From bfbbbe4e6601fd38fa8d5e925c38c87a94ab34ce Mon Sep 17 00:00:00 2001 From: Manuel Drehwald Date: Wed, 18 Sep 2024 00:25:13 -0400 Subject: [PATCH] cleanup unused SCEV code --- enzyme/Enzyme/CMakeLists.txt | 1 - .../Enzyme/SCEV/ScalarEvolutionExpander.cpp | 30 - .../Enzyme/SCEV/ScalarEvolutionExpander11.cpp | 2579 ----------------- 3 files changed, 2610 deletions(-) delete mode 100644 enzyme/Enzyme/SCEV/ScalarEvolutionExpander.cpp delete mode 100644 enzyme/Enzyme/SCEV/ScalarEvolutionExpander11.cpp diff --git a/enzyme/Enzyme/CMakeLists.txt b/enzyme/Enzyme/CMakeLists.txt index c40bf5426d97..77f95faed198 100644 --- a/enzyme/Enzyme/CMakeLists.txt +++ b/enzyme/Enzyme/CMakeLists.txt @@ -48,7 +48,6 @@ list(REMOVE_ITEM ENZYME_SRC "eopt.cpp") set(CMAKE_CXX_STANDARD 17) set(CMAKE_CXX_STANDARD_REQUIRED ON) -list(APPEND ENZYME_SRC SCEV/ScalarEvolutionExpander.cpp) list(APPEND ENZYME_SRC TypeAnalysis/TypeTree.cpp TypeAnalysis/TypeAnalysis.cpp TypeAnalysis/TypeAnalysisPrinter.cpp TypeAnalysis/RustDebugInfo.cpp) # on windows `PLUGIN_TOOL` doesn't link against LLVM.dll diff --git a/enzyme/Enzyme/SCEV/ScalarEvolutionExpander.cpp b/enzyme/Enzyme/SCEV/ScalarEvolutionExpander.cpp deleted file mode 100644 index 93d8c24e5892..000000000000 --- a/enzyme/Enzyme/SCEV/ScalarEvolutionExpander.cpp +++ /dev/null @@ -1,30 +0,0 @@ -//===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis ------------===// -// -// Enzyme Project -// -// Part of the Enzyme Project, under the Apache License v2.0 with LLVM -// Exceptions. See https://llvm.org/LICENSE.txt for license information. -// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception -// -// If using this code in an academic setting, please cite the following: -// @misc{enzymeGithub, -// author = {William S. Moses and Valentin Churavy}, -// title = {Enzyme: High Performance Automatic Differentiation of LLVM}, -// year = {2020}, -// howpublished = {\url{https://github.com/wsmoses/Enzyme}}, -// note = {commit xxxxxxx} -// } -// -//===----------------------------------------------------------------------===// -// -// This file contains the implementation of the scalar evolution expander -// with modifications necessary to allow usage in LLVM plugins. -// -//===----------------------------------------------------------------------===// - -#include "llvm/Config/llvm-config.h" - -#if LLVM_VERSION_MAJOR < 12 -#include "SCEV/ScalarEvolutionExpander.h" -#include "ScalarEvolutionExpander11.cpp" -#endif diff --git a/enzyme/Enzyme/SCEV/ScalarEvolutionExpander11.cpp b/enzyme/Enzyme/SCEV/ScalarEvolutionExpander11.cpp deleted file mode 100644 index fcc2e58e14ad..000000000000 --- a/enzyme/Enzyme/SCEV/ScalarEvolutionExpander11.cpp +++ /dev/null @@ -1,2579 +0,0 @@ -//===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis ------------===// -// -// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. -// See https://llvm.org/LICENSE.txt for license information. -// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception -// -//===----------------------------------------------------------------------===// -// This file has been modified for Enzyme -//===----------------------------------------------------------------------===// -// -// This file contains the implementation of the scalar evolution expander, -// which is used to generate the code corresponding to a given scalar evolution -// expression. -// -//===----------------------------------------------------------------------===// - -#include "llvm/ADT/STLExtras.h" -#include "llvm/ADT/SmallSet.h" -#include "llvm/Analysis/InstructionSimplify.h" -#include "llvm/Analysis/LoopInfo.h" -#include "llvm/Analysis/TargetTransformInfo.h" -#include "llvm/IR/DataLayout.h" -#include "llvm/IR/Dominators.h" -#include "llvm/IR/IntrinsicInst.h" -#include "llvm/IR/LLVMContext.h" -#include "llvm/IR/Module.h" -#include "llvm/IR/PatternMatch.h" -#include "llvm/Support/CommandLine.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/raw_ostream.h" -#include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" - -using namespace llvm; - -extern cl::opt llvm::SCEVCheapExpansionBudget; -/* -( - "scev-cheap-expansion-budget", cl::Hidden, cl::init(4), - cl::desc("When performing SCEV expansion only if it is cheap to do, this " - "controls the budget that is considered cheap (default = 4)")); -*/ -using namespace PatternMatch; - -/// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP, -/// reusing an existing cast if a suitable one exists, moving an existing -/// cast if a suitable one exists but isn't in the right place, or -/// creating a new one. -Value *fake::SCEVExpander::ReuseOrCreateCast(Value *V, Type *Ty, - Instruction::CastOps Op, - BasicBlock::iterator IP) { - // This function must be called with the builder having a valid insertion - // point. It doesn't need to be the actual IP where the uses of the returned - // cast will be added, but it must dominate such IP. - // We use this precondition to produce a cast that will dominate all its - // uses. In particular, this is crucial for the case where the builder's - // insertion point *is* the point where we were asked to put the cast. - // Since we don't know the builder's insertion point is actually - // where the uses will be added (only that it dominates it), we are - // not allowed to move it. - BasicBlock::iterator BIP = Builder.GetInsertPoint(); - - Instruction *Ret = nullptr; - - // Check to see if there is already a cast! - for (User *U : V->users()) - if (U->getType() == Ty) - if (CastInst *CI = dyn_cast(U)) - if (CI->getOpcode() == Op) { - // If the cast isn't where we want it, create a new cast at IP. - // Likewise, do not reuse a cast at BIP because it must dominate - // instructions that might be inserted before BIP. - if (BasicBlock::iterator(CI) != IP || BIP == IP) { - // Create a new cast, and leave the old cast in place in case - // it is being used as an insert point. - Ret = CastInst::Create(Op, V, Ty, "", &*IP); - Ret->takeName(CI); - CI->replaceAllUsesWith(Ret); - break; - } - Ret = CI; - break; - } - - // Create a new cast. - if (!Ret) - Ret = CastInst::Create(Op, V, Ty, V->getName(), &*IP); - - // We assert at the end of the function since IP might point to an - // instruction with different dominance properties than a cast - // (an invoke for example) and not dominate BIP (but the cast does). - assert(SE.DT.dominates(Ret, &*BIP)); - - rememberInstruction(Ret); - return Ret; -} - -static BasicBlock::iterator findInsertPointAfter(Instruction *I, - BasicBlock *MustDominate) { - BasicBlock::iterator IP = ++I->getIterator(); - if (auto *II = dyn_cast(I)) - IP = II->getNormalDest()->begin(); - - while (isa(IP)) - ++IP; - - if (isa(IP) || isa(IP)) { - ++IP; - } else if (isa(IP)) { - IP = MustDominate->getFirstInsertionPt(); - } else { - assert(!IP->isEHPad() && "unexpected eh pad!"); - } - - return IP; -} - -/// InsertNoopCastOfTo - Insert a cast of V to the specified type, -/// which must be possible with a noop cast, doing what we can to share -/// the casts. -Value *fake::SCEVExpander::InsertNoopCastOfTo(Value *V, Type *Ty) { - Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false); - assert((Op == Instruction::BitCast || Op == Instruction::PtrToInt || - Op == Instruction::IntToPtr) && - "InsertNoopCastOfTo cannot perform non-noop casts!"); - assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) && - "InsertNoopCastOfTo cannot change sizes!"); - - // Short-circuit unnecessary bitcasts. - if (Op == Instruction::BitCast) { - if (V->getType() == Ty) - return V; - if (CastInst *CI = dyn_cast(V)) { - if (CI->getOperand(0)->getType() == Ty) - return CI->getOperand(0); - } - } - // Short-circuit unnecessary inttoptr<->ptrtoint casts. - if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) && - SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) { - if (CastInst *CI = dyn_cast(V)) - if ((CI->getOpcode() == Instruction::PtrToInt || - CI->getOpcode() == Instruction::IntToPtr) && - SE.getTypeSizeInBits(CI->getType()) == - SE.getTypeSizeInBits(CI->getOperand(0)->getType())) - return CI->getOperand(0); - if (ConstantExpr *CE = dyn_cast(V)) - if ((CE->getOpcode() == Instruction::PtrToInt || - CE->getOpcode() == Instruction::IntToPtr) && - SE.getTypeSizeInBits(CE->getType()) == - SE.getTypeSizeInBits(CE->getOperand(0)->getType())) - return CE->getOperand(0); - } - - // Fold a cast of a constant. - if (Constant *C = dyn_cast(V)) - return ConstantExpr::getCast(Op, C, Ty); - - // Cast the argument at the beginning of the entry block, after - // any bitcasts of other arguments. - if (Argument *A = dyn_cast(V)) { - BasicBlock::iterator IP = A->getParent()->getEntryBlock().begin(); - while ((isa(IP) && - isa(cast(IP)->getOperand(0)) && - cast(IP)->getOperand(0) != A) || - isa(IP)) - ++IP; - return ReuseOrCreateCast(A, Ty, Op, IP); - } - - // Cast the instruction immediately after the instruction. - Instruction *I = cast(V); - BasicBlock::iterator IP = findInsertPointAfter(I, Builder.GetInsertBlock()); - return ReuseOrCreateCast(I, Ty, Op, IP); -} - -/// InsertBinop - Insert the specified binary operator, doing a small amount -/// of work to avoid inserting an obviously redundant operation, and hoisting -/// to an outer loop when the opportunity is there and it is safe. -Value *fake::SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode, - Value *LHS, Value *RHS, - SCEV::NoWrapFlags Flags, - bool IsSafeToHoist) { - // Fold a binop with constant operands. - if (Constant *CLHS = dyn_cast(LHS)) - if (Constant *CRHS = dyn_cast(RHS)) - return ConstantExpr::get(Opcode, CLHS, CRHS); - - // Do a quick scan to see if we have this binop nearby. If so, reuse it. - unsigned ScanLimit = 6; - BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin(); - // Scanning starts from the last instruction before the insertion point. - BasicBlock::iterator IP = Builder.GetInsertPoint(); - if (IP != BlockBegin) { - --IP; - for (; ScanLimit; --IP, --ScanLimit) { - // Don't count dbg.value against the ScanLimit, to avoid perturbing the - // generated code. - if (isa(IP)) - ScanLimit++; - - auto canGenerateIncompatiblePoison = [&Flags](Instruction *I) { - // Ensure that no-wrap flags match. - if (isa(I)) { - if (I->hasNoSignedWrap() != (Flags & SCEV::FlagNSW)) - return true; - if (I->hasNoUnsignedWrap() != (Flags & SCEV::FlagNUW)) - return true; - } - // Conservatively, do not use any instruction which has any of exact - // flags installed. - if (isa(I) && I->isExact()) - return true; - return false; - }; - if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS && - IP->getOperand(1) == RHS && !canGenerateIncompatiblePoison(&*IP)) - return &*IP; - if (IP == BlockBegin) - break; - } - } - - // Save the original insertion point so we can restore it when we're done. - DebugLoc Loc = Builder.GetInsertPoint()->getDebugLoc(); - SCEVInsertPointGuard Guard(Builder, this); - - if (IsSafeToHoist) { - // Move the insertion point out of as many loops as we can. - while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) { - if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) - break; - BasicBlock *Preheader = L->getLoopPreheader(); - if (!Preheader) - break; - - // Ok, move up a level. - Builder.SetInsertPoint(Preheader->getTerminator()); - } - } - - // If we haven't found this binop, insert it. - Instruction *BO = cast(Builder.CreateBinOp(Opcode, LHS, RHS)); - BO->setDebugLoc(Loc); - if (Flags & SCEV::FlagNUW) - BO->setHasNoUnsignedWrap(); - if (Flags & SCEV::FlagNSW) - BO->setHasNoSignedWrap(); - rememberInstruction(BO); - - return BO; -} - -/// FactorOutConstant - Test if S is divisible by Factor, using signed -/// division. If so, update S with Factor divided out and return true. -/// S need not be evenly divisible if a reasonable remainder can be -/// computed. -static bool FactorOutConstant(const SCEV *&S, const SCEV *&Remainder, - const SCEV *Factor, ScalarEvolution &SE, - const DataLayout &DL) { - // Everything is divisible by one. - if (Factor->isOne()) - return true; - - // x/x == 1. - if (S == Factor) { - S = SE.getConstant(S->getType(), 1); - return true; - } - - // For a Constant, check for a multiple of the given factor. - if (const SCEVConstant *C = dyn_cast(S)) { - // 0/x == 0. - if (C->isZero()) - return true; - // Check for divisibility. - if (const SCEVConstant *FC = dyn_cast(Factor)) { - ConstantInt *CI = - ConstantInt::get(SE.getContext(), C->getAPInt().sdiv(FC->getAPInt())); - // If the quotient is zero and the remainder is non-zero, reject - // the value at this scale. It will be considered for subsequent - // smaller scales. - if (!CI->isZero()) { - const SCEV *Div = SE.getConstant(CI); - S = Div; - Remainder = SE.getAddExpr( - Remainder, SE.getConstant(C->getAPInt().srem(FC->getAPInt()))); - return true; - } - } - } - - // In a Mul, check if there is a constant operand which is a multiple - // of the given factor. - if (const SCEVMulExpr *M = dyn_cast(S)) { - // Size is known, check if there is a constant operand which is a multiple - // of the given factor. If so, we can factor it. - if (const SCEVConstant *FC = dyn_cast(Factor)) - if (const SCEVConstant *C = dyn_cast(M->getOperand(0))) - if (!C->getAPInt().srem(FC->getAPInt())) { - SmallVector NewMulOps(M->op_begin(), M->op_end()); - NewMulOps[0] = SE.getConstant(C->getAPInt().sdiv(FC->getAPInt())); - S = SE.getMulExpr(NewMulOps); - return true; - } - } - - // In an AddRec, check if both start and step are divisible. - if (const SCEVAddRecExpr *A = dyn_cast(S)) { - const SCEV *Step = A->getStepRecurrence(SE); - const SCEV *StepRem = SE.getConstant(Step->getType(), 0); - if (!FactorOutConstant(Step, StepRem, Factor, SE, DL)) - return false; - if (!StepRem->isZero()) - return false; - const SCEV *Start = A->getStart(); - if (!FactorOutConstant(Start, Remainder, Factor, SE, DL)) - return false; - S = SE.getAddRecExpr(Start, Step, A->getLoop(), - A->getNoWrapFlags(SCEV::FlagNW)); - return true; - } - - return false; -} - -/// SimplifyAddOperands - Sort and simplify a list of add operands. NumAddRecs -/// is the number of SCEVAddRecExprs present, which are kept at the end of -/// the list. -/// -static void SimplifyAddOperands(SmallVectorImpl &Ops, Type *Ty, - ScalarEvolution &SE) { - unsigned NumAddRecs = 0; - for (unsigned i = Ops.size(); i > 0 && isa(Ops[i - 1]); --i) - ++NumAddRecs; - // Group Ops into non-addrecs and addrecs. - SmallVector NoAddRecs(Ops.begin(), Ops.end() - NumAddRecs); - SmallVector AddRecs(Ops.end() - NumAddRecs, Ops.end()); - // Let ScalarEvolution sort and simplify the non-addrecs list. - const SCEV *Sum = - NoAddRecs.empty() ? SE.getConstant(Ty, 0) : SE.getAddExpr(NoAddRecs); - // If it returned an add, use the operands. Otherwise it simplified - // the sum into a single value, so just use that. - Ops.clear(); - if (const SCEVAddExpr *Add = dyn_cast(Sum)) - Ops.append(Add->op_begin(), Add->op_end()); - else if (!Sum->isZero()) - Ops.push_back(Sum); - // Then append the addrecs. - Ops.append(AddRecs.begin(), AddRecs.end()); -} - -/// SplitAddRecs - Flatten a list of add operands, moving addrec start values -/// out to the top level. For example, convert {a + b,+,c} to a, b, {0,+,d}. -/// This helps expose more opportunities for folding parts of the expressions -/// into GEP indices. -/// -static void SplitAddRecs(SmallVectorImpl &Ops, Type *Ty, - ScalarEvolution &SE) { - // Find the addrecs. - SmallVector AddRecs; - for (unsigned i = 0, e = Ops.size(); i != e; ++i) - while (const SCEVAddRecExpr *A = dyn_cast(Ops[i])) { - const SCEV *Start = A->getStart(); - if (Start->isZero()) - break; - const SCEV *Zero = SE.getConstant(Ty, 0); - AddRecs.push_back(SE.getAddRecExpr(Zero, A->getStepRecurrence(SE), - A->getLoop(), - A->getNoWrapFlags(SCEV::FlagNW))); - if (const SCEVAddExpr *Add = dyn_cast(Start)) { - Ops[i] = Zero; - Ops.append(Add->op_begin(), Add->op_end()); - e += Add->getNumOperands(); - } else { - Ops[i] = Start; - } - } - if (!AddRecs.empty()) { - // Add the addrecs onto the end of the list. - Ops.append(AddRecs.begin(), AddRecs.end()); - // Resort the operand list, moving any constants to the front. - SimplifyAddOperands(Ops, Ty, SE); - } -} - -/// expandAddToGEP - Expand an addition expression with a pointer type into -/// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps -/// BasicAliasAnalysis and other passes analyze the result. See the rules -/// for getelementptr vs. inttoptr in -/// http://llvm.org/docs/LangRef.html#pointeraliasing -/// for details. -/// -/// Design note: The correctness of using getelementptr here depends on -/// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as -/// they may introduce pointer arithmetic which may not be safely converted -/// into getelementptr. -/// -/// Design note: It might seem desirable for this function to be more -/// loop-aware. If some of the indices are loop-invariant while others -/// aren't, it might seem desirable to emit multiple GEPs, keeping the -/// loop-invariant portions of the overall computation outside the loop. -/// However, there are a few reasons this is not done here. Hoisting simple -/// arithmetic is a low-level optimization that often isn't very -/// important until late in the optimization process. In fact, passes -/// like InstructionCombining will combine GEPs, even if it means -/// pushing loop-invariant computation down into loops, so even if the -/// GEPs were split here, the work would quickly be undone. The -/// LoopStrengthReduction pass, which is usually run quite late (and -/// after the last InstructionCombining pass), takes care of hoisting -/// loop-invariant portions of expressions, after considering what -/// can be folded using target addressing modes. -/// -Value *fake::SCEVExpander::expandAddToGEP(const SCEV *const *op_begin, - const SCEV *const *op_end, - PointerType *PTy, Type *Ty, - Value *V) { - Type *OriginalElTy = PTy->getElementType(); - Type *ElTy = OriginalElTy; - SmallVector GepIndices; - SmallVector Ops(op_begin, op_end); - bool AnyNonZeroIndices = false; - - // Split AddRecs up into parts as either of the parts may be usable - // without the other. - SplitAddRecs(Ops, Ty, SE); - - Type *IntIdxTy = DL.getIndexType(PTy); - - // Descend down the pointer's type and attempt to convert the other - // operands into GEP indices, at each level. The first index in a GEP - // indexes into the array implied by the pointer operand; the rest of - // the indices index into the element or field type selected by the - // preceding index. - for (;;) { - // If the scale size is not 0, attempt to factor out a scale for - // array indexing. - SmallVector ScaledOps; - if (ElTy->isSized()) { - const SCEV *ElSize = SE.getSizeOfExpr(IntIdxTy, ElTy); - if (!ElSize->isZero()) { - SmallVector NewOps; - for (const SCEV *Op : Ops) { - const SCEV *Remainder = SE.getConstant(Ty, 0); - if (FactorOutConstant(Op, Remainder, ElSize, SE, DL)) { - // Op now has ElSize factored out. - ScaledOps.push_back(Op); - if (!Remainder->isZero()) - NewOps.push_back(Remainder); - AnyNonZeroIndices = true; - } else { - // The operand was not divisible, so add it to the list of operands - // we'll scan next iteration. - NewOps.push_back(Op); - } - } - // If we made any changes, update Ops. - if (!ScaledOps.empty()) { - Ops = NewOps; - SimplifyAddOperands(Ops, Ty, SE); - } - } - } - - // Record the scaled array index for this level of the type. If - // we didn't find any operands that could be factored, tentatively - // assume that element zero was selected (since the zero offset - // would obviously be folded away). - Value *Scaled = ScaledOps.empty() - ? Constant::getNullValue(Ty) - : expandCodeFor(SE.getAddExpr(ScaledOps), Ty); - GepIndices.push_back(Scaled); - - // Collect struct field index operands. - while (StructType *STy = dyn_cast(ElTy)) { - bool FoundFieldNo = false; - // An empty struct has no fields. - if (STy->getNumElements() == 0) - break; - // Field offsets are known. See if a constant offset falls within any of - // the struct fields. - if (Ops.empty()) - break; - if (const SCEVConstant *C = dyn_cast(Ops[0])) - if (SE.getTypeSizeInBits(C->getType()) <= 64) { - const StructLayout &SL = *DL.getStructLayout(STy); - uint64_t FullOffset = C->getValue()->getZExtValue(); - if (FullOffset < SL.getSizeInBytes()) { - unsigned ElIdx = SL.getElementContainingOffset(FullOffset); - GepIndices.push_back( - ConstantInt::get(Type::getInt32Ty(Ty->getContext()), ElIdx)); - ElTy = STy->getTypeAtIndex(ElIdx); - Ops[0] = - SE.getConstant(Ty, FullOffset - SL.getElementOffset(ElIdx)); - AnyNonZeroIndices = true; - FoundFieldNo = true; - } - } - // If no struct field offsets were found, tentatively assume that - // field zero was selected (since the zero offset would obviously - // be folded away). - if (!FoundFieldNo) { - ElTy = STy->getTypeAtIndex(0u); - GepIndices.push_back( - Constant::getNullValue(Type::getInt32Ty(Ty->getContext()))); - } - } - - if (ArrayType *ATy = dyn_cast(ElTy)) - ElTy = ATy->getElementType(); - else - // FIXME: Handle VectorType. - // E.g., If ElTy is scalable vector, then ElSize is not a compile-time - // constant, therefore can not be factored out. The generated IR is less - // ideal with base 'V' cast to i8* and do ugly getelementptr over that. - break; - } - - // If none of the operands were convertible to proper GEP indices, cast - // the base to i8* and do an ugly getelementptr with that. It's still - // better than ptrtoint+arithmetic+inttoptr at least. - if (!AnyNonZeroIndices) { - // Cast the base to i8*. - V = InsertNoopCastOfTo( - V, Type::getInt8PtrTy(Ty->getContext(), PTy->getAddressSpace())); - - assert(!isa(V) || - SE.DT.dominates(cast(V), &*Builder.GetInsertPoint())); - - // Expand the operands for a plain byte offset. - Value *Idx = expandCodeFor(SE.getAddExpr(Ops), Ty); - - // Fold a GEP with constant operands. - if (Constant *CLHS = dyn_cast(V)) - if (Constant *CRHS = dyn_cast(Idx)) - return ConstantExpr::getGetElementPtr(Type::getInt8Ty(Ty->getContext()), - CLHS, CRHS); - - // Do a quick scan to see if we have this GEP nearby. If so, reuse it. - unsigned ScanLimit = 6; - BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin(); - // Scanning starts from the last instruction before the insertion point. - BasicBlock::iterator IP = Builder.GetInsertPoint(); - if (IP != BlockBegin) { - --IP; - for (; ScanLimit; --IP, --ScanLimit) { - // Don't count dbg.value against the ScanLimit, to avoid perturbing the - // generated code. - if (isa(IP)) - ScanLimit++; - if (IP->getOpcode() == Instruction::GetElementPtr && - IP->getOperand(0) == V && IP->getOperand(1) == Idx) - return &*IP; - if (IP == BlockBegin) - break; - } - } - - // Save the original insertion point so we can restore it when we're done. - SCEVInsertPointGuard Guard(Builder, this); - - // Move the insertion point out of as many loops as we can. - while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) { - if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) - break; - BasicBlock *Preheader = L->getLoopPreheader(); - if (!Preheader) - break; - - // Ok, move up a level. - Builder.SetInsertPoint(Preheader->getTerminator()); - } - - // Emit a GEP. - Value *GEP = Builder.CreateGEP(Builder.getInt8Ty(), V, Idx, "uglygep"); - rememberInstruction(GEP); - - return GEP; - } - - { - SCEVInsertPointGuard Guard(Builder, this); - - // Move the insertion point out of as many loops as we can. - while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) { - if (!L->isLoopInvariant(V)) - break; - - bool AnyIndexNotLoopInvariant = any_of( - GepIndices, [L](Value *Op) { return !L->isLoopInvariant(Op); }); - - if (AnyIndexNotLoopInvariant) - break; - - BasicBlock *Preheader = L->getLoopPreheader(); - if (!Preheader) - break; - - // Ok, move up a level. - Builder.SetInsertPoint(Preheader->getTerminator()); - } - - // Insert a pretty getelementptr. Note that this GEP is not marked inbounds, - // because ScalarEvolution may have changed the address