)) **2.0_f) &
+ jcoe * (log (h2so4)) **3.0_f &
)
tmpa = min( tmpa, log(1.0e38_f) )
nucrate_cgs = exp ( tmpa )
! calc number of molecules in critical cluster
acoe = -0.00295413_f - 0.0976834_f*temp &
+ 0.00102485_f * temp**2.0_f &
- 2.18646e-6_f * temp**3.0_f - 0.101717_f/crit_x
! write(LUNOPRT,*)'291 acoe=',acoe
bcoe = -0.00205064_f - 0.00758504_f*temp &
+ 0.000192654_f * temp**2.0_f &
- 6.7043e-7_f * temp**3.0_f - 0.255774_f/crit_x
ccoe = +0.00322308_f + 0.000852637_f * temp &
- 0.0000154757_f * temp**2.0_f &
+ 5.66661e-8_f * temp**3.0_f &
+ 0.0338444_f/crit_x
dcoe = +0.0474323_f - 0.000625104_f * temp &
+ 2.65066e-6_f * temp**2.0_f &
- 3.67471e-9_f * temp**3.0_f &
- 0.000267251_f/crit_x
ecoe = -0.0125211_f + 0.00580655_f * temp &
- 0.000101674_f * temp**2.0_f &
+ 2.88195e-7_f * temp**3.0_f &
+ 0.0942243_f/crit_x
fcoe = -0.038546_f - 0.000672316_f * temp &
+ 2.60288e-6_f * temp**2.0_f &
+ 1.19416e-8_f * temp**3.0_f &
- 0.00851515_f/crit_x
gcoe = -0.0183749_f + 0.000172072_f * temp &
- 3.71766e-7_f * temp**2.0_f &
- 5.14875e-10_f * temp**3.0_f &
+ 0.00026866_f/crit_x
hcoe = -0.0619974_f + 0.000906958_f * temp &
- 9.11728e-7_f * temp**2.0_f &
- 5.36796e-9_f * temp**3.0_f &
- 0.00774234_f/crit_x
icoe = +0.0121827_f - 0.00010665_f * temp &
+ 2.5346e-7_f * temp**2.0_f &
- 3.63519e-10_f * temp**3.0_f &
+ 0.000610065_f/crit_x
jcoe = +0.000320184_f - 0.0000174762_f * temp &
+ 6.06504e-8_f * temp**2.0_f &
- 1.4177e-11_f * temp**3.0_f &
+ 0.000135751_f/crit_x
cnum_tot = acoe + bcoe * log (rh)
cnum_tot = exp ( &
acoe &
+ bcoe * log (rh) &
+ ccoe * ( log (rh))**2.0_f &
+ dcoe * ( log (rh))**3.0_f &
+ ecoe * log (h2so4) &
+ fcoe * (log (rh)) * (log (h2so4)) &
+ gcoe * ((log (rh) ) **2.0_f) &
* (log (h2so4)) &
+ hcoe * (log (h2so4)) **2.0_f &
+ icoe * log (rh) &
* ((log (h2so4)) **2.0_f) &
+ jcoe * (log (h2so4)) **3.0_f &
)
cnum_h2so4 = cnum_tot * crit_x
! calc radius (nm) of critical cluster
radius_cluster = exp( -1.6524245_f + 0.42316402_f*crit_x &
+ 0.3346648_f*log(cnum_tot) )
radius_cluster = radius_cluster * 1e-7_f ! nm -> cm
mass_cluster_dry = cnum_h2so4 * gwtmol(igash2so4) / AVG ! cluster dry mass in g
return
end subroutine binary_nuc_vehk2002
!----------------------------------------------------------------------
!-----------------------------------------------------------------------
subroutine binary_nuc_zhao1995( carma, cstate, temp, weight_percent, rh, h2so4, h2so4_cgs, h2o, h2o_cgs, beta1, &
nucrate_cgs, mass_cluster_dry, radius_cluster, ftry, rc )
!! Calculates particle production rates due to nucleation <rhompe>:
!! binary homogeneous nucleation of sulfuric acid and water only
!! Numerical method follows Zhao & Turco, JAS, V.26, No.5, 1995.
