-
Notifications
You must be signed in to change notification settings - Fork 6
/
p256-cortex-m4.c
682 lines (599 loc) · 30.7 KB
/
p256-cortex-m4.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
/*
* Copyright (c) 2017-2021 Emil Lenngren
* Copyright (c) 2021 Shortcut Labs AB
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <stdint.h>
#include <stdbool.h>
#include <string.h>
#include "p256-cortex-m4-config.h"
#include "p256-cortex-m4.h"
typedef const uint32_t (*constarr)[8];
struct FGInteger {
// To get the value this struct represents,
// interpret signed_value as a two's complement 288-bit little endian integer,
// and negate if flip_sign is -1
int flip_sign; // 0 or -1
uint32_t signed_value[9]; // of 288 bits, 257 are useful (top 31 bits are sign-extended from bit 256)
};
struct XYInteger {
// To get the value this struct represents,
// interpret signed_value as an unsigned 288-bit little endian integer,
// and negate if flip_sign is -1
int flip_sign; // 0 or -1
uint32_t value[8]; // unsigned value, 0 <= value < P256_order
};
int P256_divsteps2_31(int delta, uint32_t f, uint32_t g, uint32_t res_matrix[4]);
void P256_matrix_mul_fg_9(uint32_t a, uint32_t b, const struct FGInteger fg[2], struct FGInteger *res);
void P256_matrix_mul_mod_n(uint32_t a, uint32_t b, const struct XYInteger xy[2], struct XYInteger *res);
void P256_to_montgomery(uint32_t aR[8], const uint32_t a[8]);
void P256_from_montgomery(uint32_t a[8], const uint32_t aR[8]);
bool P256_check_range_p(const uint32_t a[8]);
bool P256_check_range_n(const uint32_t a[8]);
void P256_mul_mod_n(uint32_t res[8], const uint32_t a[8], const uint32_t b[8]);
void P256_add_mod_n(uint32_t res[8], const uint32_t a[8], const uint32_t b[8]);
void P256_mod_n_inv_vartime(uint32_t res[8], const uint32_t a[8]);
void P256_reduce_mod_n_32bytes(uint32_t res[8], const uint32_t a[8]);
void P256_select_point(uint32_t (*output)[8], uint32_t* table, uint32_t num_coordinates, uint32_t index);
void P256_jacobian_to_affine(uint32_t affine_mont_x[8], uint32_t affine_mont_y[8], const uint32_t jacobian_mont[3][8]);
bool P256_point_is_on_curve(const uint32_t x_mont[8], const uint32_t y_mont[8]);
bool P256_decompress_point(uint32_t y[8], const uint32_t x[8], uint32_t y_parity);
void P256_double_j(uint32_t jacobian_point_out[3][8], const uint32_t jacobian_point_in[3][8]);
void P256_add_sub_j(uint32_t jacobian_point1[3][8], const uint32_t (*point2)[8], bool is_sub, bool p2_is_affine);
bool P256_verify_last_step(const uint32_t r[8], const uint32_t jacobian_point[3][8]);
void P256_negate_mod_p_if(uint32_t out[8], const uint32_t in[8], uint32_t should_negate);
void P256_negate_mod_n_if(uint32_t out[8], const uint32_t in[8], uint32_t should_negate);
extern uint32_t P256_order[9];
#if include_p256_mult
static const uint32_t one_montgomery[8] = {1, 0, 0, 0xffffffff, 0xffffffff, 0xffffffff, 0xfffffffe, 0};
#endif
#if include_p256_verify
// This table contains 1G, 3G, 5G, ... 15G in affine coordinates in montgomery form