arithmetic to - // compute a value which is beyond the end of the allocated object. - Value *Casted = V; - if (V->getType() != PTy) - Casted = InsertNoopCastOfTo(Casted, PTy); - Value *GEP = Builder.CreateGEP(OriginalElTy, Casted, GepIndices, "scevgep"); - Ops.push_back(SE.getUnknown(GEP)); - rememberInstruction(GEP); - } - - return expand(SE.getAddExpr(Ops)); -} - -Value *fake::SCEVExpander::expandAddToGEP(const SCEV *Op, PointerType *PTy, - Type *Ty, Value *V) { - const SCEV *const Ops[1] = {Op}; - return expandAddToGEP(Ops, Ops + 1, PTy, Ty, V); -} - -/// PickMostRelevantLoop - Given two loops pick the one that's most relevant for -/// SCEV expansion. If they are nested, this is the most nested. If they are -/// neighboring, pick the later. -static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B, - DominatorTree &DT) { - if (!A) - return B; - if (!B) - return A; - if (A->contains(B)) - return B; - if (B->contains(A)) - return A; - if (DT.dominates(A->getHeader(), B->getHeader())) - return B; - if (DT.dominates(B->getHeader(), A->getHeader())) - return A; - return A; // Arbitrarily break the tie. -} - -/// getRelevantLoop - Get the most relevant loop associated with the given -/// expression, according to PickMostRelevantLoop. -const Loop *fake::SCEVExpander::getRelevantLoop(const SCEV *S) { - // Test whether we've already computed the most relevant loop for this SCEV. - auto Pair = RelevantLoops.insert(std::make_pair(S, nullptr)); - if (!Pair.second) - return Pair.first->second; - if (S == nullptr) - return nullptr; - if (isa(S)) - // A constant has no relevant loops. - return nullptr; - if (const SCEVUnknown *U = dyn_cast(S)) { - if (const Instruction *I = dyn_cast(U->getValue())) - return Pair.first->second = SE.LI.getLoopFor(I->getParent()); - // A non-instruction has no relevant loops. - return nullptr; - } - if (const SCEVNAryExpr *N = dyn_cast(S)) { - const Loop *L = nullptr; - if (const SCEVAddRecExpr *AR = dyn_cast(S)) - L = AR->getLoop(); - for (const SCEV *Op : N->operands()) - L = PickMostRelevantLoop(L, getRelevantLoop(Op), SE.DT); - return RelevantLoops[N] = L; - } - if (const SCEVCastExpr *C = dyn_cast(S)) { - const Loop *Result = getRelevantLoop(C->getOperand()); - return RelevantLoops[C] = Result; - } - if (const SCEVUDivExpr *D = dyn_cast(S)) { - const Loop *Result = PickMostRelevantLoop( - getRelevantLoop(D->getLHS()), getRelevantLoop(D->getRHS()), SE.DT); - return RelevantLoops[D] = Result; - } - llvm_unreachable("Unexpected SCEV type!"); -} - -namespace { - -/// LoopCompare - Compare loops by PickMostRelevantLoop. -class LoopCompare { - DominatorTree &DT; - -public: - explicit LoopCompare(DominatorTree &dt) : DT(dt) {} - - bool operator()(std::pair LHS, - std::pair RHS) const { - // Keep pointer operands sorted at the end. - if (LHS.second->getType()->isPointerTy() != - RHS.second->getType()->isPointerTy()) - return LHS.second->getType()->isPointerTy(); - - // Compare loops with PickMostRelevantLoop. - if (LHS.first != RHS.first) - return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first; - - // If one operand is a non-constant negative and the other is not, - // put the non-constant negative on the right so that a sub can - // be used instead of a negate and add. - if (LHS.second->isNonConstantNegative()) { - if (!RHS.second->isNonConstantNegative()) - return false; - } else if (RHS.second->isNonConstantNegative()) - return true; - - // Otherwise they are equivalent according to this comparison. - return false; - } -}; - -} // namespace - -Value *fake::SCEVExpander::visitAddExpr(const SCEVAddExpr *S) { - Type *Ty = SE.getEffectiveSCEVType(S->getType()); - - // Collect all the add operands in a loop, along with their associated loops. - // Iterate in reverse so that constants are emitted last, all else equal, and - // so that pointer operands are inserted first, which the code below relies on - // to form more involved GEPs. - SmallVector, 8> OpsAndLoops; - for (std::reverse_iterator I(S->op_end()), - E(S->op_begin()); - I != E; ++I) - OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I)); - - // Sort by loop. Use a stable sort so that constants follow non-constants and - // pointer operands precede non-pointer operands. - llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT)); - - // Emit instructions to add all the operands. Hoist as much as possible - // out of loops, and form meaningful getelementptrs where possible. - Value *Sum = nullptr; - for (auto I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E;) { - const Loop *CurLoop = I->first; - const SCEV *Op = I->second; - if (!Sum) { - // This is the first operand. Just expand it. - Sum = expand(Op); - ++I; - } else if (PointerType *PTy = dyn_cast(Sum->getType())) { - // The running sum expression is a pointer. Try to form a getelementptr - // at this level with that as the base. - SmallVector NewOps; - for (; I != E && I->first == CurLoop; ++I) { - // If the operand is SCEVUnknown and not instructions, peek through - // it, to enable more of it to be folded into the GEP. - const SCEV *X = I->second; - if (const SCEVUnknown *U = dyn_cast(X)) - if (!isa(U->getValue())) - X = SE.getSCEV(U->getValue()); - NewOps.push_back(X); - } - Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, Sum); - } else if (PointerType *PTy = dyn_cast(Op->getType())) { - // The running sum is an integer, and there's a pointer at this level. - // Try to form a getelementptr. If the running sum is instructions, - // use a SCEVUnknown to avoid re-analyzing them. - SmallVector NewOps; - NewOps.push_back(isa(Sum) ? SE.getUnknown(Sum) - : SE.getSCEV(Sum)); - for (++I; I != E && I->first == CurLoop; ++I) - NewOps.push_back(I->second); - Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, expand(Op)); - } else if (Op->isNonConstantNegative()) { - // Instead of doing a negate and add, just do a subtract. - Value *W = expandCodeFor(SE.getNegativeSCEV(Op), Ty); - Sum = InsertNoopCastOfTo(Sum, Ty); - Sum = InsertBinop(Instruction::Sub, Sum, W, SCEV::FlagAnyWrap, - /*IsSafeToHoist*/ true); - ++I; - } else { - // A simple add. - Value *W = expandCodeFor(Op, Ty); - Sum = InsertNoopCastOfTo(Sum, Ty); - // Canonicalize a constant to the RHS. - if (isa(Sum)) - std::swap(Sum, W); - Sum = InsertBinop(Instruction::Add, Sum, W, S->getNoWrapFlags(), - /*IsSafeToHoist*/ true); - ++I; - } - } - - return Sum; -} - -Value *fake::SCEVExpander::visitMulExpr(const SCEVMulExpr *S) { - Type *Ty = SE.getEffectiveSCEVType(S->getType()); - - // Collect all the mul operands in a loop, along with their associated loops. - // Iterate in reverse so that constants are emitted last, all else equal. - SmallVector, 8> OpsAndLoops; - for (std::reverse_iterator I(S->op_end()), - E(S->op_begin()); - I != E; ++I) - OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I)); - - // Sort by loop. Use a stable sort so that constants follow non-constants. - llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT)); - - // Emit instructions to mul all the operands. Hoist as much as possible - // out of loops. - Value *Prod = nullptr; - auto I = OpsAndLoops.begin(); - - // Expand the calculation of X pow N in the following manner: - // Let N = P1 + P2 + ... + PK, where all P are powers of 2. Then: - // X pow N = (X pow P1) * (X pow P2) * ... * (X pow PK). - const auto ExpandOpBinPowN = [this, &I, &OpsAndLoops, &Ty]() { - auto E = I; - // Calculate how many times the same operand from the same loop is included - // into this power. - uint64_t Exponent = 0; - const uint64_t MaxExponent = UINT64_MAX >> 1; - // No one sane will ever try to calculate such huge exponents, but if we - // need this, we stop on UINT64_MAX / 2 because we need to exit the loop - // below when the power of 2 exceeds our Exponent, and we want it to be - // 1u << 31 at most to not deal with unsigned overflow. - while (E != OpsAndLoops.end() && *I == *E && Exponent != MaxExponent) { - ++Exponent; - ++E; - } - assert(Exponent > 0 && "Trying to calculate a zeroth exponent of operand?"); - - // Calculate powers with exponents 1, 2, 4, 8 etc. and include those of them - // that are needed into the result. - Value *P = expandCodeFor(I->second, Ty); - Value *Result = nullptr; - if (Exponent & 1) - Result = P; - for (uint64_t BinExp = 2; BinExp <= Exponent; BinExp <<= 1) { - P = InsertBinop(Instruction::Mul, P, P, SCEV::FlagAnyWrap, - /*IsSafeToHoist*/ true); - if (Exponent & BinExp) - Result = - Result ? InsertBinop(Instruction::Mul, Result, P, SCEV::FlagAnyWrap, - /*IsSafeToHoist*/ true) - : P; - } - - I = E; - assert(Result && "Nothing was expanded?"); - return Result; - }; - - while (I != OpsAndLoops.end()) { - if (!Prod) { - // This is the first operand. Just expand it. - Prod = ExpandOpBinPowN(); - } else if (I->second->isAllOnesValue()) { - // Instead of doing a multiply by negative one, just do a negate. - Prod = InsertNoopCastOfTo(Prod, Ty); - Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod, - SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true); - ++I; - } else { - // A simple mul. - Value *W = ExpandOpBinPowN(); - Prod = InsertNoopCastOfTo(Prod, Ty); - // Canonicalize a constant to the RHS. - if (isa(Prod)) - std::swap(Prod, W); - const APInt *RHS; - if (match(W, m_Power2(RHS))) { - // Canonicalize Prod*(1<isVectorTy() && "vector types are not SCEVable"); - auto NWFlags = S->getNoWrapFlags(); - // clear nsw flag if shl will produce poison value. - if (RHS->logBase2() == RHS->getBitWidth() - 1) - NWFlags = ScalarEvolution::clearFlags(NWFlags, SCEV::FlagNSW); - Prod = InsertBinop(Instruction::Shl, Prod, - ConstantInt::get(Ty, RHS->logBase2()), NWFlags, - /*IsSafeToHoist*/ true); - } else { - Prod = InsertBinop(Instruction::Mul, Prod, W, S->getNoWrapFlags(), - /*IsSafeToHoist*/ true); - } - } - } - - return Prod; -} - -Value *fake::SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) { - Type *Ty = SE.getEffectiveSCEVType(S->getType()); - - Value *LHS = expandCodeFor(S->getLHS(), Ty); - if (const SCEVConstant *SC = dyn_cast(S->getRHS())) { - const APInt &RHS = SC->getAPInt(); - if (RHS.isPowerOf2()) - return InsertBinop(Instruction::LShr, LHS, - ConstantInt::get(Ty, RHS.logBase2()), - SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true); - } - - Value *RHS = expandCodeFor(S->getRHS(), Ty); - return InsertBinop(Instruction::UDiv, LHS, RHS, SCEV::FlagAnyWrap, - /*IsSafeToHoist*/ SE.isKnownNonZero(S->getRHS())); -} - -/// Move parts of Base into Rest to leave Base with the minimal -/// expression that provides a pointer operand suitable for a -/// GEP expansion. -static void ExposePointerBase(const SCEV *&Base, const SCEV *&Rest, - ScalarEvolution &SE) { - while (const SCEVAddRecExpr *A = dyn_cast(Base)) { - Base = A->getStart(); - Rest = SE.getAddExpr( - Rest, SE.getAddRecExpr(SE.getConstant(A->getType(), 0), - A->getStepRecurrence(SE), A->getLoop(), - A->getNoWrapFlags(SCEV::FlagNW))); - } - if (const SCEVAddExpr *A = dyn_cast(Base)) { - Base = A->getOperand(A->getNumOperands() - 1); - SmallVector NewAddOps(A->op_begin(), A->op_end()); - NewAddOps.back() = Rest; - Rest = SE.getAddExpr(NewAddOps); - ExposePointerBase(Base, Rest, SE); - } -} - -/// Determine if this is a well-behaved chain of instructions leading back to -/// the PHI. If so, it may be reused by expanded expressions. -bool fake::SCEVExpander::isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV, - const Loop *L) { - if (IncV->getNumOperands() == 0 || isa(IncV) || - (isa(IncV) && !isa(IncV))) - return false; - // If any of the operands don't dominate the insert position, bail. - // Addrec operands are always loop-invariant, so this can only happen - // if there are instructions which haven't been hoisted. - if (L == IVIncInsertLoop) { - for (User::op_iterator OI = IncV->op_begin() + 1, OE = IncV->op_end(); - OI != OE; ++OI) - if (Instruction *OInst = dyn_cast(OI)) - if (!SE.DT.dominates(OInst, IVIncInsertPos)) - return false; - } - // Advance to the next