diff --git a/zdm/grid.py b/zdm/grid.py index fb12863..fc0432f 100644 --- a/zdm/grid.py +++ b/zdm/grid.py @@ -145,7 +145,54 @@ def load_grid(self, gridfile, zfile, dmfile): self.dmvals = io.load_data(dmfile) self.check_grid() self.volume_grid() - + + def get_dm_coeffs(self, DMlist): + """ + Returns indices and coefficients for interpolating between DM values + + dmlist: np.ndarray of dispersion measures (extragalactic!) + """ + # get indices in dm space + kdms=DMlist/self.ddm - 0.5 # idea: if DMobs = ddm, we are half-way between bin 0 and bin 1 + Bin0 = np.where(kdms < 0.)[0] # if DMs are in the lower half of the lowest bin, use lowest bin only + kdms[Bin0] = 0. + idms1=kdms.astype('int') # rounds down + idms2=idms1+1 + dkdms2=kdms-idms1 # applies to idms2, i.e. the upper bin. If DM = ddm, then this should be 0.5 + dkdms1 = 1.-dkdms2 # applies to idms1 + return idms1,idms2,dkdms1,dkdms2 + + def get_z_coeffs(self,zlist): + """ + Returns indices and coefficients for interpolating between z values + + zlist: np.ndarray of dispersion measures (extragalactic!) + """ + + kzs=zlist/self.dz - 0.5 + Bin0 = np.where(kzs < 0.)[0] + kzs[Bin0] = 0. + izs1=kzs.astype('int') + izs2=izs1+1 + dkzs2=kzs-izs1 # applies to izs2 + dkzs1 = 1. - dkzs2 + + # checks for values which are too large + toobigz = np.where(zlist > self.zvals[-1] + self.dz/2.)[0] + if len(toobigz) > 0: + raise ValueError("Redshift values ",zlist[toobigz], + " too large for grid max of ",self.zvals[-1] + self.dz/2.) + + # checks for zs in top half of top bin - only works because of above bin + topbin = np.where(zlist > self.zvals[-1])[0] + if len(topbin) > 0: + izs2[topbin] = self.zvals.size-1 + izs1[topbin] = self.zvals.size-2 + dkzs2[topbin] = 1. + dkzs1[topbin] = 0. + + return izs1, izs2, dkzs1, dkzs2 + def check_grid(self,TOLERANCE = 1e-6): """ Check that the grid values are behaving as expected @@ -482,7 +529,7 @@ def GenMCSample(self, N, Poisson=False): If Poisson=True, then interpret N as a Poisson expectation value Otherwise, generate precisely N FRBs - Generated values are DM, z, B, w, and SNR + Generated values are [MCz, MCDM, MCb, MCs, MCw] NOTE: the routine GenMCFRB does not know 'w', merely which w bin it generates. @@ -567,8 +614,6 @@ def initMC(self): pzc = np.cumsum(pz) pzc /= pzc[-1] - imaxed = np.where(pzc == 1.)[0][0] - print("For i, b ",i,b," j,w ",j,w," max z is ",self.zvals[imaxed]) pzcs.append(pzc) # generates cumulative distribution for sampling w,b @@ -759,7 +804,7 @@ def GenMCFRB(self, Emax_boost): else: # interpolate linearly from 0 to the minimum value fDM = r / pDMc[iDM2] - MCDM = (self.dmvals[iDM2] + self.dDM/2.) * fDM + MCDM = (self.dmvals[iDM2] + self.ddm/2.) * fDM kDM1 = 0. kDM2 = 1. kDM3 = 0. diff --git a/zdm/iteration.py b/zdm/iteration.py index 890deb5..731092c 100644 --- a/zdm/iteration.py +++ b/zdm/iteration.py @@ -295,18 +295,20 @@ def calc_likelihoods_1D(grid,survey,doplot=False,norm=True,psnr=True,Pn=True,dol # TODO: this is slow - should collapse only used columns pdm=np.sum(rates,axis=0) - ddm=dmvals[1]-dmvals[0] - kdms=DMobs/ddm - idms1=kdms.astype('int') - idms2=idms1+1 - dkdms=kdms-idms1 + #ddm=dmvals[1]-dmvals[0] + #kdms=DMobs/ddm + #idms1=kdms.astype('int') + #idms2=idms1+1 + #dkdms=kdms-idms1 + + idms1,idms2,dkdms1,dkdms2 = grid.get_dm_coeffs(DMobs) if grid.state.MW.sigmaDMG == 0.0: if np.any(DMobs < 0): raise ValueError("Negative DMobs with no uncertainty") # Linear interpolation - pvals=pdm[idms1]*(1.