static const uint32_t p256_basepoint_precomp[8][2][8] = {
{{0x18a9143c, 0x79e730d4, 0x5fedb601, 0x75ba95fc, 0x77622510, 0x79fb732b, 0xa53755c6, 0x18905f76},
{0xce95560a, 0xddf25357, 0xba19e45c, 0x8b4ab8e4, 0xdd21f325, 0xd2e88688, 0x25885d85, 0x8571ff18}},
{{0x4eebc127, 0xffac3f90, 0x87d81fb, 0xb027f84a, 0x87cbbc98, 0x66ad77dd, 0xb6ff747e, 0x26936a3f},
{0xc983a7eb, 0xb04c5c1f, 0x861fe1a, 0x583e47ad, 0x1a2ee98e, 0x78820831, 0xe587cc07, 0xd5f06a29}},
{{0xc45c61f5, 0xbe1b8aae, 0x94b9537d, 0x90ec649a, 0xd076c20c, 0x941cb5aa, 0x890523c8, 0xc9079605},
{0xe7ba4f10, 0xeb309b4a, 0xe5eb882b, 0x73c568ef, 0x7e7a1f68, 0x3540a987, 0x2dd1e916, 0x73a076bb}},
{{0xa0173b4f, 0x746354e, 0xd23c00f7, 0x2bd20213, 0xc23bb08, 0xf43eaab5, 0xc3123e03, 0x13ba5119},
{0x3f5b9d4d, 0x2847d030, 0x5da67bdd, 0x6742f2f2, 0x77c94195, 0xef933bdc, 0x6e240867, 0xeaedd915}},
{{0x264e20e8, 0x75c96e8f, 0x59a7a841, 0xabe6bfed, 0x44c8eb00, 0x2cc09c04, 0xf0c4e16b, 0xe05b3080},
{0xa45f3314, 0x1eb7777a, 0xce5d45e3, 0x56af7bed, 0x88b12f1a, 0x2b6e019a, 0xfd835f9b, 0x86659cd}},
{{0x6245e404, 0xea7d260a, 0x6e7fdfe0, 0x9de40795, 0x8dac1ab5, 0x1ff3a415, 0x649c9073, 0x3e7090f1},
{0x2b944e88, 0x1a768561, 0xe57f61c8, 0x250f939e, 0x1ead643d, 0xc0daa89, 0xe125b88e, 0x68930023}},
{{0x4b2ed709, 0xccc42563, 0x856fd30d, 0xe356769, 0x559e9811, 0xbcbcd43f, 0x5395b759, 0x738477ac},
{0xc00ee17f, 0x35752b90, 0x742ed2e3, 0x68748390, 0xbd1f5bc1, 0x7cd06422, 0xc9e7b797, 0xfbc08769}},
{{0xbc60055b, 0x72bcd8b7, 0x56e27e4b, 0x3cc23ee, 0xe4819370, 0xee337424, 0xad3da09, 0xe2aa0e43},
{0x6383c45d, 0x40b8524f, 0x42a41b25, 0xd7663554, 0x778a4797, 0x64efa6de, 0x7079adf4, 0x2042170a}}
};
#endif
#if include_fast_p256_basemult
// This contains two tables, 8 points each in affine coordinates in montgomery form
// The first table contains these points:
// (2^192 - 2^128 - 2^64 - 1)G
// (2^192 - 2^128 - 2^64 + 1)G
// (2^192 - 2^128 + 2^64 - 1)G
// (2^192 - 2^128 + 2^64 + 1)G
// (2^192 + 2^128 - 2^64 - 1)G
// (2^192 + 2^128 - 2^64 + 1)G
// (2^192 + 2^128 + 2^64 - 1)G
// (2^192 + 2^128 + 2^64 + 1)G
// The second table contains the same points multiplied by 2^32
static const uint32_t p256_basepoint_precomp2[2][8][2][8] =
{
{
{{0x670844e0, 0x52d8a7c9, 0xef68a29d, 0xe33bdc, 0x4bdb7361, 0xf3d2848, 0x91c5304d, 0x5222c821},
{0xdf73fc25, 0xea6d2944, 0x255c81b, 0xa04c0f55, 0xefe488a8, 0x29acdc97, 0x80a560de, 0xbe2e158f}},
{{0x2b13e673, 0xfc8511ee, 0xd103ed24, 0xffc58dee, 0xea7e99b8, 0x1022523a, 0x4afc8a17, 0x8f43ea39},
{0xc5f33d0b, 0x8f4e2dbc, 0xd0aa1681, 0x3bc099fa, 0x79ff9df1, 0xffbb7b41, 0xd58b57c4, 0x180de09d}},
{{0x8bd1cda5, 0x56430752, 0x8e05eda5, 0x1807577f, 0x956896e9, 0x99c699b, 0xf1f0efb5, 0x83d6093d},
{0xed97061c, 0xef5af17e, 0x30d4c3c, 0x35b977b8, 0x49229439, 0x81fa75a2, 0xa0b6d35d, 0xf5a22070}},
{{0x74f81cf1, 0x814c5365, 0x120065b, 0xe30baff7, 0x15132621, 0x80ae1256, 0x36a80788, 0x16d2b8cb},
{0xecc50bca, 0x33d14697, 0x17aedd21, 0x19a9dfb0, 0xedc3f766, 0x523fbcc7, 0xb2cf5afd, 0x9c4de6dd}},
