-
Notifications
You must be signed in to change notification settings - Fork 5
/
run_multiple_choice.py
516 lines (455 loc) · 17.7 KB
/
run_multiple_choice.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Finetuning the library models for multiple choice (Bert, Roberta, XLNet)."""
import logging
import os
import json
from dataclasses import dataclass, field
from typing import Dict, Optional
import numpy as np
from transformers import (
AutoConfig,
AutoModelForMultipleChoice,
AutoTokenizer,
EvalPrediction,
HfArgumentParser,
Trainer, AdamW,
TrainingArguments,
set_seed,
)
from utils_multiple_choice import processors
from collections import Counter
from dagn import DAGN
from tokenization_dagn import arg_tokenizer
# from utils_multiple_choice import Split, MyMultipleChoiceDataset
from graph_building_blocks.argument_set_punctuation_v4 import punctuations
with open('./graph_building_blocks/explicit_arg_set_v4.json', 'r') as f:
relations = json.load(f) # key: relations, value: ignore
logger = logging.getLogger(__name__)
def simple_accuracy(preds, labels):
return (preds == labels).mean()
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
model_name_or_path: str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
)
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
tokenizer_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
)
cache_dir: Optional[str] = field(
default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"}
)
model_type: str = field(
metadata={"help": "Model types: roberta_large | argument_numnet | ..."},
default="DAGN"
)
merge_type: int = field(
default=1,
metadata={"help": "The way gcn_feats and baseline_feats are merged."}
)
gnn_version: str = field(
default="",
metadata={"help": "GNN version in myutil.py or myutil_gat.py"
"value = GCN|GCN_reversededges|GCN_reversededges_double"}
)
model_branch: bool = field(
default=False,
metadata={"help": "add model branch according to grouped_question_type"}
)
model_version: int = field(
default=1,
metadata={"help": "argument numnet evolving version."}
)
use_gcn: bool = field(
default=False,
metadata={"help": "Use GCN in model or not."}
)
use_pool: bool = field(
default=False,
metadata={"help": "Use pooled_output branch in model or not."}
)
gcn_steps: int = field(
default=1,
metadata={"help": "GCN iteration steps"}
)
attention_drop: float = field(
default=0.1,
metadata={"help": "huggingface RoBERTa config.attention_probs_dropout_prob"}
)
hidden_drop: float = field(
default=0.1,
metadata={"help": "huggingface RoBERTa config.hidden_dropout_prob"}
)
numnet_drop: float = field(
default=0.1,
metadata={"help": "NumNet dropout probability"}
)
init_weights: bool = field(
default=False,
metadata={"help": "init weights in Argument NumNet."}
)
# training
roberta_lr: float = field(
default=5e-6,
metadata={"help": "learning rate for updating roberta parameters"}
)
gcn_lr: float = field(
default=5e-6,
metadata={"help": "learning rate for updating gcn parameters"}
)
proj_lr: float = field(
default=5e-6,
metadata={"help": "learning rate for updating fc parameters"}
)
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
"""
task_name: str = field(metadata={"help": "The name of the task to train on: " + ", ".join(processors.keys())})
data_dir: str = field(metadata={"help": "Should contain the data files for the task."})
data_type: str = field(
default="argument_numnet",
metadata={
"help": "data types in utils script. roberta_large | argument_numnet "
}
)
graph_building_block_version: int = field(
default=2,
metadata={
"help": "graph building block version."
}
)
data_processing_version: int = field(
default=2,
metadata={
"help": "data processing version"
}
)
max_seq_length: int = field(
default=128,
metadata={
"help": "The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
}
)
max_ngram: int = field(
default=5,
metadata={"help": "max ngram when pre-processing text and find argument/domain words."}
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
)
demo_data: bool = field(
default=False,
metadata={"help": "demo data sets with 100 samples."}
)
def main():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir)
and os.listdir(training_args.output_dir)
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. Use --overwrite_output_dir to overcome."