use carma_precision_mod
use carma_enums_mod
use carma_constants_mod
use carma_types_mod
use carmastate_mod
use carma_mod
use sulfate_utils
implicit none
! subr arguments (in)
type(carma_type), intent(in) :: carma !! the carma object
type(carmastate_type), intent(inout) :: cstate !! the carma state object
real(kind=f), intent(in) :: temp ! temperature (k)
real(kind=f), intent(in) :: weight_percent ! weight percent H2SO4 (0-100)
real(kind=f), intent(in) :: rh ! relative humidity of water wrt liquid water (0-1)
real(kind=f), intent(in) :: h2so4 ! concentration of H2SO4 (molecules cm-3)
real(kind=f), intent(in) :: h2o ! concentration of H2SO4 (molecules cm-3)
real(kind=f), intent(in) :: h2so4_cgs ! H2SO4 densities in g/cm3
real(kind=f), intent(in) :: h2o_cgs ! H2O densities in g/cm3
real(kind=f), intent(in) :: beta1
! subr arguments (out)
real(kind=f), intent(out) :: nucrate_cgs ! binary nucleation rate, j (# cm-3 s-1)
real(kind=f), intent(out) :: radius_cluster ! the radius of cluster (cm)
real(kind=f), intent(out) :: mass_cluster_dry ! dry mass of cluster (g)
real(kind=f), intent(out) :: ftry
integer, intent(inout) :: rc !! return code, negative indicates failure
! Local declarations
integer :: i, ibin, ie
real(kind=f) :: dens(46)
real(kind=f) :: pa(46)
real(kind=f) :: pb(46)
real(kind=f) :: c1(46)
real(kind=f) :: c2(46)
real(kind=f) :: fct(46)
real(kind=f) :: wtmolr ! molecular weight ration of H2SO4/H2O
real(kind=f) :: h2oln ! H2O ambient vapor pressures [dynes/cm2]
real(kind=f) :: h2so4ln ! H2SO4 ambient vapor pressures [dynes/cm2]
real(kind=f) :: SA ! total surface area of pre-existing wet particles
real(kind=f) :: SAbin ! bin surface area of pre-existing wet particles
real(kind=f) :: cw
real(kind=f) :: dw
real(kind=f) :: wvp ! water eq.vp over solution
real(kind=f) :: wvpln
real(kind=f) :: t0_kulm
real(kind=f) :: seqln
real(kind=f) :: t_crit_kulm
real(kind=f) :: factor_kulm
real(kind=f) :: dw1, dw2
real(kind=f) :: dens1
real(kind=f) :: dens11
real(kind=f) :: dens12
real(kind=f) :: xfrac
real(kind=f) :: wstar
real(kind=f) :: dstar
real(kind=f) :: rhln
real(kind=f) :: raln
real(kind=f) :: wfstar
real(kind=f) :: sigma
real(kind=f) :: ystar
real(kind=f) :: r2
real(kind=f) :: gstar
real(kind=f) :: rpr
real(kind=f) :: rpre
real(kind=f) :: fracmol
real(kind=f) :: zphi
real(kind=f) :: zeld
real(kind=f) :: cfac
real(kind=f) :: ahom
real(kind=f) :: exhom
real(kind=f) :: frac_h2so4
real(kind=f) :: rhomlim
real(kind=f) :: dnpot(46), dnwf(46)
real(kind=f) :: rho_H2SO4_wet
radius_cluster = -1._f
! Parameterized fit developed by Mike Mills in 1994 to the partial molal
! Gibbs energies (F2|o-F2) vs. weight percent H2SO4 table in Giauque et al.,
! J. Am. Chem. Soc, 82, 62-70, 1960. The parameterization gives excellent
! agreement. Ayers (GRL, 7, 433-436, 1980) refers to F2|o-F2 as mu - mu_0
! (chemical potential). This parameterization may be replaced by a lookup
! table, as was done ultimately in the Garcia-Solomon sulfate code.