{{0xcf0d9f6d, 0x5305a9e6, 0x81a9b021, 0x5839172f, 0x75c687cf, 0xcca7a4dd, 0x844be22f, 0x36d59b3e},
{0x111a53e9, 0xcace7e62, 0xf063f3a1, 0x91c843d4, 0xda812da, 0xbf77e5f0, 0x437f3176, 0xe64af9c}},
{{0xcf07517d, 0xdbd568bb, 0xba6830b9, 0x2f1afba2, 0xe6c4c2a6, 0x15b6807c, 0xe4966aef, 0x91c7eabc},
{0xd6b2b6e6, 0x716dea1b, 0x19f85b4b, 0x248c43d1, 0x4a315e2a, 0x16dcfd60, 0xc72b3d0b, 0x15fdd303}},
{{0x42b7dfd5, 0xe40bf9f4, 0x2d934f2a, 0x673689f3, 0x30a6f50b, 0x8314beb4, 0x976ec64e, 0xd17af2bc},
{0x1ee7ddf1, 0x39f66c4f, 0x68ea373c, 0x7f68e18b, 0x53d0b186, 0x5166c1f2, 0x7be58f14, 0x95dda601}},
{{0x42913074, 0xd5ae356, 0x48a542b1, 0x55491b27, 0xb310732a, 0x469ca665, 0x5f1a4cc1, 0x29591d52},
{0xb84f983f, 0xe76f5b6b, 0x9f5f84e1, 0xbe7eef41, 0x80baa189, 0x1200d496, 0x18ef332c, 0x6376551f}}
},
{
{{0x7c4e54f5, 0xb9e5cbc0, 0xe1410e34, 0xc53a1a17, 0xec454425, 0x3e199130, 0x1700902e, 0xb029c97e},
{0x786423b6, 0x2de66e11, 0xb41a95be, 0x262dc914, 0x451b683, 0x51766abd, 0x85bb6fb1, 0x55ad5f34}},
{{0x9066cb79, 0x74f4f1c, 0x30c8b94e, 0x1ab31bd6, 0xd74275b3, 0x6d3f012f, 0x9ddcce40, 0xa214d0b1},
{0xd165050a, 0x24aedf74, 0xe0e5dc3e, 0x95f17ece, 0xd9224456, 0x6ada9cda, 0x2dd60eea, 0x1fadb2d1}},
{{0xe20cfb9b, 0xa3d83091, 0xba76e0cb, 0xae79c975, 0xc8858a6e, 0xa5f2a588, 0x874a3168, 0xe897a5f4},
{0x7d48f096, 0xf6c1ef40, 0xc35b132c, 0x1f9c516b, 0x53c479fd, 0xe1040f91, 0x9df06743, 0x60e881f}},
{{0x52a90e51, 0x9e0ad72, 0x38c50a96, 0xb7e66ea3, 0x7d997770, 0xab32ad05, 0x445671cb, 0xceaffe2},
{0x5d37cc99, 0xdfbe753c, 0xe0fea2d5, 0x95d068cc, 0x4dd77cb6, 0x1e37cdda, 0x55530688, 0x88c5a4bb}},
{{0xc7744f1, 0x3413f033, 0xbc816702, 0x23c05c89, 0x1192b5ac, 0x2322ee9a, 0x373180bb, 0xc1636a0},
{0xbdde0207, 0xfe2f3d4, 0xc23578d8, 0xe1a093a, 0xc888ead, 0x6e5f0d1, 0x52a2b660, 0x9ca285a5}},
{{0xce923964, 0xdae76995, 0xa34c7993, 0xcc96493a, 0xea73d9e7, 0xd19b5144, 0x311e6e34, 0x4a5c263},
{0xd9a2a443, 0x7db5b32b, 0x2cfd960c, 0x3754bd33, 0xa430f15, 0xc5bcc98, 0xd9a94574, 0x5651201f}},
{{0xfc0418fe, 0xebdd8921, 0x34e20036, 0x37015b39, 0xdf03a353, 0xcf4fcd8f, 0xf12cab16, 0xdc2de6e1},
{0xd071df14, 0x9c17cc1a, 0x63415530, 0xd7c5e6a3, 0x68f3fb1e, 0xb5301660, 0x18269301, 0xb5f70bc9}},
{{0x79ec1a0f, 0x2d8daefd, 0xceb39c97, 0x3bbcd6fd, 0x58f61a95, 0xf5575ffc, 0xadf7b420, 0xdbd986c4},
{0x15f39eb7, 0x81aa8814, 0xb98d976c, 0x6ee2fcf5, 0xcf2f717d, 0x5465475d, 0x6860bbd0, 0x8e24d3c4}}
}
};
#endif
#if include_p256_verify || include_p256_sign
// Takes the leftmost 256 bits in hash (treated as big endian),
// and converts to little endian integer z.
static void hash_to_z(uint32_t z[8], const uint8_t* hash, uint32_t hashlen) {
if (hashlen > 32) {
hashlen = 32;
}
for (uint32_t i = 0; i < hashlen; i++) {
((uint8_t*)z)[i] = hash[hashlen - 1 - i];
}
for (uint32_t i = hashlen; i < 32; i++) {
((uint8_t*)z)[i] = 0;
}
}
#endif
#if include_p256_verify
// Creates a representation of a (little endian integer),
// so that r[0] + 2*r[1] + 2^2*r[2] + 2^3*r[3] + ... = a,
// where each r[i] is -15, -13, ..., 11, 13, 15 or 0.