-dkdms) + pdm[idms2]*dkdms + pvals=pdm[idms1]*dkdms1 + pdm[idms2]*dkdms2 else: dm_weights, iweights = calc_DMG_weights(DMobs, survey.DMhalos[nozlist], survey.DMGs[nozlist], dmvals, grid.state.MW.sigmaDMG, grid.state.MW.sigmaHalo, grid.state.MW.percentDMG, grid.state.MW.logu) @@ -373,15 +375,17 @@ def calc_likelihoods_1D(grid,survey,doplot=False,norm=True,psnr=True,Pn=True,dol psnr=np.zeros([DMobs.size]) # has already been cut to non-localised number # Evaluate thresholds at the exact DMobs - kdmobs=(survey.DMs - np.median(survey.DMGs + survey.DMhalos))/ddm - kdmobs=kdmobs[nozlist] - kdmobs[kdmobs<0] = 0 - idmobs1=kdmobs.astype('int') - idmobs2=idmobs1+1 - dkdmobs=kdmobs-idmobs1 # applies to idms2 - + #kdmobs=(survey.DMs - np.median(survey.DMGs + survey.DMhalos))/ddm + #kdmobs=kdmobs[nozlist] + #kdmobs[kdmobs<0] = 0 + #idmobs1=kdmobs.astype('int') + #idmobs2=idmobs1+1 + #dkdmobs=kdmobs-idmobs1 # applies to idms2 + DMEGmeans = survey.DMs[nozlist] - np.median(survey.DMGs + survey.DMhalos) + idmobs1,idmobs2,dkdmobs1,dkdmobs2 = grid.get_dm_coeffs(DMEGmeans) + # Linear interpolation - Eths = grid.thresholds[:,:,idmobs1]*(1.-dkdmobs) + grid.thresholds[:,:,idmobs2]*dkdmobs + Eths = grid.thresholds[:,:,idmobs1]*dkdmobs1 + grid.thresholds[:,:,idmobs2]*dkdmobs2 ##### IGNORE THIS, PVALS NOW CONTAINS CORRECT NORMALISATION ###### # we have previously calculated p(DM), normalised by the global sum over all DM (i.e. given 1 FRB detection) @@ -390,7 +394,7 @@ def calc_likelihoods_1D(grid,survey,doplot=False,norm=True,psnr=True,Pn=True,dol # p(snr,DM)/p(DM) * p(DM)/b(burst) # get a vector of rates as a function of z #rs = rates[:,idms1[j]]*(1.-dkdms[j])+ rates[:,idms2[j]]*dkdms[j] - rs = rates[:,idms1]*(1.-dkdms)+ rates[:,idms2]*dkdms + rs = rates[:,idms1]*dkdms1+ rates[:,idms2]*dkdms2 #norms=np.sum(rs,axis=0)/global_norm norms=pvals @@ -414,7 +418,7 @@ def calc_likelihoods_1D(grid,survey,doplot=False,norm=True,psnr=True,Pn=True,dol # this are the grid smearing factors incorporating pcosmic and the host contributions if grid.state.MW.sigmaDMG == 0.0: # Linear interpolation - sg = grid.sfr_smear[:,idms1]*(1.-dkdms)+ grid.sfr_smear[:,idms2]*dkdms + sg = grid.sfr_smear[:,idms1]*dkdms1+ grid.sfr_smear[:,idms2]*dkdms2 else: sg = np.zeros([grid.sfr_smear.shape[0], len(idms1)]) # For each FRB @@ -641,39 +645,50 @@ def calc_likelihoods_2D(grid,survey, else: norm=1. + # in the grid, each z and dm value represents the centre of a bin, with p(z,DM) + # giving the probability of finding the FRB in the range z +- dz/2, dm +- dm/2. + # threshold for when we shift from lower to upper is if z < zcentral, + # weight slowly shifts from lower to upper bin + # get indices in dm space - ddm=dmvals[1]-dmvals[0] - kdms=DMobs/ddm - idms1=kdms.astype('int') - idms2=idms1+1 - dkdms=kdms-idms1 # applies to idms2 - - # get indices in z space - dz=zvals[1]-zvals[0] - kzs=Zobs/dz - izs1=kzs.astype('int') - izs2=izs1+1 - dkzs=kzs-izs1 # applies to izs2 - # print("izs and idms:", izs1, idms1, izs2, idms2, flush=True) - + #ddm=dmvals[1]-dmvals[0] + #kdms=DMobs/ddm - 0.5 # idea: if DMobs = ddm, we are half-way between bin 0 and bin 1 + #Bin0 = np.where(kdms < 0.)