-
Notifications
You must be signed in to change notification settings - Fork 3
/
flow.v
274 lines (212 loc) · 7.32 KB
/
flow.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
Set Automatic Coercions Import.
Require Import c_util.
Require Import util.
Require Import geometry.
Require Import CRreal.
Require Import CRexp.
Require Import CRln.
Require Import Morphisms.
Set Implicit Arguments.
Open Local Scope CR_scope.
(* We require CR because we use it for Time.
Todo: Take an arbitrary (C)Ring/(C)Field for Time, so that
the classical development does not need a separate concrete module. *)
Let Time := CRasCSetoid.
Let Duration := NonNegCR.
Record Flow (X: CSetoid): Type :=
{ flow_morphism:> morpher (@st_eq X ==> @st_eq Time ==> @st_eq X)%signature
; flow_zero: forall x, flow_morphism x 0 [=] x
; flow_additive: forall x t t',
flow_morphism x (t + t') [=] flow_morphism (flow_morphism x t) t'
}.
Definition mono (f: Flow CRasCSetoid): Type :=
((forall x, strongly_increasing (f x)) + (forall x, strongly_decreasing (f x)))%type.
Definition range_flow_inv_spec (f: Flow CRasCSetoid)
(i: OpenRange -> OpenRange -> OpenRange): Prop :=
forall a p, in_orange a p -> forall b t, in_orange b (f p t) -> in_orange (i a b) t.
Hint Unfold range_flow_inv_spec.
Obligation Tactic := idtac.
Program Definition product_flow (X Y: CSetoid) (fx: Flow X) (fy: Flow Y):
Flow (ProdCSetoid X Y) :=
Build_Flow _ (fun xy t => (fx (fst xy) t, fy (snd xy) t)) _ _.
Next Obligation.
intros X Y fx fy [s s0] [s1 s2] [A B] x y H0.
split; [rewrite A | rewrite B]; rewrite H0; reflexivity.
Qed.
Next Obligation. destruct x. split; apply flow_zero. Qed.
Next Obligation. destruct x. split; apply flow_additive. Qed.
Module constant.
Section contents.
Program Definition flow: Flow CRasCSetoid := Build_Flow _ (fun x _ => x) _ _.
Next Obligation. exact (fun _ _ H _ _ _ => H). Qed.
Next Obligation. reflexivity. Qed.
Next Obligation. reflexivity. Qed.
Let eps: Qpos := (1#100)%Qpos. (* todo: turn into parameter *)
Definition neg_range: OpenRange.
exists (Some (-'1%Q), Some (-'1%Q)).
unfold uncurry. simpl. auto.
Defined.
Definition inv (a b: OpenRange): OpenRange :=
if overestimate_oranges_overlap eps a b: bool then unbounded_range else neg_range.
Lemma inv_correct: range_flow_inv_spec flow inv.
Proof with auto.
unfold range_flow_inv_spec, inv.
intros.
destruct_call overestimate_oranges_overlap.
destruct x...
elimtype False.
apply n, oranges_share_point with p...
Qed.
End contents.
End constant.
Module scale.
Section contents.
Variables (s: CR) (sp: CRpos s) (f: Flow CRasCSetoid).
Program Definition flow: Flow CRasCSetoid :=
Build_Flow _ (fun x t => f x (s * t)) _ _.
Next Obligation. intros a a' e b b' e'. rewrite e, e'. reflexivity. Qed.
Next Obligation.
intros. unfold morpher_to_func, proj1_sig.
rewrite CRmult_0_r. apply flow_zero.
Qed.
Next Obligation.
intros.
unfold morpher_to_func at 1 3 5, proj1_sig.
rewrite
<- flow_additive,
(Rmul_comm CR_ring_theory),
(Rmul_comm CR_ring_theory s t),
(Rmul_comm CR_ring_theory s t'),
(Rdistr_l CR_ring_theory).
reflexivity.
Qed.
Lemma inc: (forall x, strongly_increasing (f x)) ->
forall x, strongly_increasing (flow x).
Proof.
repeat intro. unfold flow. simpl.
apply X, CRmult_lt_pos_r; assumption.
Qed.
Variable old_inv: OpenRange -> OpenRange -> OpenRange.
Hypothesis old_inv_correct: range_flow_inv_spec f old_inv.
Lemma CRpos_apart_0 x: CRpos x -> x >< 0.
right. apply CRpos_lt_0_rev. assumption.
Defined.
Definition sinv: CR := CRinvT s (CRpos_apart_0 sp).
Lemma sinv_nonneg: 0 <= sinv.
Proof.
apply CRlt_le.
apply CRpos_lt_0_rev.
unfold sinv.
apply CRinvT_pos.
assumption.
Qed.