// Only around 1/5.5 of the r[i] will be non-zero.
static void slide_257(signed char r[257], const uint8_t a[32]) {
for (int i = 0; i < 256; ++i) {
r[i] = 1 & (a[i >> 3] >> (i & 7));
}
r[256] = 0;
for (int i = 0; i < 256; i++) {
if (r[i] != 0) {
for (int b = 1; b <= 4 && i + b < 256; b++) {
if (r[i + b] != 0) {
if (r[i] + (r[i + b] << b) <= 15) {
r[i] += r[i + b] << b; r[i + b] = 0;
} else if (r[i] - (r[i + b] << b) >= -15) {
r[i] -= r[i + b] << b;
for (;;) {
r[i + b] = 0;
b++;
if (!r[i + b]) {
r[i + b] = 1;
b--; // Will be added back after loop footer b++
break;
}
}
} else {
break;
}
}
}
}
}
}
#endif
#if include_p256_sign
void P256_mod_n_inv(uint32_t out[8], const uint32_t in[8]) {
// This function follows the algorithm in section 12.1 of https://gcd.cr.yp.to/safegcd-20190413.pdf.
// It has been altered in the following ways:
// 1. Due to 32-bit cpu, we use 24 * 31 iterations instead of 12 * 62.
// 2. P-256 modulus instead of 2^255-19.
// 744 iterations are still enough and slightly more than the required 741 (floor((49*256+57)/17)).
// 3. Step 5 has been corrected to go back to step 2 instead of step 3.
// 4. The order of the matrix multiplications in step 6 has been changed to (T24*(T23*(T22*(...*(T1*[0, 1]))))),
// where [0, 1] is a column vector to make it possible to be able to extract the "top-right corner", v, of T24*T23*...*T1.
// The result v will then be contained in the first element of the resulting column vector.
struct {
struct FGInteger fg[2]; // f and g
struct XYInteger xy[2]; // x and y
} state[2]; // "current" and "next"
state[0].fg[0].flip_sign = 0; // non-negative f
memcpy(&state[0].fg[0].signed_value, P256_order, 36); // f
state[0].fg[1].flip_sign = 0; // non-negative g
memcpy(&state[0].fg[1].signed_value, in, 32); // g
state[0].fg[1].signed_value[8] = 0; // upper bits of g are 0
memset(&state[0].xy, 0, sizeof(state[0].xy));
// We later need a factor 2^-744. The montgomery multiplication gives 2^(24*-32)=2^-768, so multiply the init value (1) by 2^24 here.
state[0].xy[1].value[0] = 1U << 24;
int delta = 1;
for (int i = 0; i < 24; i++) {
// Scaled translation matrix Ti
uint32_t matrix[4]; // element range: [-2^30, 2^31] (negative numbers are stored in two's complement form)
// Decode f and g into two's complement representation and use the lowest 32 bits in the P256_divsteps2_31 calculation
uint32_t negate_f = state[i % 2].fg[0].flip_sign;
uint32_t negate_g = state[i % 2].fg[1].flip_sign;
delta = P256_divsteps2_31(delta, (state[i % 2].fg[0].signed_value[0] ^ negate_f) - negate_f, (state[i % 2].fg[1].signed_value[0] ^ negate_g) - negate_g, matrix);
// "Jump step", calculates the new f and g values that applies after 31 divstep2 iterations
P256_matrix_mul_fg_9(matrix[0], matrix[1], state[i % 2].fg, &state[(i + 1) % 2].fg[0]);
P256_matrix_mul_fg_9(matrix[2], matrix[3], state[i % 2].fg, &state[(i + 1) % 2].fg[1]);
// Iterate the result vector
// Due to montgomery multiplication inside this function, each step also adds a 2^-32 factor
P256_matrix_mul_mod_n(matrix[0], matrix[1], state[i % 2].xy, &state[(i + 1) % 2].xy[0]);
P256_matrix_mul_mod_n(matrix[2], matrix[3], state[i % 2].xy, &state[(i + 1) % 2].xy[1]);
}
// Calculates val^-1 = sgn(f) * v * 2^-744, where v is the "top-right corner" of the resulting T24*T23*...*T1 matrix.
// In this implementation, at this point x contains v * 2^-744.
P256_negate_mod_n_if(out, &state[0].xy[0].value[0], (state[0].xy[0].flip_sign ^ state[0].fg[0].flip_sign ^ state[0].fg[0].signed_value[8]) & 1);
}
#endif
#if include_p256_varmult || (include_p256_basemult && !use_fast_p256_basemult)
// Constant time abs
static inline uint32_t abs_int(int8_t a) {
uint32_t a_u = (uint32_t)(int32_t)a;
uint32_t mask = a_u >> 31;
mask |= mask << 1;
mask |= mask << 2;
uint32_t result = (-a) & mask;
result |= a & (mask ^ 0xf);
return result;
}
// Calculates scalar*P in constant time (except for the scalars 2 and n-2, for which the results take a few extra cycles to compute)
static void scalarmult_variable_base(uint32_t output_mont_x[8], uint32_t output_mont_y[8], const uint32_t input_mont_x[8], const uint32_t input_mont_y[8], const uint32_t scalar[8]) {
// Based on https://eprint.iacr.org/2014/130.pdf, Algorithm 1.
uint32_t scalar2[8];
int8_t e[64];
// The algorithm used requires the scalar to be odd. If even, negate the scalar modulo p to make it odd, and later negate the end result.
bool even = (scalar[0] & 1) ^ 1;
P256_negate_mod_n_if(scalar2, scalar, even);
// Rewrite the scalar as e[0] + 2^4*e[1] + 2^8*e[2] + ... + 2^252*e[63], where each e[i] is an odd number and -15 <= e[i] <= 15.
e[0] = scalar2[0] & 0xf;
for (int i = 1; i < 64; i++) {
// Extract 4 bits
e[i] = (scalar2[i / 8] >> ((i % 8) * 4)) & 0xf;
// If even, subtract 2^4 from e[i - 1] and add 1 to e[i]
e[i - 1] -= ((e[i] & 1) ^ 1) << 4;
e[i] |= 1;
}
// Create a table of P, 3P, 5P, ... 15P.
uint32_t table[8][3][8];
memcpy(table[0][0], input_mont_x, 32);
memcpy(table[0][1], input_mont_y, 32);
memcpy(table[0][2], one_montgomery, 32);
P256_double_j(table[7], (constarr)table[0]);
for (int i = 1; i < 8; i++) {
memcpy(table[i], table[7], 96);
P256_add_sub_j(table[i], (constarr)table[i - 1], 0, 0);
}
// Calculate the result as (((((((((e[63]*G)*2^4)+e[62])*2^4)+e[61])*2^4)...)+e[1])*2^4)+e[0] = (2^252*e[63] + 2^248*e[62] + ... + e[0])*G.
uint32_t current_point[3][8];
// e[63] is never negative
#if has_d_cache
P256_select_point(current_point, (uint32_t*)table, 3, e[63] >> 1);
#else
memcpy(current_point, table[e[63] >> 1], 96);
#endif
for (uint32_t i = 63; i --> 0;) {
for (int j = 3; j >= 0; j--) {
P256_double_j(current_point, (constarr)current_point);
}
uint32_t selected_point[3][8];
#if has_d_cache
P256_select_point(selected_point, (uint32_t*)table, 3, abs_int(e[i]) >> 1);
#else
memcpy(selected_point, table[abs_int(e[i]) >> 1], 96);
#endif
P256_negate_mod_p_if(selected_point[1], selected_point[1], (uint8_t)e[i] >> 7);
// There is (only) one odd input scalar that leads to an exception when i == 0: n-2,
// in that case current_point will be equal to selected_point and hence a doubling
// will occur instead. We don't bother fixing the same constant time for that case since
// the probability of that random value to be generated is around 1/2^255 and an
// attacker could easily test this case anyway.
P256_add_sub_j(current_point, (constarr)selected_point, false, false);
}
P256_jacobian_to_affine(output_mont_x, output_mont_y, (constarr)current_point);
// If the scalar was initially even, we now negate the result to get the correct result, since -(scalar*G) = (-scalar*G).
// This is done by negating y, since -(x,y) = (x,-y).
P256_negate_mod_p_if(output_mont_y, output_mont_y, even);
}
#endif
#define get_bit(arr, i) ((arr[(i) / 32] >> ((i) % 32)) & 1)
#if include_p256_basemult
#if include_fast_p256_basemult
// Calculates scalar*G in constant time
static void scalarmult_fixed_base(uint32_t output_mont_x[8], uint32_t output_mont_y[8], const uint32_t scalar[8]) {
uint32_t scalar2[8];
// Just as with the algorithm used in variable base scalar multiplication, this algorithm requires the scalar to be odd.
bool even = (scalar[0] & 1) ^ 1;
P256_negate_mod_n_if(scalar2, scalar, even);
// This algorithm conceptually rewrites the odd scalar as s[0] + 2^1*s[1] + 2^2*s[2] + ... + 2^255*s[255], where each s[i] is -1 or 1.