instruction. - IncV = dyn_cast(IncV->getOperand(0)); - if (!IncV) - return false; - - if (IncV->mayHaveSideEffects()) - return false; - - if (IncV == PN) - return true; - - return isNormalAddRecExprPHI(PN, IncV, L); -} - -/// getIVIncOperand returns an induction variable increment's induction -/// variable operand. -/// -/// If allowScale is set, any type of GEP is allowed as long as the nonIV -/// operands dominate InsertPos. -/// -/// If allowScale is not set, ensure that a GEP increment conforms to one of the -/// simple patterns generated by getAddRecExprPHILiterally and -/// expandAddtoGEP. If the pattern isn't recognized, return NULL. -Instruction *fake::SCEVExpander::getIVIncOperand(Instruction *IncV, - Instruction *InsertPos, - bool allowScale) { - if (IncV == InsertPos) - return nullptr; - - switch (IncV->getOpcode()) { - default: - return nullptr; - // Check for a simple Add/Sub or GEP of a loop invariant step. - case Instruction::Add: - case Instruction::Sub: { - Instruction *OInst = dyn_cast(IncV->getOperand(1)); - if (!OInst || SE.DT.dominates(OInst, InsertPos)) - return dyn_cast(IncV->getOperand(0)); - return nullptr; - } - case Instruction::BitCast: - return dyn_cast(IncV->getOperand(0)); - case Instruction::GetElementPtr: - for (auto I = IncV->op_begin() + 1, E = IncV->op_end(); I != E; ++I) { - if (isa(*I)) - continue; - if (Instruction *OInst = dyn_cast(*I)) { - if (!SE.DT.dominates(OInst, InsertPos)) - return nullptr; - } - if (allowScale) { - // allow any kind of GEP as long as it can be hoisted. - continue; - } - // This must be a pointer addition of constants (pretty), which is already - // handled, or some number of address-size elements (ugly). Ugly geps - // have 2 operands. i1* is used by the expander to represent an - // address-size element. - if (IncV->getNumOperands() != 2) - return nullptr; - unsigned AS = cast(IncV->getType())->getAddressSpace(); - if (IncV->getType() != Type::getInt1PtrTy(SE.getContext(), AS) && - IncV->getType() != Type::getInt8PtrTy(SE.getContext(), AS)) - return nullptr; - break; - } - return dyn_cast(IncV->getOperand(0)); - } -} - -/// If the insert point of the current builder or any of the builders on the -/// stack of saved builders has 'I' as its insert point, update it to point to -/// the instruction after 'I'. This is intended to be used when the instruction -/// 'I' is being moved. If this fixup is not done and 'I' is moved to a -/// different block, the inconsistent insert point (with a mismatched -/// Instruction and Block) can lead to an instruction being inserted in a block -/// other than its parent. -void fake::SCEVExpander::fixupInsertPoints(Instruction *I) { - BasicBlock::iterator It(*I); - BasicBlock::iterator NewInsertPt = std::next(It); - if (Builder.GetInsertPoint() == It) - Builder.SetInsertPoint(&*NewInsertPt); - for (auto *InsertPtGuard : InsertPointGuards) - if (InsertPtGuard->GetInsertPoint() == It) - InsertPtGuard->SetInsertPoint(NewInsertPt); -} - -/// hoistStep - Attempt to hoist a simple IV increment above InsertPos to make -/// it available to other uses in this loop. Recursively hoist any operands, -/// until we reach a value that dominates InsertPos. -bool fake::SCEVExpander::hoistIVInc(Instruction *IncV, Instruction *InsertPos) { - if (SE.DT.dominates(IncV, InsertPos)) - return true; - - // InsertPos must itself dominate IncV so that IncV's new position satisfies - // its existing users. - if (isa(InsertPos) || - !SE.DT.dominates(InsertPos->getParent(), IncV->getParent())) - return false; - - if (!SE.LI.movementPreservesLCSSAForm(IncV, InsertPos)) - return false; - - // Check that the chain of IV operands leading back to Phi can be hoisted. - SmallVector IVIncs; - for (;;) { - Instruction *Oper = getIVIncOperand(IncV, InsertPos, /*allowScale*/ true); - if (!Oper) - return false; - // IncV is safe to hoist. - IVIncs.push_back(IncV); - IncV = Oper; - if (SE.DT.dominates(IncV, InsertPos)) - break; - } - for (auto I = IVIncs.rbegin(), E = IVIncs.rend(); I != E; ++I) { - fixupInsertPoints(*I); - (*I)->moveBefore(InsertPos); - } - return true; -} - -/// Determine if this cyclic phi is in a form that would have been generated by -/// LSR. We don't care if the phi was actually expanded in this pass, as long -/// as it is in a low-cost form, for example, no implied multiplication. This -/// should match any patterns generated by getAddRecExprPHILiterally and -/// expandAddtoGEP. -bool fake::SCEVExpander::isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV, - const Loop *L) { - for (Instruction *IVOper = IncV; - (IVOper = getIVIncOperand(IVOper, L->getLoopPreheader()->getTerminator(), - /*allowScale=*/false));) { - if (IVOper == PN) - return true; - } - return false; -} - -/// expandIVInc - Expand an IV increment at Builder's current InsertPos. -/// Typically this is the LatchBlock terminator or IVIncInsertPos, but we may -/// need to materialize IV increments elsewhere to handle difficult situations. -Value *fake::SCEVExpander::expandIVInc(PHINode *PN, Value *StepV, const Loop *L, - Type *ExpandTy, Type *IntTy, - bool useSubtract) { - Value *IncV; - // If the PHI is a pointer, use a GEP, otherwise use an add or sub. - if (ExpandTy->isPointerTy()) { - PointerType *GEPPtrTy = cast(ExpandTy); - // If the step isn't constant, don't use an implicitly scaled GEP, because - // that would require a multiply inside the loop. - if (!isa(StepV)) - GEPPtrTy = PointerType::get(Type::getInt1Ty(SE.getContext()), - GEPPtrTy->getAddressSpace()); - IncV = expandAddToGEP(SE.getSCEV(StepV), GEPPtrTy, IntTy, PN); - if (IncV->getType() != PN->getType()) { - IncV = Builder.CreateBitCast(IncV, PN->getType()); - rememberInstruction(IncV); - } - } else { - IncV = useSubtract - ? Builder.CreateSub(PN, StepV, Twine(IVName) + ".iv.next") - : Builder.CreateAdd(PN, StepV, Twine(IVName) + ".iv.next"); - rememberInstruction(IncV); - } - return IncV; -} - -/// Hoist the addrec instruction chain rooted in the loop phi above the -/// position. This routine assumes that this is possible (has been checked). -void fake::SCEVExpander::hoistBeforePos(DominatorTree *DT, - Instruction *InstToHoist, - Instruction *Pos, PHINode *LoopPhi) { - do { - if (DT->dominates(InstToHoist, Pos)) - break; - // Make sure the increment is where we want it. But don't move it - // down past a potential existing post-inc user. - fixupInsertPoints(InstToHoist); - InstToHoist->moveBefore(Pos); - Pos = InstToHoist; - InstToHoist = cast(InstToHoist->getOperand(0)); - } while (InstToHoist != LoopPhi); -} - -/// Check whether we can cheaply express the requested SCEV in terms of -/// the available PHI SCEV by truncation and/or inversion of the step. -static bool canBeCheaplyTransformed(ScalarEvolution &SE, - const SCEVAddRecExpr *Phi, - const SCEVAddRecExpr *Requested, - bool &InvertStep) { - Type *PhiTy = SE.getEffectiveSCEVType(Phi->getType()); - Type *RequestedTy = SE.getEffectiveSCEVType(Requested->getType()); - - if (RequestedTy->getIntegerBitWidth() > PhiTy->getIntegerBitWidth()) - return false; - - // Try truncate it if necessary. - Phi = dyn_cast(SE.getTruncateOrNoop(Phi, RequestedTy)); - if (!Phi) - return false; - - // Check whether truncation will help. - if (Phi == Requested) { - InvertStep = false; - return true; - } - - // Check whether inverting will help: {R,+,-1} == R - {0,+,1}. - if (SE.getAddExpr(Requested->getStart(), SE.getNegativeSCEV(Requested)) == - Phi) { - InvertStep = true; - return true; - } - - return false; -} - -static bool IsIncrementNSW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) { - if (!isa(AR->getType())) - return false; - - unsigned BitWidth = cast(AR->getType())->getBitWidth(); - Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2); - const SCEV *Step = AR->getStepRecurrence(SE); - const SCEV *OpAfterExtend = SE.getAddExpr(SE.getSignExtendExpr(Step, WideTy), - SE.getSignExtendExpr(AR, WideTy)); - const SCEV *ExtendAfterOp = - SE.getSignExtendExpr(SE.getAddExpr(AR, Step), WideTy); - return ExtendAfterOp == OpAfterExtend; -} - -static bool IsIncrementNUW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) { - if (!isa(AR->getType())) - return false; - - unsigned BitWidth = cast(AR->getType())->getBitWidth(); - Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2); - const SCEV *Step = AR->getStepRecurrence(SE); - const SCEV *OpAfterExtend = SE.getAddExpr(SE.getZeroExtendExpr(Step, WideTy), - SE.getZeroExtendExpr(AR, WideTy)); - const SCEV *ExtendAfterOp = - SE.getZeroExtendExpr(SE.getAddExpr(AR, Step), WideTy); - return ExtendAfterOp == OpAfterExtend; -} - -/// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand -/// the base addrec, which is the addrec without any non-loop-dominating -/// values, and return the PHI. -PHINode *fake::SCEVExpander::getAddRecExprPHILiterally( - const SCEVAddRecExpr *Normalized, const Loop *L, Type *ExpandTy, - Type *IntTy, Type *&TruncTy, bool &InvertStep) { - assert((!IVIncInsertLoop || IVIncInsertPos) && - "Uninitialized insert position"); - - // Reuse a previously-inserted PHI, if present. - BasicBlock *LatchBlock = L->getLoopLatch(); - if (LatchBlock) { - PHINode *AddRecPhiMatch = nullptr; - Instruction *IncV = nullptr; - TruncTy = nullptr; - InvertStep = false; - - // Only try partially matching scevs that need truncation and/or - // step-inversion if we know this loop is outside the current loop. - bool TryNonMatchingSCEV = - IVIncInsertLoop && - SE.DT.properlyDominates(LatchBlock, IVIncInsertLoop->getHeader()); - - for (PHINode &PN : L->getHeader()->phis()) { - if (!SE.isSCEVable(PN.getType())) - continue; - - const SCEVAddRecExpr *PhiSCEV = dyn_cast(SE.getSCEV(&PN)); - if (!PhiSCEV) - continue; - - bool IsMatchingSCEV = PhiSCEV == Normalized; - // We only handle truncation and inversion of phi recurrences for the - // expanded expression if the expanded expression's loop dominates the - // loop we insert to. Check now, so we can bail out early. - if (!IsMatchingSCEV && !TryNonMatchingSCEV) - continue; - - // TODO: this possibly can be reworked to avoid this cast at all. - Instruction *TempIncV = - dyn_cast(PN.getIncomingValueForBlock(LatchBlock)); - if (!TempIncV) - continue; - - // Check whether we can reuse this PHI node. - if (LSRMode) { - if (!isExpandedAddRecExprPHI(&PN, TempIncV, L)) - continue; - if (L == IVIncInsertLoop && !hoistIVInc(TempIncV, IVIncInsertPos)) - continue; - } else { - if (!isNormalAddRecExprPHI(&PN, TempIncV, L)) - continue; - } - - // Stop if we have found an exact match SCEV. - if (IsMatchingSCEV) { - IncV = TempIncV; - TruncTy = nullptr; - InvertStep = false; - AddRecPhiMatch = &PN; - break; - } - - // Try whether the phi can be translated into the requested form - // (truncated and/or offset by a constant). - if ((!TruncTy || InvertStep) && - canBeCheaplyTransformed(SE, PhiSCEV, Normalized, InvertStep)) { - // Record the phi node. But don't stop we might find an exact match - // later. - AddRecPhiMatch = &PN; - IncV = TempIncV; - TruncTy = SE.getEffectiveSCEVType(Normalized->getType()); - } - } - - if (AddRecPhiMatch) { - // Potentially, move the increment. We have made sure in - // isExpandedAddRecExprPHI or hoistIVInc that this is possible. - if (L == IVIncInsertLoop) - hoistBeforePos(&SE.DT, IncV, IVIncInsertPos, AddRecPhiMatch); - - // Ok, the add recurrence looks usable. - // Remember this PHI, even in post-inc mode. - InsertedValues.insert(AddRecPhiMatch); - // Remember the increment. - rememberInstruction(IncV); - return AddRecPhiMatch; - } - } - - // Save the original insertion point so we can restore it when we're done. - SCEVInsertPointGuard Guard(Builder, this); - - // Another AddRec may need to be recursively expanded below. For example, if - // this AddRec is quadratic, the StepV may itself be an AddRec in this - // loop. Remove this loop from the PostIncLoops set before expanding such - // AddRecs. Otherwise, we cannot find a valid position for the step - // (i.e. StepV can never dominate its loop