do i = 1, 46
dnpot(i) = 4.184_f * (23624.8_f - 1.14208e8_f / ((dnwtp(i) - 105.318_f)**2 + 4798.69_f))
dnwf(i) = dnwtp(i) / 100._f
end do
! Molecular weight ratio of H2SO4 / H2O:
wtmolr = gwtmol(igash2so4) / gwtmol(igash2o)
! Compute ln of H2O and H2SO4 ambient vapor pressures [dynes/cm2]
h2oln = log(h2o_cgs * (RGAS / gwtmol(igash2o)) * temp)
h2so4ln = log(h2so4_cgs * (RGAS / gwtmol(igash2so4)) * temp)
! loop through wt pcts and calculate vp/composition for each
do i = 1, 46
dens(i) = dnc0(i) + dnc1(i) * temp
! Calc. water eq.vp over solution using (Lin & Tabazadeh eqn 5, JGR, 2001)
cw = 22.7490_f + 0.0424817_f * dnwtp(i) - 0.0567432_f * dnwtp(i)**0.5_f - 0.000621533_f * dnwtp(i)**2
dw = -5850.24_f + 21.9744_f * dnwtp(i) - 44.5210_f * dnwtp(i)**0.5_f - 0.384362_f * dnwtp(i)**2
! pH20 | eq[mb]
wvp = exp(cw + dw / temp)
! Ln(pH2O | eq [dynes/cm2])
wvpln = log(wvp * 1013250._f / 1013.25_f)
! Save the water eq.vp over solution at each wt pct into this array:
!
! Ln(pH2O/pH2O|eq) with both terms in dynes/cm2
pb(i) = h2oln - wvpln
! Calc. sulfuric acid eq.vp over solution using (Ayers et. al., GRL, V.7, No.6, June 1980)
!
! T0 set in the low end of the Ayers measurement range (338-445K)
t0_kulm = 340._f
seqln = -10156._f / t0_kulm + 16.259_f
! Now calc. Kulmala correction (J. CHEM. PHYS. V.93, No.1, 1 July 1990)
!
! Critical temperature = 1.5 * Boiling point
t_crit_kulm = 905._f
factor_kulm = -1._f / temp + 1._f / t0_kulm + 0.38_f / (t_crit_kulm - t0_kulm) * &
(1.0_f + log(t0_kulm / temp) - t0_kulm / temp)
! For pure sulfuric acid
seqln = seqln + 10156._f * factor_kulm
! Now adjust vp based on weight % composition using parameterization of Giauque 1960
!
! Adjust for weight percent composition
seqln = seqln - dnpot(i) / (8.3143_f * temp)
! Convert atmospheres => dynes/cm2
seqln = seqln + log(1013250._f)
! Save the sulfuric acid eq.vp over solution at each wt pct into this array:
!