Definition inv (a b: OpenRange): OpenRange := scale_orange sinv_nonneg (old_inv a b).
Lemma inv_correct: range_flow_inv_spec flow inv.
Proof with auto.
unfold range_flow_inv_spec in *.
intros.
unfold inv.
simpl in H0.
set (old_inv_correct H _ H0).
clearbody i.
assert (fst (` (scale_orange sinv_nonneg (old_inv a b))) [=] fst (` (scale_orange sinv_nonneg (old_inv a b)))) by reflexivity.
assert (snd (` (scale_orange sinv_nonneg (old_inv a b))) [=] snd (` (scale_orange sinv_nonneg (old_inv a b)))) by reflexivity.
assert (sinv * (s * t) == t).
rewrite (Rmul_assoc CR_ring_theory).
unfold sinv.
rewrite (Rmul_comm CR_ring_theory (CRinvT s _)).
unfold CRinv.
rewrite (CRinvT_mult).
apply (Rmul_1_l CR_ring_theory).
rewrite <- H3. (* todo: this takes ridiculously long *)
apply in_scale_orange...
Qed.
End contents.
End scale.
Hint Resolve scale.inc scale.inv_correct.
Module positive_linear.
Section contents.
Program Definition f: Flow CRasCSetoid :=
Build_Flow _ (ucFun2 CRplus_uc) CRadd_0_r (Radd_assoc CR_ring_theory).
Definition inv (x x': CR): Time := x' - x.
Lemma inv_correct x x': f x (inv x x') == x'.
Proof. intros. symmetry. apply t11. Qed.
Lemma increasing: forall x : CRasCSetoid, strongly_increasing (f x).
Proof. repeat intro. apply t1_rev. assumption. Qed.
Definition mono: mono f := inl increasing.
End contents.
End positive_linear.
Hint Immediate positive_linear.increasing.
Module negative_linear.
Section contents.
Let B x t t': x - (t + t') == x - t - t'.
intros.
rewrite (@Ropp_add _ _ _ _ _ _ _ _ t3 CR_ring_eq_ext CR_ring_theory ).
apply (Radd_assoc CR_ring_theory).
Qed.
Program Definition f: Flow CRasCSetoid :=
Build_Flow _ (fun x t => x - t) CRminus_zero B.
Definition inv (x x': CR): Time := x - x'.
Lemma inv_correct x x': f x (inv x x') == x'.
intros.
unfold f, inv.
simpl morpher_to_func.
rewrite <- diff_opp.
symmetry.
apply t11.
Qed.
Lemma decreasing: forall x : CRasCSetoid, strongly_decreasing (f x).
repeat intro. simpl.
apply t1_rev, CRlt_opp_compat.
assumption.
Qed.
Definition mono: mono f := inr decreasing.
End contents.
End negative_linear.
Require Import vector_setoid.
Require Import VecEq.
Lemma Vforall2n_aux_inv (A B: Type) (R: A -> B -> Prop) n (v: vector A n) m (w: vector B m):
Vforall2n_aux R v w -> forall i (p: lt i n) (q: lt i m), R (Vnth v p) (Vnth w q).
Admitted. (*
Proof.
induction v; destruct w; simpl; intros; intuition.
elimtype False.
apply (lt_n_O _ p).
destruct i; auto.
Qed. *)
Definition eq_vec_inv (T: Type) (R: relation T) n (x y: vector T n) (e: eq_vec R x y)
i (p: (i < n)%nat): R (Vnth x p) (Vnth y p)
:= Vforall2n_aux_inv _ _ _ e p p.
(* Todo: Move the above two elsewhere. *)
Section vector_flow.
Variable n : nat.
Variable X : CSetoid.
Variable vec_f : vector (Flow X) n.
Let f (vec_x : vecCSetoid X n) (t : Time) : vecCSetoid X n :=
let flow_dim i ip :=
let f := Vnth vec_f ip in
let x := Vnth vec_x ip in
f x t
in
Vbuild flow_dim.
Program Definition vector_flow : Flow (vecCSetoid X n) :=
Build_Flow _ f _ _.
Next Obligation. (* well-defined-ness *)
do 6 intro.
apply Veq_vec_nth. intros.
unfold f.
repeat rewrite Vbuild_nth.
unfold morpher_to_func.
rewrite (eq_vec_inv (@st_eq _) x y H).
rewrite H0.
reflexivity.
Qed.
Next Obligation. (* flow_zero *)
apply Veq_vec_nth. intros. unfold f.
repeat rewrite Vbuild_nth. apply flow_zero.
Qed.
Next Obligation. (* flow_additive *)
apply Veq_vec_nth. intros. unfold f.
repeat rewrite Vbuild_nth. apply flow_additive.
Qed.
End vector_flow.