header). Ideally, we could do - // SavedIncLoops.swap(PostIncLoops), but we generally have a single element, - // so it's not worth implementing SmallPtrSet::swap. - PostIncLoopSet SavedPostIncLoops = PostIncLoops; - PostIncLoops.clear(); - - // Expand code for the start value into the loop preheader. - assert(L->getLoopPreheader() && - "Can't expand add recurrences without a loop preheader!"); - Value *StartV = expandCodeFor(Normalized->getStart(), ExpandTy, - L->getLoopPreheader()->getTerminator()); - - // StartV must have been be inserted into L's preheader to dominate the new - // phi. - assert(!isa(StartV) || - SE.DT.properlyDominates(cast(StartV)->getParent(), - L->getHeader())); - - // Expand code for the step value. Do this before creating the PHI so that PHI - // reuse code doesn't see an incomplete PHI. - const SCEV *Step = Normalized->getStepRecurrence(SE); - // If the stride is negative, insert a sub instead of an add for the increment - // (unless it's a constant, because subtracts of constants are canonicalized - // to adds). - bool useSubtract = !ExpandTy->isPointerTy() && Step->isNonConstantNegative(); - if (useSubtract) - Step = SE.getNegativeSCEV(Step); - // Expand the step somewhere that dominates the loop header. - Value *StepV = expandCodeFor(Step, IntTy, &L->getHeader()->front()); - - // The no-wrap behavior proved by IsIncrement(NUW|NSW) is only applicable if - // we actually do emit an addition. It does not apply if we emit a - // subtraction. - bool IncrementIsNUW = !useSubtract && IsIncrementNUW(SE, Normalized); - bool IncrementIsNSW = !useSubtract && IsIncrementNSW(SE, Normalized); - - // Create the PHI. - BasicBlock *Header = L->getHeader(); - Builder.SetInsertPoint(Header, Header->begin()); - pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header); - PHINode *PN = Builder.CreatePHI(ExpandTy, std::distance(HPB, HPE), - Twine(IVName) + ".iv"); - rememberInstruction(PN); - - // Create the step instructions and populate the PHI. - for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) { - BasicBlock *Pred = *HPI; - - // Add a start value. - if (!L->contains(Pred)) { - PN->addIncoming(StartV, Pred); - continue; - } - - // Create a step value and add it to the PHI. - // If IVIncInsertLoop is non-null and equal to the addrec's loop, insert the - // instructions at IVIncInsertPos. - Instruction *InsertPos = - L == IVIncInsertLoop ? IVIncInsertPos : Pred->getTerminator(); - Builder.SetInsertPoint(InsertPos); - Value *IncV = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract); - - if (isa(IncV)) { - if (IncrementIsNUW) - cast(IncV)->setHasNoUnsignedWrap(); - if (IncrementIsNSW) - cast(IncV)->setHasNoSignedWrap(); - } - PN->addIncoming(IncV, Pred); - } - - // After expanding subexpressions, restore the PostIncLoops set so the caller - // can ensure that IVIncrement dominates the current uses. - PostIncLoops = SavedPostIncLoops; - - // Remember this PHI, even in post-inc mode. - InsertedValues.insert(PN); - - return PN; -} - -Value *fake::SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) { - Type *STy = S->getType(); - Type *IntTy = SE.getEffectiveSCEVType(STy); - const Loop *L = S->getLoop(); - - // Determine a normalized form of this expression, which is the expression - // before any post-inc adjustment is made. - const SCEVAddRecExpr *Normalized = S; - if (PostIncLoops.count(L)) { - PostIncLoopSet Loops; - Loops.insert(L); - Normalized = cast(normalizeForPostIncUse(S, Loops, SE)); - } - - // Strip off any non-loop-dominating component from the addrec start. - const SCEV *Start = Normalized->getStart(); - const SCEV *PostLoopOffset = nullptr; - if (!SE.properlyDominates(Start, L->getHeader())) { - PostLoopOffset = Start; - Start = SE.getConstant(Normalized->getType(), 0); - Normalized = cast(SE.getAddRecExpr( - Start, Normalized->getStepRecurrence(SE), Normalized->getLoop(), - Normalized->getNoWrapFlags(SCEV::FlagNW))); - } - - // Strip off any non-loop-dominating component from the addrec step. - const SCEV *Step = Normalized->getStepRecurrence(SE); - const SCEV *PostLoopScale = nullptr; - if (!SE.dominates(Step, L->getHeader())) { - PostLoopScale = Step; - Step = SE.getConstant(Normalized->getType(), 1); - if (!Start->isZero()) { - // The normalization below assumes that Start is constant zero, so if - // it isn't re-associate Start to PostLoopOffset. - assert(!PostLoopOffset && "Start not-null but PostLoopOffset set?"); - PostLoopOffset = Start; - Start = SE.getConstant(Normalized->getType(), 0); - } - Normalized = cast( - SE.getAddRecExpr(Start, Step, Normalized->getLoop(), - Normalized->getNoWrapFlags(SCEV::FlagNW))); - } - - // Expand the core addrec. If we need post-loop scaling, force it to - // expand to an integer type to avoid the need for additional casting. - Type *ExpandTy = PostLoopScale ? IntTy : STy; - // We can't use a pointer type for the addrec if the pointer type is - // non-integral. - Type *AddRecPHIExpandTy = - DL.isNonIntegralPointerType(STy) ? Normalized->getType() : ExpandTy; - - // In some cases, we decide to reuse an existing phi node but need to truncate - // it and/or invert the step. - Type *TruncTy = nullptr; - bool InvertStep = false; - PHINode *PN = getAddRecExprPHILiterally(Normalized, L, AddRecPHIExpandTy, - IntTy, TruncTy, InvertStep); - - // Accommodate post-inc mode, if necessary. - Value *Result; - if (!PostIncLoops.count(L)) - Result = PN; - else { - // In PostInc mode, use the post-incremented value. - BasicBlock *LatchBlock = L->getLoopLatch(); - assert(LatchBlock && "PostInc mode requires a unique loop latch!"); - Result = PN->getIncomingValueForBlock(LatchBlock); - - // For an expansion to use the postinc form, the client must call - // expandCodeFor with an InsertPoint that is either outside the PostIncLoop - // or dominated by IVIncInsertPos. - if (isa(Result) && - !SE.DT.dominates(cast(Result), - &*Builder.GetInsertPoint())) { - // The induction variable's postinc expansion does not dominate this use. - // IVUsers tries to prevent this case, so it is rare. However, it can - // happen when an IVUser outside the loop is not dominated by the latch - // block. Adjusting IVIncInsertPos before expansion begins cannot handle - // all cases. Consider a phi outside whose operand is replaced during - // expansion with the value of the postinc user. Without fundamentally - // changing the way postinc users are tracked, the only remedy is - // inserting an extra IV increment. StepV might fold into PostLoopOffset, - // but hopefully expandCodeFor handles that. - bool useSubtract = - !ExpandTy->isPointerTy() && Step->isNonConstantNegative(); - if (useSubtract) - Step = SE.getNegativeSCEV(Step); - Value *StepV; - { - // Expand the step somewhere that dominates the loop header. - SCEVInsertPointGuard Guard(Builder, this); - StepV = expandCodeFor(Step, IntTy, &L->getHeader()->front()); - } - Result = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract); - } - } - - // We have decided to reuse an induction variable of a dominating loop. Apply - // truncation and/or inversion of the step. - if (TruncTy) { - Type *ResTy = Result->getType(); - // Normalize the result type. - if (ResTy != SE.getEffectiveSCEVType(ResTy)) - Result = InsertNoopCastOfTo(Result, SE.getEffectiveSCEVType(ResTy)); - // Truncate the result. - if (TruncTy != Result->getType()) { - Result = Builder.CreateTrunc(Result, TruncTy); - rememberInstruction(Result); - } - // Invert the result. - if (InvertStep) { - Result = Builder.CreateSub(expandCodeFor(Normalized->getStart(), TruncTy), - Result); - rememberInstruction(Result); - } - } - - // Re-apply any non-loop-dominating scale. - if (PostLoopScale) { - assert(S->isAffine() && "Can't linearly scale non-affine recurrences."); - Result = InsertNoopCastOfTo(Result, IntTy); - Result = Builder.CreateMul(Result, expandCodeFor(PostLoopScale, IntTy)); - rememberInstruction(Result); - } - - // Re-apply any non-loop-dominating offset. - if (PostLoopOffset) { - if (PointerType *PTy = dyn_cast(ExpandTy)) { - if (Result->getType()->isIntegerTy()) { - Value *Base = expandCodeFor(PostLoopOffset, ExpandTy); - Result = expandAddToGEP(SE.getUnknown(Result), PTy, IntTy, Base); - } else { - Result = expandAddToGEP(PostLoopOffset, PTy, IntTy, Result); - } - } else { - Result = InsertNoopCastOfTo(Result, IntTy); - Result = Builder.CreateAdd(Result, expandCodeFor(PostLoopOffset, IntTy)); - rememberInstruction(Result); - } - } - - return Result; -} - -Value *fake::SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) { - // In canonical mode we compute the addrec as an expression of a canonical IV - // using evaluateAtIteration and expand the resulting SCEV expression. This - // way we avoid introducing new IVs to carry on the comutation of the addrec - // throughout the loop. - // - // For nested addrecs evaluateAtIteration might need a canonical IV of a - // type wider than the addrec itself. Emitting a canonical IV of the - // proper type might produce non-legal types, for example expanding an i64 - // {0,+,2,+,1} addrec would need an i65 canonical IV. To avoid this just fall - // back to non-canonical mode for nested addrecs. - if (!CanonicalMode || (S->getNumOperands() > 2)) - return expandAddRecExprLiterally(S); - - Type *Ty = SE.getEffectiveSCEVType(S->getType()); - const Loop *L = S->getLoop(); - - // First check for an existing canonical IV in a suitable type. - PHINode *CanonicalIV = nullptr; - if (PHINode *PN = L->getCanonicalInductionVariable()) - if (SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty)) - CanonicalIV = PN; - - // Rewrite an AddRec in terms of the canonical induction variable, if - // its type is more narrow. - if (CanonicalIV && - SE.getTypeSizeInBits(CanonicalIV->getType()) > SE.getTypeSizeInBits(Ty)) { - SmallVector NewOps(S->getNumOperands()); - for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i) - NewOps[i] = SE.getAnyExtendExpr(S->op_begin()[i], CanonicalIV->getType()); - Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop(), - S->getNoWrapFlags(SCEV::FlagNW))); - BasicBlock::iterator NewInsertPt = - findInsertPointAfter(cast(V), Builder.GetInsertBlock()); - V = expandCodeFor(SE.getTruncateExpr(SE.getUnknown(V), Ty), nullptr, - &*NewInsertPt); - return V; - } - - // {X,+,F} --> X + {0,+,F} - if (!S->getStart()->isZero()) { - SmallVector NewOps(S->op_begin(), S->op_end()); - NewOps[0] = SE.getConstant(Ty, 0); - const SCEV *Rest = - SE.getAddRecExpr(NewOps, L, S->getNoWrapFlags(SCEV::FlagNW)); - - // Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the - // comments on expandAddToGEP for details. - const SCEV *Base = S->getStart(); - // Dig into the expression to find the pointer base for a GEP. - const SCEV *ExposedRest = Rest; - ExposePointerBase(Base, ExposedRest, SE); - // If we found a pointer, expand the AddRec with a GEP. - if (PointerType *PTy = dyn_cast(Base->getType())) { - // Make sure the Base isn't something exotic, such as a multiplied - // or divided pointer value. In those cases, the result type isn't - // actually a pointer type. - if (!isa(Base) && !isa(Base)) { - Value *StartV = expand(Base); - assert(StartV->getType() == PTy && "Pointer type mismatch for GEP!"); - return expandAddToGEP(ExposedRest, PTy, Ty, StartV); - } - } - - // Just do a normal add. Pre-expand the operands to suppress folding. - // - // The LHS and RHS values are factored out of the expand call to make the - // output independent of the argument evaluation order. - const SCEV *AddExprLHS = SE.getUnknown(expand(S->getStart())); - const SCEV *AddExprRHS = SE.getUnknown(expand(Rest)); - return expand(SE.getAddExpr(AddExprLHS, AddExprRHS)); - } - - // If we don't yet have a canonical IV, create one. - if (!CanonicalIV) { - // Create and insert the PHI node for the induction variable in the - // specified loop. - BasicBlock *Header = L->getHeader(); - pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header); - CanonicalIV = PHINode::Create(Ty, std::distance(HPB, HPE), "indvar", - &Header->front()); - rememberInstruction(CanonicalIV); - - SmallSet PredSeen; - Constant *One = ConstantInt::get(Ty, 1); - for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) { - BasicBlock *HP = *HPI; - if (!PredSeen.insert(HP).second) { - // There must be an incoming value for each predecessor, even the - // duplicates! - CanonicalIV->addIncoming(CanonicalIV->getIncomingValueForBlock(HP), HP); - continue; - } - - if (L->contains(HP)) { - // Insert a unit add instruction right before the terminator - // corresponding to the back-edge. - Instruction *Add = BinaryOperator::CreateAdd( - CanonicalIV, One, "indvar.next", HP->getTerminator()); - Add->setDebugLoc(HP->getTerminator()->getDebugLoc()); - rememberInstruction(Add); - CanonicalIV->addIncoming(Add, HP); - } else { - CanonicalIV->addIncoming(Constant::getNullValue(Ty), HP); - } - } - } - - // {0,+,1} --> Insert a canonical induction variable into the loop! - if (S->isAffine() && S->getOperand(1)->isOne()) { - assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) && - "IVs with types different from the canonical IV should " - "already have been handled!"); - return CanonicalIV; - } - - // {0,+,F} --> {0,+,1} * F - - // If this is a simple linear addrec, emit it now as a special case. - if (S->isAffine()) // {0,+,F} --> i*F - return expand(SE.getTruncateOrNoop( - SE.getMulExpr( - SE.getUnknown(CanonicalIV), - SE.getNoopOrAnyExtend(S->getOperand(1), CanonicalIV->getType())), - Ty)); - - // If this is a chain of recurrences, turn it into a closed form, using the - // folders, then expandCodeFor the closed form. This allows the folders to - // simplify the expression without having to build a bunch of special code - // into this folder. - const SCEV *IH = SE.getUnknown(CanonicalIV); // Get I as a "symbolic" SCEV. - - // Promote S up to the canonical IV type, if the cast is foldable. - const SCEV *NewS = S; - const SCEV *Ext = SE.getNoopOrAnyExtend(S, CanonicalIV->getType()); - if (isa(Ext)) - NewS = Ext; - - const SCEV *V = cast(NewS)->evaluateAtIteration(IH, SE); - // cerr << "Evaluated: " << *this << "\n to: " << *V << "\n"; - - // Truncate the result down to the original type, if needed. - const SCEV *T = SE.getTruncateOrNoop(V, Ty); - return expand(T); -} - -Value *fake::SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) { - Type *Ty = SE.getEffectiveSCEVType(S->getType()); - Value *V = expandCodeFor(S->getOperand(), - SE.getEffectiveSCEVType(S->getOperand()->getType())); - Value *I = Builder.CreateTrunc(V, Ty); - rememberInstruction(I); - return I; -} - -Value *fake::SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) { - Type *Ty = SE.getEffectiveSCEVType(S->getType()); - Value *V = expandCodeFor(S->getOperand(), - SE.getEffectiveSCEVType(S->getOperand()->getType())); - Value *I = Builder.CreateZExt(V, Ty); - rememberInstruction(I); - return I; -} - -Value *fake::SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) { - Type *Ty = SE.getEffectiveSCEVType(S->getType()); - Value *V = expandCodeFor(S->getOperand(), - SE.getEffectiveSCEVType(S->getOperand()->getType())); - Value *I = Builder.CreateSExt(V, Ty); - rememberInstruction(I); - return I; -} - -Value *fake::SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) { - Value *LHS = expand(S->getOperand(S->getNumOperands() - 1)); - Type *Ty = LHS->getType(); - for (int i = S->getNumOperands() - 2; i >= 0; --i) { - // In the case of mixed integer and pointer types, do the - // rest of the comparisons as integer. - Type *OpTy = S->getOperand(i)->getType(); - if (OpTy->isIntegerTy() != Ty->isIntegerTy()) { - Ty = SE.getEffectiveSCEVType(Ty); - LHS = InsertNoopCastOfTo(LHS, Ty); - } - Value *RHS = expandCodeFor(S->getOperand(i), Ty); - Value *ICmp = Builder.CreateICmpSGT(LHS, RHS); - rememberInstruction(ICmp); - Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smax"); - rememberInstruction(Sel); - LHS = Sel; - } - // In the case of mixed integer and pointer types, cast the - // final result back to the pointer type. - if (LHS->getType() != S->getType()) - LHS = InsertNoopCastOfTo(LHS, S->getType()); - return LHS; -} - -Value *fake::SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) { - Value *LHS = expand(S->getOperand(S->getNumOperands() - 1)); - Type *Ty = LHS->getType(); - for (int i = S->getNumOperands() - 2; i >= 0; --i) { - // In the case of mixed integer and pointer types, do the - // rest of the comparisons as integer. - Type *OpTy = S->getOperand(i)->getType(); - if (OpTy->isIntegerTy() != Ty->isIntegerTy()) { - Ty = SE.getEffectiveSCEVType(Ty); - LHS = InsertNoopCastOfTo(LHS, Ty); - } - Value *RHS = expandCodeFor(S->getOperand(i), Ty); - Value *ICmp = Builder.CreateICmpUGT(LHS, RHS); - rememberInstruction(ICmp); - Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umax"); - rememberInstruction(Sel); - LHS = Sel; - } - // In the case of mixed integer and pointer types, cast the - // final result back to the pointer type. - if (LHS->getType() != S->getType()) - LHS = InsertNoopCastOfTo(LHS, S->getType()); - return LHS; -} - -Value *fake::SCEVExpander::visitSMinExpr(const SCEVSMinExpr *S) { - Value *LHS = expand(S->getOperand(S->getNumOperands() - 1)); - Type *Ty = LHS->getType(); - for (int i = S->getNumOperands() - 2; i >= 0; --i) { - // In the case of mixed integer and pointer types, do the - // rest of the comparisons as integer. - Type *OpTy = S->getOperand(i)->getType(); - if (OpTy->isIntegerTy() != Ty->isIntegerTy()) { - Ty = SE.getEffectiveSCEVType(Ty); - LHS = InsertNoopCastOfTo(LHS, Ty); - } - Value *RHS = expandCodeFor(S->getOperand(i), Ty); - Value *ICmp = Builder.CreateICmpSLT(LHS, RHS); - rememberInstruction(ICmp); - Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smin"); - rememberInstruction(Sel); - LHS = Sel; - } - // In the case of mixed integer and pointer types, cast the - // final result back to the pointer type. - if (LHS->getType() != S->getType()) - LHS = InsertNoopCastOfTo(LHS, S->getType()); - return LHS; -} - -Value *fake::SCEVExpander::visitUMinExpr(const SCEVUMinExpr *S) { - Value *LHS = expand(S->getOperand(S->getNumOperands() - 1)); - Type *Ty = LHS->getType(); - for (int i = S->getNumOperands() - 2; i >= 0; --i) { - // In the case of mixed integer and pointer types, do the - // rest of the comparisons as integer. - Type *OpTy = S->getOperand(i)->getType(); - if (OpTy->isIntegerTy() != Ty->isIntegerTy()) { - Ty = SE.getEffectiveSCEVType(Ty); - LHS = InsertNoopCastOfTo(LHS, Ty); - } - Value *RHS = expandCodeFor(S->getOperand(i), Ty); - Value *ICmp = Builder.CreateICmpULT(LHS, RHS); - rememberInstruction(ICmp); - Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umin"); - rememberInstruction(Sel); - LHS = Sel; - } - // In the case of mixed integer and pointer types, cast the - // final result back to the pointer type. - if (LHS->getType() != S->getType()) - LHS = InsertNoopCastOfTo(LHS, S->getType()); - return LHS; -} - -Value *fake::SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty, - Instruction *IP) { - setInsertPoint(IP); - return expandCodeFor(SH, Ty); -} - -Value *fake::SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty) { - // Expand the code for this SCEV. - Value *V = expand(SH); - if (Ty) { - assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) && - "non-trivial casts should be done with the SCEVs directly!"); - V = InsertNoopCastOfTo(V, Ty); - } - return V; -} - -ScalarEvolution::ValueOffsetPair -fake::SCEVExpander::FindValueInExprValueMap(const SCEV *S, - const Instruction *InsertPt) { - SetVector *Set = SE.getSCEVValues(S); - // If the expansion is not in CanonicalMode, and the SCEV contains any - // sub scAddRecExpr type SCEV, it is required to expand the SCEV literally. - if (CanonicalMode || !SE.containsAddRecurrence(S)) { - // If S is scConstant, it may be worse to reuse an existing Value. - if (S->getSCEVType() != scConstant && Set) { - // Choose a Value from the set which dominates the insertPt. - // insertPt should be inside the Value's parent loop so as not to break - // the LCSSA form. - for (auto const &VOPair : *Set) { - Value *V = VOPair.first; - ConstantInt *Offset = VOPair.second; - Instruction *EntInst = nullptr; - if (V && isa(V) && (EntInst = cast(V)) && - S->getType() == V->getType() && - EntInst->getFunction() == InsertPt->getFunction() && - SE.DT.dominates(EntInst, InsertPt) && - (SE.LI.getLoopFor(EntInst->getParent()) == nullptr || - SE.LI.getLoopFor(EntInst->getParent())->contains(InsertPt))) - return {V, Offset}; - } - } - } - return {nullptr, nullptr}; -} - -// The expansion of SCEV will either reuse a previous Value in ExprValueMap, -// or expand the SCEV literally. Specifically, if the expansion is in LSRMode, -// and the SCEV contains any sub scAddRecExpr type SCEV, it will be expanded -// literally, to prevent LSR's transformed SCEV from being reverted. Otherwise, -// the expansion will try to reuse Value from ExprValueMap, and only when it -// fails, expand the SCEV literally. -Value *fake::SCEVExpander::expand(const SCEV *S) { - // Compute an insertion point for this SCEV object. Hoist the instructions - // as far out in the loop nest as possible. - Instruction *InsertPt = &*Builder.GetInsertPoint(); - - // We can move insertion point only if there is no div or rem operations - // otherwise we are risky to move it over the check for zero denominator. - auto SafeToHoist = [](const SCEV *S) { - return !SCEVExprContains(S, [](const SCEV *S) { - if (const auto *D = dyn_cast(S)) { - if (const auto *SC = dyn_cast(D->getRHS())) - // Division by non-zero constants can be hoisted. - return SC->getValue()->isZero(); - // All other divisions should not be moved as they may be - // divisions by zero and should be kept within the - // conditions of the surrounding loops that guard their - // execution (see PR35406). - return true; - } - return false; - }); - }; - if (SafeToHoist(S)) { - for (Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock());; - L = L->getParentLoop()) { - if (SE.isLoopInvariant(S, L)) { - if (!L) - break; - if (BasicBlock *Preheader = L->getLoopPreheader()) - InsertPt = Preheader->getTerminator(); - else - // LSR sets the insertion point for AddRec start/step values to the - // block start to simplify value reuse, even though it's an invalid - // position. SCEVExpander must correct for this in all cases. - InsertPt = &*L->getHeader()->getFirstInsertionPt(); - } else { - // If the SCEV is computable at this level, insert it into the header - // after the PHIs (and after any other instructions that we've inserted - // there) so that it is guaranteed to dominate any user inside the loop. - if (L && SE.hasComputableLoopEvolution(S, L) && !PostIncLoops.count(L)) - InsertPt = &*L->getHeader()->getFirstInsertionPt(); - while (InsertPt->getIterator() != Builder.GetInsertPoint() && - (isInsertedInstruction(InsertPt) || - isa(InsertPt))) - InsertPt = &*std::next(InsertPt->getIterator()); - break; - } - } - } - - // IndVarSimplify sometimes sets the insertion point at the block start, even - // when there are PHIs at that point. We must correct for this. - if (isa(*InsertPt)) - InsertPt = &*InsertPt->getParent()->getFirstInsertionPt(); - - // Check to see if we already expanded this here. - auto I = InsertedExpressions.find(std::make_pair(S, InsertPt)); - if (I != InsertedExpressions.end()) - return I->second; - - SCEVInsertPointGuard Guard(Builder, this); - Builder.SetInsertPoint(InsertPt); - - // Expand the expression into instructions. - ScalarEvolution::ValueOffsetPair VO = FindValueInExprValueMap(S, InsertPt); - Value *V = VO.first; - - if (!V) - V = visit(S); - else if (VO.second) { - if (PointerType *Vty = dyn_cast(V->getType())) { - Type *Ety = Vty->getPointerElementType(); - int64_t Offset = VO.second->getSExtValue(); - int64_t ESize = SE.getTypeSizeInBits(Ety); - if ((Offset * 8) % ESize == 0) { - ConstantInt *Idx = - ConstantInt::getSigned(VO.second->getType(), -(Offset * 8) / ESize); - V = Builder.CreateGEP(Ety, V, Idx, "scevgep"); - } else { - ConstantInt *Idx = - ConstantInt::getSigned(VO.second->getType(), -Offset); - unsigned AS = Vty->getAddressSpace(); - V = Builder.CreateBitCast(V, Type::getInt8PtrTy(SE.getContext(), AS)); - V = Builder.CreateGEP(Type::getInt8Ty(SE.getContext()), V, Idx, - "uglygep"); - V = Builder.CreateBitCast(V, Vty); - } - } else { - V = Builder.CreateSub(V, VO.second); - } - } - // Remember the expanded value for this SCEV at this location. - // - // This is independent of PostIncLoops. The mapped value simply materializes - // the expression at this insertion point. If the mapped value happened to be - // a postinc expansion, it could be reused by a non-postinc user, but only if - // its insertion point was already at the head of the loop. - InsertedExpressions[std::make_pair(S, InsertPt)] = V; - return V; -} - -void fake::SCEVExpander::rememberInstruction(Value *I) { - if (!PostIncLoops.empty()) - InsertedPostIncValues.insert(I); - else - InsertedValues.insert(I); -} - -/// getOrInsertCanonicalInductionVariable - This method returns the -/// canonical induction variable of the specified type for the specified -/// loop (inserting one if there is none). A canonical induction variable -/// starts at zero and steps by one on each iteration. -PHINode * -fake::SCEVExpander::getOrInsertCanonicalInductionVariable(const Loop *L, - Type *Ty) { - assert(Ty->isIntegerTy() && "Can only insert integer induction variables!"); - - // Build a SCEV for {0,+,1}. - // Conservatively use FlagAnyWrap for now. - const SCEV *H = SE.getAddRecExpr(SE.getConstant(Ty, 0), SE.getConstant(Ty, 1), - L, SCEV::FlagAnyWrap); - - // Emit code for it. - SCEVInsertPointGuard Guard(Builder, this); - PHINode *V = - cast(expandCodeFor(H, nullptr, &L->getHeader()->front())); - - return V; -} - -/// replaceCongruentIVs - Check for congruent phis in this loop header and -/// replace them with their most canonical representative. Return the number of -/// phis eliminated. -/// -/// This does not depend on any SCEVExpander state but should be used in -/// the same context that SCEVExpander is used. -unsigned fake::SCEVExpander::replaceCongruentIVs( - Loop *L, const DominatorTree *DT, - SmallVectorImpl &DeadInsts, - const TargetTransformInfo *TTI) { - // Find integer phis in order of increasing width. - SmallVector Phis; - for (PHINode &PN : L->getHeader()->phis()) - Phis.push_back(&PN); - - if (TTI) - llvm::sort(Phis, [](Value *LHS, Value *RHS) { - // Put pointers at the back and make sure pointer < pointer = false. - if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy()) - return RHS->getType()->isIntegerTy() && !LHS->getType()->isIntegerTy(); - return RHS->getType()->getPrimitiveSizeInBits() < - LHS->getType()->getPrimitiveSizeInBits(); - }); - - unsigned NumElim = 0; - DenseMap ExprToIVMap; - // Process phis from wide to narrow. Map wide phis to their truncation - // so narrow phis can reuse them. - for (PHINode *Phi : Phis) { - auto SimplifyPHINode = [&](PHINode *PN) -> Value * { - if (Value *V = SimplifyInstruction(PN, {DL, &SE.TLI, &SE.DT, &SE.AC})) - return V; - if (!SE.isSCEVable(PN->getType())) - return nullptr; - auto *Const = dyn_cast(SE.getSCEV(PN)); - if (!Const) - return nullptr; - return Const->getValue(); - }; - - // Fold constant phis. They may be congruent to other constant phis and - // would confuse the logic below that expects proper IVs. - if (Value *V = SimplifyPHINode(Phi)) { - if (V->getType() != Phi->getType()) - continue; - Phi->replaceAllUsesWith(V); - DeadInsts.push_back(Phi); - ++NumElim; - DEBUG_WITH_TYPE(DebugType, dbgs() << "INDVARS: Eliminated constant iv: " - << *Phi << '\n'); - continue; - } - - if (!SE.isSCEVable(Phi->getType())) - continue; - - PHINode *&OrigPhiRef = ExprToIVMap[SE.getSCEV(Phi)]; - if (!OrigPhiRef) { - OrigPhiRef = Phi; - if (Phi->getType()->isIntegerTy() && TTI && - TTI->isTruncateFree(Phi->getType(), Phis.back()->getType())) { - // This phi can be freely truncated to the narrowest phi type. Map the - // truncated expression to it so it will be reused for narrow types. - const SCEV *TruncExpr = - SE.getTruncateExpr(SE.getSCEV(Phi), Phis.back()->getType()); - ExprToIVMap[TruncExpr] = Phi; - } - continue; - } - - // Replacing a pointer phi with an integer phi or vice-versa doesn't make - // sense. - if (OrigPhiRef->getType()->isPointerTy() != Phi->getType()->isPointerTy()) - continue; - - if (BasicBlock *LatchBlock = L->getLoopLatch()) { - Instruction *OrigInc = dyn_cast( - OrigPhiRef->getIncomingValueForBlock(LatchBlock)); - Instruction *IsomorphicInc = - dyn_cast(Phi->getIncomingValueForBlock(LatchBlock)); - - if (OrigInc && IsomorphicInc) { - // If this phi has the same width but is more canonical, replace the - // original with it. As part of the "more canonical" determination, - // respect a prior decision to use an IV chain. - if (OrigPhiRef->getType() == Phi->getType() && - !(ChainedPhis.count(Phi) || - isExpandedAddRecExprPHI(OrigPhiRef, OrigInc, L)) && - (ChainedPhis.count(Phi) || - isExpandedAddRecExprPHI(Phi, IsomorphicInc, L))) { - std::swap(OrigPhiRef, Phi); - std::swap(OrigInc, IsomorphicInc); - } - // Replacing the congruent phi is sufficient because acyclic - // redundancy elimination, CSE/GVN, should handle the - // rest. However, once SCEV proves that a phi is congruent, - // it's often the head of an IV user cycle that is isomorphic - // with the original phi. It's worth eagerly cleaning up the - // common case of a single IV increment so that DeleteDeadPHIs - // can remove cycles that had postinc uses. - const SCEV *TruncExpr = - SE.getTruncateOrNoop(SE.getSCEV(OrigInc), IsomorphicInc->getType()); - if (OrigInc != IsomorphicInc && - TruncExpr == SE.getSCEV(IsomorphicInc) && - SE.LI.replacementPreservesLCSSAForm(IsomorphicInc, OrigInc) && - hoistIVInc(OrigInc, IsomorphicInc)) { - DEBUG_WITH_TYPE(DebugType, - dbgs() << "INDVARS: Eliminated congruent iv.inc: " - << *IsomorphicInc << '\n'); - Value *NewInc = OrigInc; - if (OrigInc->getType() != IsomorphicInc->getType()) { - Instruction *IP = nullptr; - if (PHINode *PN = dyn_cast(OrigInc)) - IP = &*PN->getParent()->getFirstInsertionPt(); - else - IP = OrigInc->getNextNode(); - - IRBuilder<> Builder(IP); - Builder.SetCurrentDebugLocation(IsomorphicInc->getDebugLoc()); - NewInc = Builder.CreateTruncOrBitCast( - OrigInc, IsomorphicInc->getType(), IVName); - } - IsomorphicInc->replaceAllUsesWith(NewInc); - DeadInsts.push_back(IsomorphicInc); - } - } - } - DEBUG_WITH_TYPE(DebugType, dbgs() << "INDVARS: Eliminated congruent iv: " - << *Phi << '\n'); - ++NumElim; - Value *NewIV = OrigPhiRef; - if (OrigPhiRef->getType() != Phi->getType()) { - IRBuilder<> Builder(&*L->getHeader()->getFirstInsertionPt()); - Builder.SetCurrentDebugLocation(Phi->getDebugLoc()); - NewIV = Builder.CreateTruncOrBitCast(OrigPhiRef, Phi->getType(), IVName); - } - Phi->replaceAllUsesWith(NewIV); - DeadInsts.push_back(Phi); - } - return NumElim; -} - -Value *fake::SCEVExpander::getExactExistingExpansion(const SCEV *S, - const Instruction *At, - Loop *L) { - Optional VO = - getRelatedExistingExpansion(S, At, L); - if (VO && VO.getValue().second == nullptr) - return VO.getValue().first; - return nullptr; -} - -Optional -fake::SCEVExpander::getRelatedExistingExpansion(const SCEV *S, - const Instruction *At, - Loop *L) { - using namespace llvm::PatternMatch; - - SmallVector ExitingBlocks; - L->getExitingBlocks(ExitingBlocks); - - // Look for suitable value in simple conditions at the loop exits. - for (BasicBlock *BB : ExitingBlocks) { - ICmpInst::Predicate Pred; - Instruction *LHS, *RHS; - - if (!match(BB->getTerminator(), - m_Br(m_ICmp(Pred, m_Instruction(LHS), m_Instruction(RHS)), - m_BasicBlock(), m_BasicBlock()))) - continue; - - if (SE.getSCEV(LHS) == S && SE.DT.dominates(LHS, At)) - return ScalarEvolution::ValueOffsetPair(LHS, nullptr); - - if (SE.getSCEV(RHS) == S && SE.DT.dominates(RHS, At)) - return ScalarEvolution::ValueOffsetPair(RHS, nullptr); - } - - // Use expand's logic which is used for reusing a previous Value in - // ExprValueMap. - ScalarEvolution::ValueOffsetPair VO = FindValueInExprValueMap(S, At); - if (VO.first) - return VO; - - // There is potential to make this significantly smarter, but this simple - // heuristic already gets some interesting cases. - - // Can not find suitable value. - return None; -} - -bool fake::SCEVExpander::isHighCostExpansionHelper( - const SCEV *S, Loop *L, const Instruction &At, int &BudgetRemaining, - const TargetTransformInfo &TTI, SmallPtrSetImpl &Processed, - SmallVectorImpl &Worklist) { - if (BudgetRemaining < 0) - return true; // Already run out of budget, give up. - - // Was the cost of expansion of this expression already accounted for? - if (!Processed.insert(S).second) - return false; // We have already accounted for this expression. - - // If we can find an existing value for this scev available at the point "At" - // then consider the expression cheap. - if (getRelatedExistingExpansion(S, &At, L)) - return false; // Consider the expression to be free. - - switch (S->getSCEVType()) { - case scUnknown: - case scConstant: - return false; // Assume to be zero-cost. - } - - TargetTransformInfo::TargetCostKind CostKind = - TargetTransformInfo::TCK_RecipThroughput; - - if (auto *CastExpr = dyn_cast(S)) { - unsigned Opcode; - switch (S->getSCEVType()) { - case scTruncate: - Opcode = Instruction::Trunc; - break; - case scZeroExtend: - Opcode = Instruction::ZExt; - break; - case scSignExtend: - Opcode = Instruction::SExt; - break; - default: - llvm_unreachable("There are no other cast types."); - } - const SCEV *Op = CastExpr->getOperand(); - BudgetRemaining -= TTI.getCastInstrCost(Opcode, /*Dst=*/S->getType(), - /*Src=*/Op->getType(), CostKind); - Worklist.push_back(Op); - return false; // Will answer upon next entry into this function. - } - - if (auto *UDivExpr = dyn_cast(S)) { - // If the divisor is a power of two count this as a logical right-shift. - if (auto *SC = dyn_cast(UDivExpr->getRHS())) { - if (SC->getAPInt().isPowerOf2()) { - BudgetRemaining -= TTI.getArithmeticInstrCost(Instruction::LShr, - S->getType(), CostKind); - // Note that we don't count the cost of RHS, because it is a constant, - // and we consider those to be free. But if that changes, we would need - // to log2() it first before calling isHighCostExpansionHelper(). - Worklist.push_back(UDivExpr->getLHS()); - return false; // Will answer upon next entry into this function. - } - } - - // UDivExpr is very likely a UDiv that ScalarEvolution's HowFarToZero or - // HowManyLessThans produced to compute a precise expression, rather than a - // UDiv from the user's code. If we can't find a UDiv in the code with some - // simple searching, we need to account for it's cost. - - // At the beginning of this function we already tried to find existing - // value for plain 'S'. Now try to lookup 'S + 1' since it is common - // pattern involving division. This is just a simple search heuristic. - if (getRelatedExistingExpansion( - SE.getAddExpr(S, SE.getConstant(S->getType(), 1)), &At, L)) - return false; // Consider it to be free. - - // Need to count the cost of this UDiv. - BudgetRemaining -= - TTI.getArithmeticInstrCost(Instruction::UDiv, S->getType(), CostKind); - Worklist.insert(Worklist.end(), {UDivExpr->getLHS(), UDivExpr->getRHS()}); - return false; // Will answer upon next entry into this function. - } - - if (const auto *NAry = dyn_cast(S)) { - Type *OpType = NAry->getType(); - - assert(NAry->getNumOperands() >= 2 && - "Polynomial should be at least linear"); - - int AddCost = - TTI.getArithmeticInstrCost(Instruction::Add, OpType, CostKind); - int MulCost = - TTI.getArithmeticInstrCost(Instruction::Mul, OpType, CostKind); - - // In this polynominal, we may have some zero operands, and we shouldn't - // really charge for those. So how many non-zero coeffients are there? - int NumTerms = llvm::count_if(NAry->operands(), - [](const SCEV *S) { return !S->isZero(); }); - assert(NumTerms >= 1 && "Polynominal should have at least one term."); - assert(!