-
Notifications
You must be signed in to change notification settings - Fork 21
/
line_intersection.py
308 lines (253 loc) · 9.7 KB
/
line_intersection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
import PIL.Image
import cv2
import numpy as np
import itertools
# Calculate intersections
def line_intersect(a1, a2, b1, b2):
T = np.array([[0, -1], [1, 0]])
da = np.atleast_2d(a2 - a1)
db = np.atleast_2d(b2 - b1)
dp = np.atleast_2d(a1 - b1)
dap = np.dot(da, T)
denom = np.sum(dap * db, axis=1)
num = np.sum(dap * dp, axis=1)
return np.atleast_2d(num / denom).T * db + b1
def getAllLineIntersections(linesA, linesB):
# get all pairings of lines
pairings = np.array(list(itertools.product(range(linesA.shape[0]),range(linesB.shape[0]))))
return line_intersect(linesA[pairings[:,0],:2], linesA[pairings[:,0],2:], linesB[pairings[:,1],:2], linesB[pairings[:,1],2:])
def prunePoints(pts, max_dist2=5**2):
# Prune points away that are close to each other
# preferring points that come earlier in array order
good_pts = np.ones(pts.shape[0], dtype=bool)
for i in range(pts.shape[0]):
if ~good_pts[i]:
continue
for j in range(i+1,pts.shape[0]):
d2 = np.sum((pts[j] - pts[i])**2)
if (d2 < max_dist2): # within (N pixels)**2 of another point
good_pts[j] = False
return pts[good_pts]
if __name__ == '__main__':
import matplotlib.pyplot as plt
a = np.array(
[[265, 192, 517, 389],
[210, 219, 427, 418],
[352, 164, 594, 318],
[254, 219, 459, 391],
[295, 182, 544, 363],
[330, 176, 570, 341],
[360, 142, 617, 297],
[332, 178, 541, 322],
[295, 183, 505, 336],
[252, 217, 488, 415],
[360, 168, 567, 300],
[289, 291, 455, 443],
[232, 240, 454, 444],
[286, 209, 478, 359]])
b = np.array(
[[253, 348, 605, 120],
[274, 374, 604, 148],
[318, 386, 558, 212],
[230, 326, 578, 112],
[348, 413, 650, 181],
[207, 275, 440, 146],
[209, 304, 531, 118],
[319, 387, 560, 212],
[256, 311, 579, 113],
[260, 345, 606, 120],
[191, 285, 387, 176],
[234, 289, 530, 118],
[210, 305, 531, 119],
[275, 375, 604, 149]])
pts = getAllLineIntersections(a, b)
print("Found %d points" % len(pts))
# Plot lines
for line in a:
x1, y1, x2, y2 = line
plt.plot([x1,x2], [y1,y2],'b')
for line in b:
x1, y1, x2, y2 = line
plt.plot([x1,x2], [y1,y2],'g')
# Plot points
plt.plot(pts[:,0], pts[:,1], 'ro',ms=8)
plt.show()
def getCorners(chess_pts, top_dirs):
"""top_dirs are the two top direction vectors for the chess board lines"""
d_norm_a = top_dirs[0]
vals = chess_pts.dot(d_norm_a)
a = chess_pts[np.argmin(vals),:]
b = chess_pts[np.argmax(vals),:]
dist = (b-a)
d_norm = np.array([-dist[1], dist[0]])
d_norm /= np.sqrt(np.sum(d_norm**2))
# print(d_norm)
vals = chess_pts.dot(d_norm)
# print(vals)
c = chess_pts[np.argmin(vals),:]
d = chess_pts[np.argmax(vals),:]
corners = np.vstack([a,c,b,d]).astype(np.float32)
return corners
def getRectifiedChessLines(img):
"""Given a warped axis-aligned image of a chessboard, return internal line crossings"""
# TODO: Fix awkward conversion
# Convert RGB numpy array to image, then to grayscale image, then back to numpy array
img_gray = np.array(PIL.Image.fromarray(img).convert('L'))