)
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN,
)
logger.warning(
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
training_args.local_rank,
training_args.device,
training_args.n_gpu,
bool(training_args.local_rank != -1),
training_args.fp16,
)
logger.info("Training/evaluation parameters %s", training_args)
# Set seed
set_seed(training_args.seed)
try:
processor = processors[data_args.task_name]()
label_list = processor.get_labels()
num_labels = len(label_list)
except KeyError:
raise ValueError("Task not found: %s" % (data_args.task_name))
config = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
num_labels=num_labels,
finetuning_task=data_args.task_name,
cache_dir=model_args.cache_dir,
)
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
)
if isinstance(relations, tuple): max_rel_id = int(max(relations[0].values()))
elif isinstance(relations, dict):
if not len(relations) == 0:
max_rel_id = int(max(relations.values()))
else:
max_rel_id = 0
else: raise Exception
if model_args.model_type == "PLM":
from utils_multiple_choice_plm import Split, MultipleChoiceDataset
model = AutoModelForMultipleChoice.from_pretrained(
model_args.model_name_or_path,
from_tf=bool(".ckpt" in model_args.model_name_or_path),
config=config,
cache_dir=model_args.cache_dir,
)
train_dataset = (
MultipleChoiceDataset(
data_dir=data_args.data_dir,
tokenizer=tokenizer,
task=data_args.task_name,
max_seq_length=data_args.max_seq_length,
overwrite_cache=data_args.overwrite_cache,
mode=Split.train,
demo=data_args.demo_data
)
if training_args.do_train
else None
)
eval_dataset = (
MultipleChoiceDataset(
data_dir=data_args.data_dir,
tokenizer=tokenizer,
task=data_args.task_name,
max_seq_length=data_args.max_seq_length,
overwrite_cache=data_args.overwrite_cache,
mode=Split.dev,
demo=data_args.demo_data
)
if training_args.do_eval
else None
)
test_dataset = (
MultipleChoiceDataset(
data_dir=data_args.data_dir,
tokenizer=tokenizer,
task=data_args.task_name,
max_seq_length=data_args.max_seq_length,
overwrite_cache=data_args.overwrite_cache,
mode=Split.test,
demo=data_args.demo_data
)
if training_args.do_predict
else None
)
elif model_args.model_type == "DAGN":
from utils_multiple_choice import Split, MyMultipleChoiceDataset
model = DAGN.from_pretrained(
model_args.model_name_or_path,
from_tf=bool(".ckpt" in model_args.model_name_or_path),
config=config,
token_encoder_type="roberta" if "roberta" in model_args.model_name_or_path else "bert",
init_weights=model_args.init_weights,
max_rel_id=max_rel_id,
merge_type=model_args.merge_type,
gnn_version=model_args.gnn_version,
cache_dir=model_args.cache_dir,
hidden_size=config.hidden_size,
dropout_prob=model_args.numnet_drop,
use_gcn=model_args.use_gcn,
use_pool=model_args.use_pool,
gcn_steps=model_args.gcn_steps
)
train_dataset = (
MyMultipleChoiceDataset(
data_dir=data_args.data_dir,
tokenizer=tokenizer,
arg_tokenizer=arg_tokenizer,
data_processing_version=data_args.data_processing_version,
graph_building_block_version=data_args.graph_building_block_version,
relations=relations,
punctuations=punctuations,
task=data_args.task_name,
max_seq_length=data_args.max_seq_length,
overwrite_cache=data_args.overwrite_cache,
mode=Split.train,
demo=data_args.demo_data
)
if training_args.do_train
else None
)
eval_dataset = (
MyMultipleChoiceDataset(
data_dir=data_args.data_dir,
tokenizer=tokenizer,
arg_tokenizer=arg_tokenizer,
data_processing_version=data_args.data_processing_version,
graph_building_block_version=data_args.graph_building_block_version,
relations=relations,
punctuations=punctuations,
task=data_args.task_name,
max_seq_length=data_args.max_seq_length,
max_ngram=data_args.max_ngram,
overwrite_cache=data_args.overwrite_cache,
mode=Split.dev,
demo=data_args.demo_data
)
if training_args.do_eval