(*std::prev(NAry->operands().end()))->isZero() && - "Last operand should not be zero"); - - // Much like with normal add expr, the polynominal will require - // one less addition than the number of it's terms. - BudgetRemaining -= AddCost * (NumTerms - 1); - if (BudgetRemaining < 0) - return true; - - // Ignoring constant term (operand 0), how many of the coeffients are u> 1? - int NumNonZeroDegreeNonOneTerms = - llvm::count_if(make_range(std::next(NAry->op_begin()), NAry->op_end()), - [](const SCEV *S) { - auto *SConst = dyn_cast(S); - return !SConst || SConst->getAPInt().ugt(1); - }); - // Here, *each* one of those will require a multiplication. - BudgetRemaining -= MulCost * NumNonZeroDegreeNonOneTerms; - if (BudgetRemaining < 0) - return true; - - // What is the degree of this polynominal? - int PolyDegree = NAry->getNumOperands() - 1; - assert(PolyDegree >= 1 && "Should be at least affine."); - - // The final term will be: - // Op_{PolyDegree} * x ^ {PolyDegree} - // Where x ^ {PolyDegree} will again require PolyDegree-1 mul operations. - // Note that x ^ {PolyDegree} = x * x ^ {PolyDegree-1} so charging for - // x ^ {PolyDegree} will give us x ^ {2} .. x ^ {PolyDegree-1} for free. - // FIXME: this is conservatively correct, but might be overly pessimistic. - BudgetRemaining -= MulCost * (PolyDegree - 1); - if (BudgetRemaining < 0) - return true; - - // And finally, the operands themselves should fit within the budget. - Worklist.insert(Worklist.end(), NAry->operands().begin(), - NAry->operands().end()); - return false; // So far so good, though ops may be too costly? - } - - if (const SCEVNAryExpr *NAry = dyn_cast(S)) { - Type *OpType = NAry->getType(); - - int PairCost; - switch (S->getSCEVType()) { - case scAddExpr: - PairCost = TTI.getArithmeticInstrCost(Instruction::Add, OpType, CostKind); - break; - case scMulExpr: - // TODO: this is a very pessimistic cost modelling for Mul, - // because of Bin Pow algorithm actually used by the expander, - // see fake::SCEVExpander::visitMulExpr(), ExpandOpBinPowN(). - PairCost = TTI.getArithmeticInstrCost(Instruction::Mul, OpType, CostKind); - break; - case scSMaxExpr: - case scUMaxExpr: - case scSMinExpr: - case scUMinExpr: - PairCost = - TTI.getCmpSelInstrCost(Instruction::ICmp, OpType, - CmpInst::makeCmpResultType(OpType), CostKind) + - TTI.getCmpSelInstrCost(Instruction::Select, OpType, - CmpInst::makeCmpResultType(OpType), CostKind); - break; - default: - llvm_unreachable("There are no other variants here."); - } - - assert(NAry->getNumOperands() > 1 && - "Nary expr should have more than 1 operand."); - // The simple nary expr will require one less op (or pair of ops) - // than the number of it's terms. - BudgetRemaining -= PairCost * (NAry->getNumOperands() - 1); - if (BudgetRemaining < 0) - return true; - - // And finally, the operands themselves should fit within the budget. - Worklist.insert(Worklist.end(), NAry->operands().begin(), - NAry->operands().end()); - return false; // So far so good, though ops may be too costly? - } - - llvm_unreachable("No other scev expressions possible."); -} - -Value *fake::SCEVExpander::expandCodeForPredicate(const SCEVPredicate *Pred, - Instruction *IP) { - assert(IP); - switch (Pred->getKind()) { - case SCEVPredicate::P_Union: - return expandUnionPredicate(cast(Pred), IP); - case SCEVPredicate::P_Equal: - return expandEqualPredicate(cast(Pred), IP); - case SCEVPredicate::P_Wrap: { - auto *AddRecPred = cast(Pred); - return expandWrapPredicate(AddRecPred, IP); - } - } - llvm_unreachable("Unknown SCEV predicate type"); -} - -Value *fake::SCEVExpander::expandEqualPredicate(const SCEVEqualPredicate *Pred, - Instruction *IP) { - Value *Expr0 = expandCodeFor(Pred->getLHS(), Pred->getLHS()->getType(), IP); - Value *Expr1 = expandCodeFor(Pred->getRHS(), Pred->getRHS()->getType(), IP); - - Builder.SetInsertPoint(IP); - auto *I = Builder.CreateICmpNE(Expr0, Expr1, "ident.check"); - return I; -} - -Value *fake::SCEVExpander::generateOverflowCheck(const SCEVAddRecExpr *AR, - Instruction *Loc, - bool Signed) { - assert(AR->isAffine() && "Cannot generate RT check for " - "non-affine expression"); - - SCEVUnionPredicate Pred; - const SCEV *ExitCount = - SE.getPredicatedBackedgeTakenCount(AR->getLoop(), Pred); - - assert(ExitCount != SE.getCouldNotCompute() && "Invalid loop count"); - - const SCEV *Step = AR->getStepRecurrence(SE); - const SCEV *Start = AR->getStart(); - - Type *ARTy = AR->getType(); - unsigned SrcBits = SE.getTypeSizeInBits(ExitCount->getType()); - unsigned DstBits = SE.getTypeSizeInBits(ARTy); - - // The expression {Start,+,Step} has nusw/nssw if - // Step < 0, Start - |Step| * Backedge <= Start - // Step >= 0, Start + |Step| * Backedge > Start - // and |Step| * Backedge doesn't unsigned overflow. - - IntegerType *CountTy = IntegerType::get(Loc->getContext(), SrcBits); - Builder.SetInsertPoint(Loc); - Value *TripCountVal = expandCodeFor(ExitCount, CountTy, Loc); - - IntegerType *Ty = - IntegerType::get(Loc->getContext(), SE.getTypeSizeInBits(ARTy)); - Type *ARExpandTy = DL.isNonIntegralPointerType(ARTy) ? ARTy : Ty; - - Value *StepValue = expandCodeFor(Step, Ty, Loc); - Value *NegStepValue = expandCodeFor(SE.getNegativeSCEV(Step), Ty, Loc); - Value *StartValue = expandCodeFor(Start, ARExpandTy, Loc); - - ConstantInt *Zero = - ConstantInt::get(Loc->getContext(), APInt::getNullValue(DstBits)); - - Builder.SetInsertPoint(Loc); - // Compute |Step| - Value *StepCompare = Builder.CreateICmp(ICmpInst::ICMP_SLT, StepValue, Zero); - Value *AbsStep = Builder.CreateSelect(StepCompare, NegStepValue, StepValue); - - // Get the backedge taken count and truncate or extended to the AR type. - Value *TruncTripCount = Builder.CreateZExtOrTrunc(TripCountVal, Ty); - auto *MulF = Intrinsic::getDeclaration(Loc->getModule(), - Intrinsic::umul_with_overflow, Ty); - - // Compute |Step| * Backedge - CallInst *Mul = Builder.CreateCall(MulF, {AbsStep, TruncTripCount}, "mul"); - Value *MulV = Builder.CreateExtractValue(Mul, 0, "mul.result"); - Value *OfMul = Builder.CreateExtractValue(Mul, 1, "mul.overflow"); - - // Compute: - // Start + |Step| * Backedge < Start - // Start - |Step| * Backedge > Start - Value *Add = nullptr, *Sub = nullptr; - if (PointerType *ARPtrTy = dyn_cast(ARExpandTy)) { - const SCEV *MulS = SE.getSCEV(MulV); - const SCEV *NegMulS = SE.getNegativeSCEV(MulS); - Add = Builder.CreateBitCast(expandAddToGEP(MulS, ARPtrTy, Ty, StartValue), - ARPtrTy); - Sub = Builder.CreateBitCast( - expandAddToGEP(NegMulS, ARPtrTy, Ty, StartValue), ARPtrTy); - } else { - Add = Builder.CreateAdd(StartValue, MulV); - Sub = Builder.CreateSub(StartValue, MulV); - } - - Value *EndCompareGT = Builder.CreateICmp( - Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT, Sub, StartValue); - - Value *EndCompareLT = Builder.CreateICmp( - Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, Add, StartValue); - - // Select the answer based on the sign of Step. - Value *EndCheck = - Builder.CreateSelect(StepCompare, EndCompareGT, EndCompareLT); - - // If the backedge taken count type is larger than the AR type, - // check that we don't drop any bits by truncating it. If we are - // dropping bits, then we have overflow (unless the step is zero). - if (SE.getTypeSizeInBits(CountTy) > SE.getTypeSizeInBits(Ty)) { - auto MaxVal = APInt::getMaxValue(DstBits).zext(SrcBits); - auto *BackedgeCheck = - Builder.CreateICmp(ICmpInst::ICMP_UGT, TripCountVal, - ConstantInt::get(Loc->getContext(), MaxVal)); - BackedgeCheck = Builder.CreateAnd( - BackedgeCheck, Builder.CreateICmp(ICmpInst::ICMP_NE, StepValue, Zero)); - - EndCheck = Builder.CreateOr(EndCheck, BackedgeCheck); - } - - EndCheck = Builder.CreateOr(EndCheck, OfMul); - return EndCheck; -} - -Value *fake::SCEVExpander::expandWrapPredicate(const SCEVWrapPredicate *Pred, - Instruction *IP) { - const auto *A = cast(Pred->getExpr()); - Value *NSSWCheck = nullptr, *NUSWCheck = nullptr; - - // Add a check for NUSW - if (Pred->getFlags() & SCEVWrapPredicate::IncrementNUSW) - NUSWCheck = generateOverflowCheck(A, IP, false); - - // Add a check for NSSW - if (Pred->getFlags() & SCEVWrapPredicate::IncrementNSSW) - NSSWCheck = generateOverflowCheck(A, IP, true); - - if (NUSWCheck && NSSWCheck) - return Builder.CreateOr(NUSWCheck, NSSWCheck); - - if (NUSWCheck) - return NUSWCheck; - - if (NSSWCheck) - return NSSWCheck; - - return ConstantInt::getFalse(IP->getContext()); -} - -Value *fake::SCEVExpander::expandUnionPredicate(const SCEVUnionPredicate *Union, - Instruction *IP) { - auto *BoolType = IntegerType::get(IP->getContext(), 1); - Value *Check = ConstantInt::getNullValue(BoolType); - - // Loop over all checks in this set. - for (auto Pred : Union->getPredicates()) { - auto *NextCheck = expandCodeForPredicate(Pred, IP); - Builder.SetInsertPoint(IP); - Check = Builder.CreateOr(Check, NextCheck); - } - - return Check; -} - -namespace { -// Search for a SCEV subexpression that is not safe to expand. Any expression -// that may expand to a !isSafeToSpeculativelyExecute value is unsafe, namely -// UDiv expressions. We don't know if the UDiv is derived from an IR divide -// instruction, but the important thing is that we prove the denominator is -// nonzero before expansion. -// -// IVUsers already checks that IV-derived expressions are safe. So this check is -// only needed when the expression includes some subexpression that is not IV -// derived. -// -// Currently, we only allow division by a nonzero constant here. If this is -// inadequate, we could easily allow division by SCEVUnknown by using -// ValueTracking to check isKnownNonZero(). -// -// We cannot generally expand recurrences unless the step dominates the loop -// header. The expander handles the special case of affine recurrences by -// scaling the recurrence outside the loop, but this technique isn't generally -// applicable. Expanding a nested recurrence outside a loop requires computing -// binomial coefficients. This could be done, but the recurrence has to be in a -// perfectly reduced form, which can't be guaranteed. -struct SCEVFindUnsafe { - ScalarEvolution &SE; - bool IsUnsafe; - - SCEVFindUnsafe(ScalarEvolution &se) : SE(se), IsUnsafe(false) {} - - bool follow(const SCEV *S) { - if (const SCEVUDivExpr *D = dyn_cast(S)) { - const SCEVConstant *SC = dyn_cast(D->getRHS()); - if (!SC || SC->getValue()->isZero()) { - IsUnsafe = true; - return false; - } - } - if (const SCEVAddRecExpr *AR = dyn_cast(S)) { - const SCEV *Step = AR->getStepRecurrence(SE); - if (!AR->isAffine() && !SE.dominates(Step, AR->getLoop()->getHeader())) { - IsUnsafe = true; - return false; - } - } - return true; - } - bool isDone() const { return IsUnsafe; } -}; -} // namespace - -namespace llvm { -bool isSafeToExpand(const SCEV *S, ScalarEvolution &SE) { - SCEVFindUnsafe Search(SE); - visitAll(S, Search); - return !Search.IsUnsafe; -} - -bool isSafeToExpandAt(const SCEV *S, const Instruction *InsertionPoint, - ScalarEvolution &SE) { - if (!isSafeToExpand(S, SE)) - return false; - // We have to prove that the expanded site of S dominates InsertionPoint. - // This is easy when not in the same block, but hard when S is an instruction - // to be expanded somewhere inside the same block as our insertion point. - // What we really need here is something analogous to an OrderedBasicBlock, - // but for the moment, we paper over the problem by handling two common and - // cheap to check cases. - if (SE.properlyDominates(S, InsertionPoint->getParent())) - return true; - if (SE.dominates(S, InsertionPoint->getParent())) { - if (InsertionPoint->getParent()->getTerminator() == InsertionPoint) - return true; - if (const SCEVUnknown *U = dyn_cast(S)) - for (const Value *V : InsertionPoint->operand_values()) - if (V == U->getValue()) - return true; - } - return false; -} -} // namespace llvm