// By initially setting s[i] to the corresponding bit S[i] in the original odd scalar S, we go from lsb to msb, and whenever a value s[i] is 0,
// increase s[i] by 1 and decrease s[i-1] by 2.
// This will result in that s[i] = S[i+1] == 1 ? 1 : -1 for i < 255, and s[255] = 1.
// We then form the scalars abs(s[j] + s[j+64]*2^64 + s[j+128]*2^128 + s[j+192]*2^192)*(2^32 * floor(j / 32)) for different 0 <= j < 64.
// Each scalar times G has already been precomputed in p256_basepoint_precomp2.
// That way we only need 31 point doublings and 63 point additions.
uint32_t current_point[3][8];
uint32_t selected_point[2][8];
#if !has_d_cache
// Load table into RAM, for example if the the table lies on external memory mapped flash, which can easily be intercepted.
uint32_t precomp[2][8][2][8];
memcpy(precomp, p256_basepoint_precomp2, sizeof(p256_basepoint_precomp2));
#endif
for (uint32_t i = 32; i --> 0;) {
{
uint32_t mask = get_bit(scalar2, i + 32 + 1) | (get_bit(scalar2, i + 64 + 32 + 1) << 1) | (get_bit(scalar2, i + 2 * 64 + 32 + 1) << 2);
if (i == 31) {
#if has_d_cache
P256_select_point(current_point, (uint32_t*)p256_basepoint_precomp2[1], 2, mask);
#else
memcpy(current_point, precomp[1][mask], 64);
#endif
memcpy(current_point[2], one_montgomery, 32);
} else {
P256_double_j(current_point, (constarr)current_point);
uint32_t sign = get_bit(scalar2, i + 3 * 64 + 32 + 1) - 1; // positive: 0, negative: -1
mask = (mask ^ sign) & 7;
#if has_d_cache
P256_select_point(selected_point, (uint32_t*)p256_basepoint_precomp2[1], 2, mask);
#else
memcpy(selected_point, precomp[1][mask], 64);
#endif
P256_negate_mod_p_if(selected_point[1], selected_point[1], sign & 1);
P256_add_sub_j(current_point, (constarr)selected_point, false, true);
}
}
{
uint32_t mask = get_bit(scalar2, i + 1) | (get_bit(scalar2, i + 64 + 1) << 1) | (get_bit(scalar2, i + 2 * 64 + 1) << 2);
uint32_t sign = get_bit(scalar2, i + 3 * 64 + 1) - 1; // positive: 0, negative: -1
mask = (mask ^ sign) & 7;
#if has_d_cache
P256_select_point(selected_point, (uint32_t*)p256_basepoint_precomp2[0], 2, mask);
#else
memcpy(selected_point, precomp[0][mask], 64);
#endif
P256_negate_mod_p_if(selected_point[1], selected_point[1], sign & 1);
P256_add_sub_j(current_point, (constarr)selected_point, false, true);
}
}
P256_jacobian_to_affine(output_mont_x, output_mont_y, (constarr)current_point);
// Negate final result if the scalar was initially even.
P256_negate_mod_p_if(output_mont_y, output_mont_y, even);
}
#else
static void scalarmult_fixed_base(uint32_t output_mont_x[8], uint32_t output_mont_y[8], const uint32_t scalar[8]) {
#if !include_p256_verify
static const uint32_t p[2][8] =
{{0x18a9143c, 0x79e730d4, 0x5fedb601, 0x75ba95fc, 0x77622510, 0x79fb732b, 0xa53755c6, 0x18905f76},
{0xce95560a, 0xddf25357, 0xba19e45c, 0x8b4ab8e4, 0xdd21f325, 0xd2e88688, 0x25885d85, 0x8571ff18}};
scalarmult_variable_base(output_mont_x, output_mont_y, p[0], p[1], scalar);
#else
scalarmult_variable_base(output_mont_x, output_mont_y, p256_basepoint_precomp[0][0], p256_basepoint_precomp[0][1], scalar);
#endif
}
#endif
#endif
void p256_convert_endianness(void* output, const void* input, size_t byte_len) {
for (size_t i = 0; i < byte_len / 2; i++) {
uint8_t t = ((uint8_t*)input)[byte_len - 1 - i];
((uint8_t*)output)[byte_len - 1 - i] = ((uint8_t*)input)[i];
((uint8_t*)output)[i] = t;
}
}
#if include_p256_verify
bool p256_verify(const uint32_t public_key_x[8], const uint32_t public_key_y[8], const uint8_t* hash, uint32_t hashlen_in_bytes, const uint32_t r[8], const uint32_t s[8]) {
if (!P256_check_range_n(r) || !P256_check_range_n(s)) {
return false;
}
if (!P256_check_range_p(public_key_x) || !P256_check_range_p(public_key_y)) {
return false;
}
uint32_t pk_table[8][3][8];
P256_to_montgomery(pk_table[0][0], public_key_x);
P256_to_montgomery(pk_table[0][1], public_key_y);
memcpy(pk_table[0][2], one_montgomery, 32);
if (!P256_point_is_on_curve(pk_table[0][0], pk_table[0][1])) {
return false;
}
// Create a table of P, 3P, 5P, ..., 15P, where P is the public key.