! Ln(pH2SO4/pH2SO4|eq) with both terms in dynes/cm2
pa(i) = h2so4ln - seqln
! Create 2-component solutions of varying composition c1 and c2
c1(i) = pa(i) - pb(i) * wtmolr
c2(i) = pa(i) * dnwf(i) + pb(i) * (1._f - dnwf(i)) * wtmolr
end do ! end of loop through weight percents
! Now loop through until we find the c1+c2 combination with minimum Gibbs free energy
dw2 = dnwtp(46) - dnwtp(45)
dens1 = (dens(46) - dens(45)) / dw2
fct(46) = c1(46) + c2(46) * 100._f * dens1 / dens(46)
dens12 = dens1
do i = 45, 2, -1
dw1 = dw2
dens11 = dens12
dw2 = dnwtp(i) - dnwtp(i-1)
dens12 = (dens(i) - dens(i-1)) / dw2
dens1 = (dens11 * dw2 + dens12 * dw1) / (dw1 + dw2)
fct(i) = c1(i) + c2(i) * 100._f * dens1 / dens(i)
! Find saddle where fct(i)<0<fct(i+1)
if (fct(i) * fct(i+1) <= 0._f) exit
end do
if (i == 1) then
dens1 = (dens(2) - dens(1)) / (dnwtp(2) - dnwtp(1))
fct(1) = c1(1) + c2(1) * 100._f * dens1 / dens(1)
end if
! Possibility 1: loop finds no saddle, so no nucleation occurs:
if (fct(i) * fct(i+1) > 0._f) then
nucrate_cgs = 0.0_f
radius_cluster = 0.0_f
mass_cluster_dry = 0.0_f
ftry = 0.0_f
return
! Possibility 2: loop crossed the saddle; interpolate to find exact value:
else if (fct(i) * fct(i+1) < 0._f) then
xfrac = fct(i+1) / (fct(i+1) - fct(i))
wstar = dnwtp(i+1) * (1.0_f - xfrac) + dnwtp(i) * xfrac ! critical weight percent
dstar = dens(i+1) * (1.0_f - xfrac) + dens(i) * xfrac
rhln = pb(i+1) * (1.0_f - xfrac) + pb(i) * xfrac
raln = pa(i+1) * (1.0_f - xfrac) + pa(i) * xfrac
! Possibility 3: loop found the saddle point exactly
else
dstar = dens(i)
! critical weight percent
wstar = dnwtp(i)
rhln = pb(i)
raln = pa(i)
end if
! Critical weight fraction
wfstar = wstar / 100._f
if ((wfstar < 0._f) .or. (wfstar > 1._f)) then
write(LUNOPRT,*)'sulfnuc: wstar out of bounds!'
rc = RC_ERROR
return
end if
! Critical surface tension [erg/cm2]
sigma = sulfate_surf_tens(carma, wstar, temp, rc)
! Critical Y (eqn 13 in Zhao & Turco 1993) [erg/cm3]
ystar = dstar * RGAS * temp * (wfstar / gwtmol(igash2so4) &
* raln + (1._f - wfstar) / gwtmol(igash2o) * rhln)
if (ystar < 1.e-20_f) then
nucrate_cgs = 0.0_f
radius_cluster = 0.0_f
mass_cluster_dry = 0.0_f
ftry = 0.0_f
return
end if
! Critical cluster radius [cm]
radius_cluster = 2._f * sigma / ystar
radius_cluster = max(radius_cluster, 0.0_f)
r2 = radius_cluster * radius_cluster
! Critical Gibbs free energy [erg]
gstar = (4._f * PI / 3._f) * r2 * sigma
! RPR[molecules/s] = 4Pi * R2[cm2] * H2O[molecules/cm3] * Beta[cm/s]
rpr = 4._f * PI * r2 * h2o * beta1
! RPRE[/cm3/s] = RPR[/s] * H2SO4[/cm3]; first part of Zhao & Turco eqn 16
rpre = rpr * h2so4
! Zeldovitch non-equilibrium correction factor [unitless]
! Jaecker-Voirol & Mirabel, 1988 (not considered in Zhao & Turco)
fracmol = 1._f /(1._f + wtmolr * (1._f - wfstar) / wfstar)
zphi = atan(fracmol)
zeld = 0.25_f / (sin(zphi))**2
! Empirical correction factor:
cfac = 0.0_f
! Gstar exponential term in Zhao & Turco eqn 16 [unitless]
ftry = (-gstar / BK / temp)
ahom = ftry + cfac
if (ahom .lt. -500._f) then
exhom=0.0_f
else
exhom = exp(min(ahom, 28.0_f))
endif
! Calculate mass of critical nucleus
rho_H2SO4_wet = sulfate_density(carma, weight_percent, temp, rc)
mass_cluster_dry = (4._f * PI / 3._f) * rho_H2SO4_wet * r2 * radius_cluster
! Calculate dry mass of critical nucleus
mass_cluster_dry = mass_cluster_dry * wfstar
! Calculate the nucleation rate [#/cm3/s], Zhao & Turco eqn 16.
nucrate_cgs = rpre * zeld * exhom
return
end subroutine binary_nuc_zhao1995