img_gray = cv2.bilateralFilter(img_gray,15,75,75)
# Find gradients
sobelx = cv2.Sobel(img_gray,cv2.CV_64F,1,0,ksize=5)
sobely = cv2.Sobel(img_gray,cv2.CV_64F,0,1,ksize=5)
sobelx_pos = sobelx.copy()
sobelx_pos[sobelx <= 0] = 0
sobelx_neg = sobelx.copy()
sobelx_neg[sobelx > 0] = 0
sobely_pos = sobely.copy()
sobely_pos[sobely <= 0] = 0
sobely_neg = sobely.copy()
sobely_neg[sobely > 0] = 0
checker_x = np.sum(sobelx_pos, axis=0) * np.sum(-sobelx_neg, axis=0)
checker_x = skeletonize_1d(checker_x)
checker_y = np.sum(sobely_pos, axis=1) * np.sum(-sobely_neg, axis=1)
checker_y = skeletonize_1d(checker_y)
x_lines = np.argwhere(checker_x).flatten()
y_lines = np.argwhere(checker_y).flatten()
x_diff = np.diff(x_lines)
y_diff = np.diff(y_lines)
step_x_pred = np.median(x_diff)
step_y_pred = np.median(y_diff)
# Remove internal outlier lines that have the wrong step size
x_good = np.ones(x_lines.shape,dtype=bool)
y_good = np.ones(y_lines.shape,dtype=bool)
x_good[1:] = abs(x_diff - step_x_pred) < 20
y_good[1:] = abs(y_diff - step_y_pred) < 20
x_keep = np.ones(x_lines.shape,dtype=bool)
y_keep = np.ones(y_lines.shape,dtype=bool)
for i in range(x_good.size-1):
if ~np.any(x_good[i:i+2]):
x_keep[i] = False
for i in range(y_good.size-1):
if ~np.any(y_good[i:i+2]):
y_keep[i] = False
x_lines = x_lines[x_keep]
y_lines = y_lines[y_keep]
if len(x_lines) < 7 or len(y_lines) < 7:
return [], [], [], []
# Select set of 7 adjacent lines with max sum score
x_scores = np.zeros(x_lines.shape[0]-7+1)
for i in range(0,x_lines.shape[0]-7+1):
x_scores[i] = np.sum(checker_x[x_lines[i:i+7]])
x_start = np.argmax(x_scores)
strongest_x_lines = range(x_start,x_start+7)
y_scores = np.zeros(y_lines.shape[0]-7+1)
for i in range(0,y_lines.shape[0]-7+1):
y_scores[i] = np.sum(checker_y[y_lines[i:i+7]])
y_start = np.argmax(y_scores)
strongest_y_lines = range(y_start,y_start+7)
# TODO: Sanity check areas between lines for consistent color when choosing?
# Choose best internal 7 chessboard lines
lines_x = x_lines[strongest_x_lines]
lines_y = y_lines[strongest_y_lines]
# Add outer chessboard edges assuming consistent step size
step_x = np.median(np.diff(lines_x))
step_y = np.median(np.diff(lines_y))
lines_x = np.hstack([lines_x[0]-step_x, lines_x, lines_x[-1]+step_x])
lines_y = np.hstack([lines_y[0]-step_y, lines_y, lines_y[-1]+step_y])
return lines_x, lines_y, step_x, step_y
def skeletonize_1d(arr, win=50):
"""return skeletonized 1d array (thin to single value, favor to the right)"""
_arr = arr.copy() # create a copy of array to modify without destroying original
# Go forwards
for i in range(_arr.size-1):
if _arr[i] == 0:
continue
# Will right-shift if they are the same
if np.any(arr[i] <= arr[i+1:i+win+1]):
_arr[i] = 0
# Go reverse
for i in np.arange(_arr.size-1, 0,-1):
if _arr[i] == 0:
continue
if np.any(arr[max(0,i-win):i] > arr[i]):
_arr[i] = 0
return _arr
def getRectChessCorners(lines_x, lines_y):
pairs = np.array(list(itertools.product(range(8),range(8))))
all_warp_corners = np.vstack([lines_x[pairs[:,0]], lines_y[pairs[:,1]]]).T
warp_corners = np.array([
[lines_x[0], lines_y[0]],
[lines_x[-1], lines_y[0]],
[lines_x[-1], lines_y[-1]],
[lines_x[0], lines_y[-1]]
])
return warp_corners[:,:2].astype(np.float32), all_warp_corners[:,:2].astype(np.float32)
def getOrigChessCorners(warp_corners, all_warp_corners, M_inv):
all_stack = np.hstack([all_warp_corners, np.ones([all_warp_corners.shape[0],1])]).T
all_real_corners = (M_inv * all_stack).T
all_real_corners = all_real_corners / all_real_corners[:,2]
stack = np.hstack([warp_corners, np.ones([4,1])]).T
real_corners = (M_inv * stack).T
real_corners = real_corners / real_corners[:,2] # Normalize by z
return real_corners[:,:2].astype(np.float32), all_real_corners[:,:2].astype(np.float32)
def getTileImage(input_img, quad_corners, tile_buffer=0, tile_res=64):
# Add N tile worth buffer on outside edge, such that
# CV/ML algorithms could potentially use this data for better predictions
ideal_quad_corners = np.array([[0,0], [1,0], [1,1], [0,1]], dtype=np.float32)
main_len = tile_res*(ideal_quad_corners*8+tile_buffer)
side_len = tile_res*(8+2*tile_buffer)
M = cv2.getPerspectiveTransform(quad_corners, main_len)
out_img = cv2.warpPerspective(np.array(input_img), M,
(side_len, side_len))
return out_img, M
def getTileTransform(quad_corners, tile_buffer=0, tile_res=64):
# Add N tile worth buffer on outside edge, such that
# CV/ML algorithms could potentially use this data for better predictions
ideal_quad_corners = np.array([[0,0], [1,0], [1,1], [0,1]], dtype=np.float32)
main_len = tile_res*(ideal_quad_corners*8+tile_buffer)
side_len = tile_res*(8+2*tile_buffer)
M = cv2.getPerspectiveTransform(quad_corners, main_len)
return M
def getSegments(v, eps = 2):
# Get segment mask given a vector v, segments are values
# withing eps distance of each other
n = len(v)
segment_mask = np.zeros(n,dtype=np.uint16)
k = 1
for i in range(n):
if segment_mask[i] != 0:
continue
segment_mask[i] = k
for j in range(i+1,n):
if abs(v[j] - v[i]) < eps:
segment_mask[j] = k
k += 1
return segment_mask-1, k-1
def mergePairs(pairs):
if len(pairs) == 1:
return pairs[0]
vals = pairs[0]
for i in range(1,len(pairs)):
v_end = vals[-1]
next_idx = np.argwhere(pairs[i] == v_end)
if len(next_idx) > 0:
vals = np.hstack([vals[:-1], pairs[i,next_idx[0][0]:]])
return vals
def getBestEqualSpacing(vals, min_pts=7, eps=4, std_min=2):
assert(min_pts>3)
# Finds all combinations of triplets of points in vals where
# the standard deviation is less than std_min, then merges
# them into longer equally spaced sets and returns
# the one with the largest equal spacing that has at least n_pts
n_pts = 3
pairs = np.array([k for k in itertools.combinations(vals, n_pts) if np.std(np.diff(k)) < std_min and np.mean(np.diff(k)) > 8])
spacings = np.array([np.mean(np.diff(k)) for k in pairs])
segments, num_segments = getSegments(spacings, eps)
best_spacing = []
best_mean = 0
for i in range(num_segments):
merged = mergePairs(pairs[segments==i])
spacing_mean = np.mean(np.diff(merged))
# Keep the largest equally spaced set that has min number of points
if len(merged) >= min_pts and spacing_mean > best_mean:
best_spacing = merged
best_mean = spacing_mean
return best_spacing