P256_double_j(pk_table[7], (constarr)pk_table[0]);
for (int i = 1; i < 8; i++) {
memcpy(pk_table[i], pk_table[7], 96);
P256_add_sub_j(pk_table[i], (constarr)pk_table[i - 1], 0, 0);
}
uint32_t z[8], w[8], u1[8], u2[8];
hash_to_z(z, hash, hashlen_in_bytes);
#if include_p256_sign
P256_mod_n_inv(w, s);
#else
// Use smaller implementation if we don't need constant time version
P256_mod_n_inv_vartime(w, s);
#endif
P256_mul_mod_n(u1, z, w);
P256_mul_mod_n(u2, r, w);
// Each value in these arrays will be an odd integer v, so that -15 <= v <= 15.
// Around 1/5.5 of them will be non-zero.
signed char slide_bp[257], slide_pk[257];
slide_257(slide_bp, (uint8_t*)u1);
slide_257(slide_pk, (uint8_t*)u2);
uint32_t cp[3][8] = {0};
for (int i = 256; i >= 0; i--) {
P256_double_j(cp, (constarr)cp);
if (slide_bp[i] > 0) {
P256_add_sub_j(cp, p256_basepoint_precomp[slide_bp[i]/2], 0, 1);
} else if (slide_bp[i] < 0) {
P256_add_sub_j(cp, p256_basepoint_precomp[(-slide_bp[i])/2], 1, 1);
}
if (slide_pk[i] > 0) {
P256_add_sub_j(cp, (constarr)pk_table[slide_pk[i]/2], 0, 0);
} else if (slide_pk[i] < 0) {
P256_add_sub_j(cp, (constarr)pk_table[(-slide_pk[i])/2], 1, 0);
}
}
return P256_verify_last_step(r, (constarr)cp);
}
#endif
#if include_p256_sign
bool p256_sign_step1(struct SignPrecomp *result, const uint32_t k[8]) {
do {
uint32_t point_res[2][8];
if (!P256_check_range_n(k)) {
break;
}
scalarmult_fixed_base(point_res[0], point_res[1], k);
P256_mod_n_inv(result->k_inv, k);
P256_from_montgomery(result->r, point_res[0]);
P256_reduce_mod_n_32bytes(result->r, result->r);
uint32_t r_sum = 0;
for (int i = 0; i < 8; i++) {
r_sum |= result->r[i];
}
if (r_sum == 0) {
break;
}
return true;
} while (false);
memset(result, 0, sizeof(struct SignPrecomp));
return false;
}
bool p256_sign_step2(uint32_t r[8], uint32_t s[8], const uint8_t* hash, uint32_t hashlen_in_bytes, const uint32_t private_key[8], struct SignPrecomp *sign_precomp) {
do {
if (!P256_check_range_n(sign_precomp->k_inv) || !P256_check_range_n(sign_precomp->r)) { // just make sure user did not input an obviously invalid precomp
break;
}
uint32_t *const z = r;
hash_to_z(z, hash, hashlen_in_bytes);
P256_mul_mod_n(s, sign_precomp->r, private_key);
P256_add_mod_n(s, z, s);
P256_mul_mod_n(s, sign_precomp->k_inv, s);
memcpy(r, sign_precomp->r, 32);
uint32_t s_sum = 0;
for (int i = 0; i < 8; i++) {
s_sum |= s[i];
}
if (s_sum == 0) {
break;
}
memset(sign_precomp, 0, sizeof(*sign_precomp));
return true;
} while (false);
memset(r, 0, 32);
memset(s, 0, 32);
return false;
}
bool p256_sign(uint32_t r[8], uint32_t s[8], const uint8_t* hash, uint32_t hashlen_in_bytes, const uint32_t private_key[8], const uint32_t k[8]) {
struct SignPrecomp t;
if (!p256_sign_step1(&t, k)) {
memset(r, 0, 32);
memset(s, 0, 32);
return false;
}
return p256_sign_step2(r, s, hash, hashlen_in_bytes, private_key, &t);
}
#endif
#if include_p256_keygen || include_p256_raw_scalarmult_base
bool p256_scalarmult_base(uint32_t result_x[8], uint32_t result_y[8], const uint32_t scalar[8]) {
if (!P256_check_range_n(scalar)) {
return false;
}
scalarmult_fixed_base(result_x, result_y, scalar);
P256_from_montgomery(result_x, result_x);
P256_from_montgomery(result_y, result_y);
return true;
}
#if include_p256_keygen