[0] # if DMs are in the lower half of the lowest bin, use lowest bin only + #kdms[Bin0] = 0. + #idms1=kdms.astype('int') # rounds down + #idms2=idms1+1 + #dkdms=kdms-idms1 # applies to idms2, i.e. the upper bin. If DM = ddm, then this should be 0.5 + + idms1,idms2,dkdms1,dkdms2 = grid.get_dm_coeffs(DMobs) + + # get indices in z space. See dm comments above. This will not work for log-spaced z + #dz=zvals[1]-zvals[0] + #kzs=Zobs/dz - 0.5 + #Bin0 = np.where(kzs < 0.)[0] + #kzs[Bin0] = 0. + #izs1=kzs.astype('int') + #izs2=izs1+1 + #dkzs=kzs-izs1 # applies to izs2 + + izs1,izs2,dkzs1,dkzs2 = grid.get_z_coeffs(Zobs) + # Calculate probability - if grid.state.MW.sigmaDMG == 0.0: if np.any(DMobs < 0): raise ValueError("Negative DMobs with no uncertainty") # Linear interpolation - pvals = rates[izs1,idms1]*(1.-dkdms)*(1-dkzs) - pvals += rates[izs2,idms1]*(1.-dkdms)*dkzs - pvals += rates[izs1,idms2]*dkdms*(1-dkzs) - pvals += rates[izs2,idms2]*dkdms*dkzs + pvals = rates[izs1,idms1]*dkdms1*dkzs1 + pvals += rates[izs2,idms1]*dkdms1*dkzs2 + pvals += rates[izs1,idms2]*dkdms2*dkzs1 + pvals += rates[izs2,idms2]*dkdms2*dkzs2 else: dm_weights, iweights = calc_DMG_weights(DMobs, survey.DMhalos[zlist], survey.DMGs[zlist], dmvals, grid.state.MW.sigmaDMG, grid.state.MW.sigmaHalo, grid.state.MW.percentDMG, grid.state.MW.logu) pvals = np.zeros(len(izs1)) for i in range(len(izs1)): - pvals[i] = np.sum(rates[izs1[i],iweights[i]] * dm_weights[i] * (1.-dkzs[i]) - + rates[izs2[i],iweights[i]] * dm_weights[i] * dkzs[i]) + pvals[i] = np.sum(rates[izs1[i],iweights[i]] * dm_weights[i] * dkzs1[i] + + rates[izs2[i],iweights[i]] * dm_weights[i] * dkzs2[i]) bad= pvals <= 0. flg_bad = False @@ -698,21 +713,20 @@ def calc_likelihoods_2D(grid,survey, # calculating p(DM) and p(z) if dolist==5: # calculates p(dm) - pdmvals = np.sum(rates[:,idms1],axis=0)*(1.-dkdms) - pdmvals += np.sum(rates[:,idms2],axis=0)*dkdms + pdmvals = np.sum(rates[:,idms1],axis=0)*dkdms1 + pdmvals += np.sum(rates[:,idms2],axis=0)*dkdms2 # implicit calculation of p(z|DM) from p(z,DM)/p(DM) #neither on the RHS is normalised so this is OK! pzgdmvals = pvals/pdmvals #calculates p(z) - pzvals = np.sum(rates[izs1,:],axis=1)*(1.-dkzs) - pzvals += np.sum(rates[izs2,:],axis=1)*dkzs + pzvals = np.sum(rates[izs1,:],axis=1)*dkzs1 + pzvals += np.sum(rates[izs2,:],axis=1)*dkzs2 # implicit calculation of p(z|DM) from p(z,DM)/p(DM) pdmgzvals = pvals/pzvals - for array in pdmvals,pzgdmvals,pzvals,pdmgzvals: bad=np.array(np.where(array <= 0.)) if bad.size > 0: @@ -783,7 +797,7 @@ def calc_likelihoods_2D(grid,survey, # - we want to make FRB width analogous to beam, THEN # - we need an analogous 'beam' (i.e. width) distribution to integrate over, # which gives the normalisation - + if psnr: # NOTE: to break this into a p(SNR|b) p(b) term, we first take # the relative likelihood of the threshold b value compare @@ -798,21 +812,26 @@ def calc_likelihoods_2D(grid,survey, gamma=grid.state.energy.gamma # Evaluate thresholds at the exact DMobs - kdmobs=(survey.DMs - np.median(survey.DMGs + survey.DMhalos))/ddm - kdmobs=kdmobs[zlist] - kdmobs[kdmobs<0] = 0 - idmobs1=kdmobs.astype('int') - idmobs2=idmobs1+1 - dkdmobs=kdmobs-idmobs1 # applies to idms2 - + # The thresholds have already been calculated at mean values + # of the below quantities. Hence, we use the DM relative to + # those means, not the actual DMEG for that FRB + #kdmobs=(survey.DMs - np.median(survey.DMGs + survey.DMhalos))/ddm + #kdmobs=kdmobs[zlist] + #kdmobs[kdmobs<0] = 0 + #idmobs1=kdmobs.astype('int') + #idmobs2=idmobs1+1 + #dkdmobs=kdmobs-idmobs1 # applies to idms2 + DMEGmeans = survey.DMs[zlist] - np.median(survey.DMGs + survey.DMhalos) + idmobs1,idmobs2,dkdmobs1,dkdmobs2 = grid.get_dm_coeffs(DMEGmeans) + # Linear interpolation - Eths = grid.thresholds[:,izs1,idmobs1]*(1.