forked from choyingw/SynergyNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_train.py
239 lines (187 loc) · 8.36 KB
/
main_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
#!/usr/bin/env python3
# coding: utf-8
import os
import os.path as osp
from pathlib import Path
import numpy as np
import argparse
import time
import logging
import torch
import torch.nn as nn
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
import torch.backends.cudnn as cudnn
cudnn.benchmark=True
from utils.ddfa import DDFADataset, ToTensor, Normalize, SGD_NanHandler, CenterCrop, Compose_GT, ColorJitter
from utils.ddfa import str2bool, AverageMeter
from utils.io import mkdir
from model_building import SynergyNet as SynergyNet
from benchmark_validate import benchmark_pipeline
# global args (configuration)
args = None # define the static training setting, which wouldn't and shouldn't be changed over the whole experiements.
def parse_args():
parser = argparse.ArgumentParser(description='3DMM Fitting')
parser.add_argument('-j', '--workers', default=6, type=int)
parser.add_argument('--epochs', default=40, type=int)
parser.add_argument('--start-epoch', default=1, type=int)
parser.add_argument('-b', '--batch-size', default=128, type=int)
parser.add_argument('-vb', '--val-batch-size', default=32, type=int)
parser.add_argument('--base-lr', '--learning-rate', default=0.001, type=float)
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--weight-decay', '--wd', default=5e-4, type=float)
parser.add_argument('--print-freq', '-p', default=20, type=int)
parser.add_argument('--resume', default='', type=str, metavar='PATH')
parser.add_argument('--resume_pose', default='', type=str, metavar='PATH')
parser.add_argument('--devices-id', default='0,1', type=str)
parser.add_argument('--filelists-train',default='', type=str)
parser.add_argument('--root', default='')
parser.add_argument('--snapshot', default='', type=str)
parser.add_argument('--log-file', default='output.log', type=str)
parser.add_argument('--log-mode', default='w', type=str)
parser.add_argument('--arch', default='mobilenet_v2', type=str, help="Please choose [mobilenet_v2, mobilenet_1, resnet50, resnet101, or ghostnet]")
parser.add_argument('--milestones', default='15,25,30', type=str)
parser.add_argument('--task', default='all', type=str)
parser.add_argument('--test_initial', default='false', type=str2bool)
parser.add_argument('--warmup', default=-1, type=int)
parser.add_argument('--param-fp-train',default='',type=str)
parser.add_argument('--img_size', default=120, type=int)
parser.add_argument('--save_val_freq', default=10, type=int)
global args
args = parser.parse_args()
# some other operations
args.devices_id = [int(d) for d in args.devices_id.split(',')]
args.milestones = [int(m) for m in args.milestones.split(',')]
snapshot_dir = osp.split(args.snapshot)[0]
mkdir(snapshot_dir)
def print_args(args):
for arg in vars(args):
s = arg + ': ' + str(getattr(args, arg))
logging.info(s)
def adjust_learning_rate(optimizer, epoch, milestones=None):
"""Sets the learning rate: milestone is a list/tuple"""
def to(epoch):
if epoch <= args.warmup:
return 1
elif args.warmup < epoch <= milestones[0]:
return 0
for i in range(1, len(milestones)):
if milestones[i - 1] < epoch <= milestones[i]:
return i
return len(milestones)
n = to(epoch)
#global lr
lr = args.base_lr * (0.2 ** n)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
return lr
def save_checkpoint(state, filename='checkpoint.pth.tar'):
torch.save(state, filename)
logging.info(f'Save checkpoint to {filename}')
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
def train(train_loader, model, optimizer, epoch, lr):
"""Network training, loss updates, and backward calculation"""
# AverageMeter for statistics
batch_time = AverageMeter()
data_time = AverageMeter()
losses_name = list(model.module.get_losses())
losses_name.append('loss_total')
losses_meter = [AverageMeter() for i in range(len(losses_name))]
model.train()
end = time.time()
for i, (input, target) in enumerate(train_loader):
input = input.cuda(non_blocking=True)
target = target[:,:62]
target.requires_grad = False
target = target.float().cuda(non_blocking=True)
losses = model(input, target)
data_time.update(time.time() - end)
loss_total = 0
for j, name in enumerate(losses):
mean_loss = losses[name].mean()
losses_meter[j].update(mean_loss, input.size(0))
loss_total += mean_loss
losses_meter[j+1].update(loss_total, input.size(0))
### compute gradient and do SGD step
optimizer.zero_grad()
loss_total.backward()
flag, _ = optimizer.step_handleNan()
if flag:
print("Nan encounter! Backward gradient error. Not updating the associated gradients.")
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
msg = 'Epoch: [{}][{}/{}]\t'.format(epoch, i, len(train_loader)) + \
'LR: {:.8f}\t'.format(lr) + \
'Time: {:.3f} ({:.3f})\t'.format(batch_time.val, batch_time.avg)
for k in range(len(losses_meter)):
msg += '{}: {:.4f} ({:.4f})\t'.format(losses_name[k], losses_meter[k].val, losses_meter[k].avg)
logging.info(msg)
def main():
""" Main funtion for the training process"""
parse_args() # parse global argsl
# logging setup
logging.basicConfig(
format='[%(asctime)s] [p%(process)s] [%(pathname)s:%(lineno)d] [%(levelname)s] %(message)s',
level=logging.INFO,
handlers=[
logging.FileHandler(args.log_file, mode=args.log_mode),
logging.StreamHandler()
]
)
print_args(args) # print args
# step1: define the model structure
model = SynergyNet(args)
torch.cuda.set_device(args.devices_id[0])
model = nn.DataParallel(model, device_ids=args.devices_id).cuda() # -> GPU
# step2: optimization: loss and optimization method
optimizer = SGD_NanHandler(model.parameters(),
lr=args.base_lr,
momentum=args.momentum,
weight_decay=args.weight_decay,
nesterov=True)
# step 2.1 resume
if args.resume:
if Path(args.resume).is_file():
logging.info(f'=> loading checkpoint {args.resume}')
checkpoint = torch.load(args.resume, map_location=lambda storage, loc: storage)['state_dict']
model.load_state_dict(checkpoint, strict=False)
else:
logging.info(f'=> no checkpoint found at {args.resume}')
# step3: data
normalize = Normalize(mean=127.5, std=128)
train_dataset = DDFADataset(
root=args.root,
filelists=args.filelists_train,
param_fp=args.param_fp_train,
gt_transform=True,
transform=Compose_GT([ColorJitter(0.4,0.4,0.4), ToTensor(), CenterCrop(5), normalize]) #
)
train_loader = DataLoader(train_dataset, batch_size=args.batch_size, num_workers=args.workers,
shuffle=True, pin_memory=True, drop_last=True)
# step4: run
cudnn.benchmark = True
if args.test_initial: # if testing the performance from the initial
logging.info('Testing from initial')
benchmark_pipeline(model)
for epoch in range(args.start_epoch, args.epochs + 1):
# adjust learning rate
lr = adjust_learning_rate(optimizer, epoch, args.milestones)
# train for one epoch
train(train_loader, model, optimizer, epoch, lr)
filename = f'{args.snapshot}_checkpoint_epoch_{epoch}.pth.tar'
# save checkpoints and current model validation
if (epoch % args.save_val_freq == 0) or (epoch==args.epochs):
save_checkpoint(
{
'epoch': epoch,
'state_dict': model.state_dict(),
},
filename
)
logging.info('\nVal[{}]'.format(epoch))
benchmark_pipeline(model)
if __name__ == '__main__':
main()