bool p256_keygen(uint32_t public_key_x[8], uint32_t public_key_y[8], const uint32_t private_key[8]) {
return p256_scalarmult_base(public_key_x, public_key_y, private_key);
}
#endif
#endif
#if include_p256_varmult
static bool p256_scalarmult_generic_no_scalar_check(uint32_t output_mont_x[8], uint32_t output_mont_y[8], const uint32_t scalar[8], const uint32_t in_x[8], const uint32_t in_y[8]) {
if (!P256_check_range_p(in_x) || !P256_check_range_p(in_y)) {
return false;
}
P256_to_montgomery(output_mont_x, in_x);
P256_to_montgomery(output_mont_y, in_y);
if (!P256_point_is_on_curve(output_mont_x, output_mont_y)) {
return false;
}
scalarmult_variable_base(output_mont_x, output_mont_y, output_mont_x, output_mont_y, scalar);
return true;
}
#if include_p256_raw_scalarmult_generic
bool p256_scalarmult_generic(uint32_t result_x[8], uint32_t result_y[8], const uint32_t scalar[8], const uint32_t in_x[8], const uint32_t in_y[8]) {
if (!P256_check_range_n(scalar) || !p256_scalarmult_generic_no_scalar_check(result_x, result_y, scalar, in_x, in_y)) {
return false;
}
P256_from_montgomery(result_x, result_x);
P256_from_montgomery(result_y, result_y);
return true;
}
#endif
#if include_p256_ecdh
bool p256_ecdh_calc_shared_secret(uint8_t shared_secret[32], const uint32_t private_key[8], const uint32_t others_public_key_x[8], const uint32_t others_public_key_y[8]) {
uint32_t result_x[8], result_y[8];
if (!p256_scalarmult_generic_no_scalar_check(result_x, result_y, private_key, others_public_key_x, others_public_key_y)) {
return false;
}
P256_from_montgomery(result_x, result_x);
p256_convert_endianness(shared_secret, result_x, 32);
return true;
}
#endif
#endif
#if include_p256_to_octet_string_uncompressed
void p256_point_to_octet_string_uncompressed(uint8_t out[65], const uint32_t x[8], const uint32_t y[8]) {
out[0] = 4;
p256_convert_endianness(out + 1, x, 32);
p256_convert_endianness(out + 33, y, 32);
}
#endif
#if include_p256_to_octet_string_compressed
void p256_point_to_octet_string_compressed(uint8_t out[33], const uint32_t x[8], const uint32_t y[8]) {
out[0] = 2 + (y[0] & 1);
p256_convert_endianness(out + 1, x, 32);
}
#endif
#if include_p256_to_octet_string_hybrid
void p256_point_to_octet_string_hybrid(uint8_t out[65], const uint32_t x[8], const uint32_t y[8]) {
out[0] = 6 + (y[0] & 1);
p256_convert_endianness(out + 1, x, 32);
p256_convert_endianness(out + 33, y, 32);
}
#endif
#if include_p256_decode_point || include_p256_decompress_point
bool p256_octet_string_to_point(uint32_t x[8], uint32_t y[8], const uint8_t* input, uint32_t input_len_in_bytes) {
if (input_len_in_bytes < 33) return false;
p256_convert_endianness(x, input + 1, 32);
if (!P256_check_range_p(x)) {
return false;
}
#if include_p256_decode_point
if ((input[0] == 4 || (input[0] >> 1) == 3) && input_len_in_bytes == 65) {
p256_convert_endianness(y, input + 33, 32);
if (!P256_check_range_p(y)) {
return false;
}
if ((input[0] >> 1) == 3 && (input[0] & 1) != (y[0] & 1)) {
return false;
}
uint32_t x_mont[8], y_mont[8];
P256_to_montgomery(x_mont, x);
P256_to_montgomery(y_mont, y);
return P256_point_is_on_curve(x_mont, y_mont);
}
#endif
#if include_p256_decompress_point
if ((input[0] >> 1) == 1 && input_len_in_bytes == 33) {
return P256_decompress_point(y, x, input[0] & 1);
}
#endif
return false;
}
#endif