else None
)
test_dataset = (
MyMultipleChoiceDataset(
data_dir=data_args.data_dir,
tokenizer=tokenizer,
arg_tokenizer=arg_tokenizer,
data_processing_version=data_args.data_processing_version,
graph_building_block_version=data_args.graph_building_block_version,
relations=relations,
punctuations=punctuations,
task=data_args.task_name,
max_seq_length=data_args.max_seq_length,
max_ngram=data_args.max_ngram,
overwrite_cache=data_args.overwrite_cache,
mode=Split.test,
demo=data_args.demo_data
)
if training_args.do_predict
else None
)
else:
raise Exception
def compute_metrics(p: EvalPrediction) -> Dict:
preds = np.argmax(p.predictions, axis=1)
return {"acc": simple_accuracy(preds, p.label_ids)}
if model_args.use_gcn:
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [p for n, p in model.named_parameters() if n.startswith("_gcn")
and not any(nd in n for nd in no_decay)],
"lr": model_args.gcn_lr,
"weight_decay": training_args.weight_decay,
},
{
"params": [p for n, p in model.named_parameters() if n.startswith("_gcn")
and any(nd in n for nd in no_decay)],
"lr": model_args.gcn_lr,
"weight_decay": 0.0,
},
{
"params": [p for n, p in model.named_parameters() if n.startswith("roberta")
and not any(nd in n for nd in no_decay)],
"lr": model_args.roberta_lr,
"weight_decay": training_args.weight_decay,
},
{
"params": [p for n, p in model.named_parameters() if n.startswith("roberta")
and any(nd in n for nd in no_decay)],
"lr": model_args.roberta_lr,
"weight_decay": 0.0,
},
{
"params": [p for n, p in model.named_parameters() if n.startswith("_proj")
and not any(nd in n for nd in no_decay)],
"lr": model_args.proj_lr,
"weight_decay": training_args.weight_decay,
},
{
"params": [p for n, p in model.named_parameters() if n.startswith("_proj")
and any(nd in n for nd in no_decay)],
"lr": model_args.proj_lr,
"weight_decay": 0.0,
}
]
optimizer = AdamW(
optimizer_grouped_parameters,
)
# Initialize our Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
compute_metrics=compute_metrics,
optimizers=(optimizer, None)
)
else:
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
compute_metrics=compute_metrics,
)
# Training
if training_args.do_train:
trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path) else None
)
trainer.save_model()
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
if trainer.is_world_master():
tokenizer.save_pretrained(training_args.output_dir)
# Evaluation
results = {}
if training_args.do_eval:
logger.info("*** Evaluate ***")
result = trainer.evaluate()
output_eval_file = os.path.join(training_args.output_dir, "eval_results.txt")
if trainer.is_world_master():
with open(output_eval_file, "w") as writer:
logger.info("***** Eval results *****")
for key, value in result.items():
logger.info(" %s = %s", key, value)
writer.write("%s = %s\n" % (key, value))
results.update(result)
# Test
if training_args.do_predict:
if data_args.task_name == "reclor":
logger.info("*** Test ***")
test_result = trainer.predict(test_dataset)
preds = test_result.predictions # np array. (1000, 4)
pred_ids = np.argmax(preds, axis=1)
output_test_file = os.path.join(training_args.output_dir, "predictions.npy")
np.save(output_test_file, pred_ids)
logger.info("predictions saved to {}".format(output_test_file))
elif data_args.task_name == "logiqa":
logger.info("*** Test ***")
test_result = trainer.predict(test_dataset)
output_test_file = os.path.join(training_args.output_dir, "test_results.txt")
if trainer.is_world_master():
with open(output_test_file, "w") as writer:
logger.info("***** Test results *****")
for key, value in test_result.metrics.items():
logger.info(" %s = %s", key, value)
writer.write("%s = %s\n" % (key, value))
results.update(test_result.metrics)
def _mp_fn(index):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()