-dkdmobs)*(1-dkzs) - Eths += grid.thresholds[:,izs2,idmobs1]*(1.-dkdmobs)*dkzs - Eths += grid.thresholds[:,izs1,idmobs2]*dkdmobs*(1-dkzs) - Eths += grid.thresholds[:,izs2,idmobs2]*dkdmobs*dkzs + Eths = grid.thresholds[:,izs1,idmobs1]*dkdmobs1*dkzs1 + Eths += grid.thresholds[:,izs2,idmobs1]*dkdmobs1*dkzs2 + Eths += grid.thresholds[:,izs1,idmobs2]*dkdmobs2*dkzs1 + Eths += grid.thresholds[:,izs2,idmobs2]*dkdmobs2*dkzs2 - FtoE = grid.FtoE[izs1]*(1.-dkzs) - FtoE += grid.FtoE[izs2]*dkzs + FtoE = grid.FtoE[izs1]*dkzs1 + FtoE += grid.FtoE[izs2]*dkzs2 beam_norm=np.sum(survey.beam_o) @@ -820,12 +839,15 @@ def calc_likelihoods_2D(grid,survey, # We integrate p(snr|b,w) p(b,w) db dw. # I have no idea how this could be multidimensional psnr=np.zeros(Eths.shape[1]) + for i,b in enumerate(survey.beam_b): bEths=Eths/b # array of shape NFRB, 1/b bEobs=bEths*survey.Ss[zlist] + for j,w in enumerate(grid.eff_weights): temp=grid.array_diff_lf(bEobs[j,:],Emin,Emax,gamma) # * FtoE #one dim in beamshape, one dim in FRB - psnr += temp.T*survey.beam_o[i]*w*bEths[j,:] #multiplies by beam factors and weight + this_psnr = temp.T*survey.beam_o[i]*w*bEths[j,:] #multiplies by beam factors and weight + psnr += this_psnr # at this stage, we have the amplitude from diff power law # summed over beam and weight @@ -834,24 +856,23 @@ def calc_likelihoods_2D(grid,survey, # comparable to the 1D case - otherwise it is superfluous if grid.state.MW.sigmaDMG == 0.0: # Linear interpolation - sg = grid.sfr_smear[izs1,idms1]*(1.-dkdms)*(1-dkzs) - sg += grid.sfr_smear[izs2,idms1]*(1.-dkdms)*dkzs - sg += grid.sfr_smear[izs1,idms2]*dkdms*(1-dkzs) - sg += grid.sfr_smear[izs2,idms2]*dkdms*dkzs + sg = grid.sfr_smear[izs1,idms1]*dkdms1*dkzs1 + sg += grid.sfr_smear[izs2,idms1]*dkdms1*dkzs2 + sg += grid.sfr_smear[izs1,idms2]*dkdms2*dkzs1 + sg += grid.sfr_smear[izs2,idms2]*dkdms2*dkzs2 else: sg = np.zeros(len(izs1)) # For each FRB for i in range(len(izs1)): - sg[i] = np.sum(grid.sfr_smear[izs1[i],iweights[i]] * dm_weights[i] * (1.-dkzs[i]) - + grid.sfr_smear[izs2[i],iweights[i]] * dm_weights[i] * dkzs[i]) / np.sum(dm_weights[i]) + sg[i] = np.sum(grid.sfr_smear[izs1[i],iweights[i]] * dm_weights[i] * dkzs1[i] + + grid.sfr_smear[izs2[i],iweights[i]] * dm_weights[i] * dkzs2[i]) / np.sum(dm_weights[i]) - dV = grid.dV[izs1]*(1-dkzs) + grid.dV[izs2]*dkzs + dV = grid.dV[izs1]*dkzs1 + grid.dV[izs2]*dkzs2 # at this stage, sg and dV account for the DM distribution and SFR; # dV is the volume elements # we just multiply these together sgV = sg*dV wzpsnr = psnr.T*sgV - # this step weights psnr by the volumetric values @@ -2012,7 +2033,11 @@ def CalculateConstant(grid,survey): return constant def CalculateIntegral(rates,survey): - """ Calculates the total expected number of FRBs for that rate array and survey """ + """ + Calculates the total expected number of FRBs for that rate array and survey + + This does NOT include the aboslute number of FRBs (through the log-constant) + """ # check that the survey has a defined observation time if survey.TOBS is not None: