From 95e3a0377214a5d2902518a597b1fc3975ef1c8b Mon Sep 17 00:00:00 2001 From: "J. Xavier Prochaska" Date: Mon, 15 Jul 2024 14:22:03 -0700 Subject: [PATCH 1/4] bug fixes --- docs/nb/CHIME_pzDM.ipynb | 110 +++++++++++++++++++++++++++++++++++++++ zdm/beams.py | 8 +-- 2 files changed, 115 insertions(+), 3 deletions(-) create mode 100644 docs/nb/CHIME_pzDM.ipynb diff --git a/docs/nb/CHIME_pzDM.ipynb b/docs/nb/CHIME_pzDM.ipynb new file mode 100644 index 00000000..f08fc973 --- /dev/null +++ b/docs/nb/CHIME_pzDM.ipynb @@ -0,0 +1,110 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "73468a65-088e-484f-904f-5340ac63b911", + "metadata": {}, + "source": [ + "# CHIME $p(z,DM_{\\rm EG})$" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "971524d6-aab9-457c-b62c-7b499dd5a2e6", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/xavier/Projects/FRB_Stuff/FRB/frb/halos/hmf.py:51: UserWarning: hmf_emulator not imported. Hope you are not intending to use the hmf.py module..\n", + " warnings.warn(\"hmf_emulator not imported. Hope you are not intending to use the hmf.py module..\")\n" + ] + } + ], + "source": [ + "# imports\n", + "from zdm.chime import grids" + ] + }, + { + "cell_type": "markdown", + "id": "ff1a7d56-ceab-4d96-83e0-8e4e4333d940", + "metadata": {}, + "source": [ + "# Run it" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "c012335e-be8e-471f-b189-5afd10e0c4e4", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Searching for survey in directory /home/xavier/Projects/FRB_Stuff/zdm/zdm/data/Surveys/CHIME/\n", + "Loading survey: CHIME_decbin_0_of_6\n", + "Loading survey: CHIME_decbin_0_of_6 from CHIME_decbin_0_of_6.ecsv\n", + "Loaded FRB info\n", + "FRB survey sucessfully initialised with 4 FRBs starting from 0\n", + "Initializing igamma_spline for gamma=-1.01\n", + "Initialised grid\n", + "Loaded dec bin 0\n" + ] + }, + { + "ename": "TypeError", + "evalue": "repeat_Grid.__init__() got an unexpected keyword argument 'Tfield'", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[2], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m dmvals, zvals, all_rates, all_singles, all_reps \u001b[38;5;241m=\u001b[39m \u001b[43mgrids\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mload\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m~/Projects/FRB_Stuff/zdm/zdm/chime/grids.py:79\u001b[0m, in \u001b[0;36mload\u001b[0;34m(Nbin, make_plots)\u001b[0m\n\u001b[1;32m 72\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mLoaded dec bin \u001b[39m\u001b[38;5;124m\"\u001b[39m,ibin)\n\u001b[1;32m 74\u001b[0m \u001b[38;5;66;03m# The below is specific to CHIME data. For CRAFT and other\u001b[39;00m\n\u001b[1;32m 75\u001b[0m \u001b[38;5;66;03m# FRB surveys, do not use \"bmethod=2\", and you will have to\u001b[39;00m\n\u001b[1;32m 76\u001b[0m \u001b[38;5;66;03m# enter the time per field and Nfields manually.\u001b[39;00m\n\u001b[1;32m 77\u001b[0m \u001b[38;5;66;03m# Also, for other surveys, you do not need to iterate over\u001b[39;00m\n\u001b[1;32m 78\u001b[0m \u001b[38;5;66;03m# declination bins!\u001b[39;00m\n\u001b[0;32m---> 79\u001b[0m rg \u001b[38;5;241m=\u001b[39m \u001b[43mrep\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrepeat_Grid\u001b[49m\u001b[43m(\u001b[49m\u001b[43mg\u001b[49m\u001b[43m,\u001b[49m\u001b[43mTfield\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43ms\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mTOBS\u001b[49m\u001b[43m,\u001b[49m\u001b[43mNfields\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m1\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43mMC\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\u001b[43m,\u001b[49m\u001b[43mopdir\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m,\u001b[49m\u001b[43mbmethod\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m2\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m 80\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mLoaded repeat grid\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 82\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m ibin\u001b[38;5;241m==\u001b[39m\u001b[38;5;241m0\u001b[39m:\n", + "\u001b[0;31mTypeError\u001b[0m: repeat_Grid.__init__() got an unexpected keyword argument 'Tfield'" + ] + } + ], + "source": [ + "dmvals, zvals, all_rates, all_singles, all_reps = grids.load()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "6598fbb9-fa3b-4ea1-b806-df5645ca3c7c", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.9" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/zdm/beams.py b/zdm/beams.py index 125363a9..f46a02b3 100644 --- a/zdm/beams.py +++ b/zdm/beams.py @@ -1,12 +1,13 @@ # collection of functions to handle telescope beam effects -from pkg_resources import resource_filename +from importlib.resources import files import os import numpy as np import matplotlib.pyplot as plt import scipy.constants as constants +from IPython import embed + # Path to survey data -beams_path = os.path.join(resource_filename('zdm', 'data'), 'BeamData') def gauss_beam(thresh=1e-3,nbins=10,freq=1.4e9,D=64,sigma=None): '''initialises a Gaussian beam @@ -46,7 +47,8 @@ def load_beam(prefix): which the calculation has been performed. """ - basedir=beams_path + basedir = os.path.join(files('zdm'), 'data', 'BeamData') + #basedir=beams_path logb=np.load(os.path.join(basedir,prefix+'_bins.npy')) # standard, gets best beam estimates: no truncation omega_b=np.load(os.path.join(basedir,prefix+'_hist.npy')) From 73fa5170ff39a291e9610a1348bf980a55c63594 Mon Sep 17 00:00:00 2001 From: profxj Date: Tue, 16 Jul 2024 04:39:53 -0700 Subject: [PATCH 2/4] mo --- docs/nb/CHIME_pzDM.ipynb | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/docs/nb/CHIME_pzDM.ipynb b/docs/nb/CHIME_pzDM.ipynb index f08fc973..9185d72e 100644 --- a/docs/nb/CHIME_pzDM.ipynb +++ b/docs/nb/CHIME_pzDM.ipynb @@ -102,7 +102,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.9" + "version": "3.10.12" } }, "nbformat": 4, From 8b17a7773a792fa7fdde37278b6c0c9f71894de5 Mon Sep 17 00:00:00 2001 From: profxj Date: Tue, 16 Jul 2024 08:59:54 -0700 Subject: [PATCH 3/4] working? --- docs/nb/CHIME_pzDM.ipynb | 222 ++++++++++++++++++++++++++++++++++----- zdm/chime/grids.py | 27 ++--- zdm/tests/test_chime.py | 17 +++ 3 files changed, 226 insertions(+), 40 deletions(-) create mode 100644 zdm/tests/test_chime.py diff --git a/docs/nb/CHIME_pzDM.ipynb b/docs/nb/CHIME_pzDM.ipynb index 9185d72e..51ef30a2 100644 --- a/docs/nb/CHIME_pzDM.ipynb +++ b/docs/nb/CHIME_pzDM.ipynb @@ -10,26 +10,32 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 9, "id": "971524d6-aab9-457c-b62c-7b499dd5a2e6", "metadata": { "tags": [] }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/xavier/Projects/FRB_Stuff/FRB/frb/halos/hmf.py:51: UserWarning: hmf_emulator not imported. Hope you are not intending to use the hmf.py module..\n", - " warnings.warn(\"hmf_emulator not imported. Hope you are not intending to use the hmf.py module..\")\n" - ] - } - ], + "outputs": [], "source": [ "# imports\n", + "import numpy as np\n", + "from matplotlib import pyplot as plt\n", + "\n", "from zdm.chime import grids" ] }, + { + "cell_type": "code", + "execution_count": 43, + "id": "493b5f54-db48-4014-80dd-843e308fa0aa", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "%matplotlib ipympl" + ] + }, { "cell_type": "markdown", "id": "ff1a7d56-ceab-4d96-83e0-8e4e4333d940", @@ -50,26 +56,55 @@ "name": "stdout", "output_type": "stream", "text": [ - "Searching for survey in directory /home/xavier/Projects/FRB_Stuff/zdm/zdm/data/Surveys/CHIME/\n", + "/home/xavier/Projects/FRB_Stuff/zdm/zdm/data/Surveys/CHIME/\n", "Loading survey: CHIME_decbin_0_of_6\n", "Loading survey: CHIME_decbin_0_of_6 from CHIME_decbin_0_of_6.ecsv\n", "Loaded FRB info\n", "FRB survey sucessfully initialised with 4 FRBs starting from 0\n", - "Initializing igamma_spline for gamma=-1.01\n", - "Initialised grid\n", - "Loaded dec bin 0\n" - ] - }, - { - "ename": "TypeError", - "evalue": "repeat_Grid.__init__() got an unexpected keyword argument 'Tfield'", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", - "Cell \u001b[0;32mIn[2], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m dmvals, zvals, all_rates, all_singles, all_reps \u001b[38;5;241m=\u001b[39m \u001b[43mgrids\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mload\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[0;32m~/Projects/FRB_Stuff/zdm/zdm/chime/grids.py:79\u001b[0m, in \u001b[0;36mload\u001b[0;34m(Nbin, make_plots)\u001b[0m\n\u001b[1;32m 72\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mLoaded dec bin \u001b[39m\u001b[38;5;124m\"\u001b[39m,ibin)\n\u001b[1;32m 74\u001b[0m \u001b[38;5;66;03m# The below is specific to CHIME data. For CRAFT and other\u001b[39;00m\n\u001b[1;32m 75\u001b[0m \u001b[38;5;66;03m# FRB surveys, do not use \"bmethod=2\", and you will have to\u001b[39;00m\n\u001b[1;32m 76\u001b[0m \u001b[38;5;66;03m# enter the time per field and Nfields manually.\u001b[39;00m\n\u001b[1;32m 77\u001b[0m \u001b[38;5;66;03m# Also, for other surveys, you do not need to iterate over\u001b[39;00m\n\u001b[1;32m 78\u001b[0m \u001b[38;5;66;03m# declination bins!\u001b[39;00m\n\u001b[0;32m---> 79\u001b[0m rg \u001b[38;5;241m=\u001b[39m \u001b[43mrep\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrepeat_Grid\u001b[49m\u001b[43m(\u001b[49m\u001b[43mg\u001b[49m\u001b[43m,\u001b[49m\u001b[43mTfield\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43ms\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mTOBS\u001b[49m\u001b[43m,\u001b[49m\u001b[43mNfields\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m1\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43mMC\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\u001b[43m,\u001b[49m\u001b[43mopdir\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m,\u001b[49m\u001b[43mbmethod\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m2\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m 80\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mLoaded repeat grid\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 82\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m ibin\u001b[38;5;241m==\u001b[39m\u001b[38;5;241m0\u001b[39m:\n", - "\u001b[0;31mTypeError\u001b[0m: repeat_Grid.__init__() got an unexpected keyword argument 'Tfield'" + "Initialised surveys\n", + "Initialised grids\n", + "Loaded dec bin 0\n", + "Loaded repeat grid\n", + "Loading survey: CHIME_decbin_1_of_6\n", + "Loading survey: CHIME_decbin_1_of_6 from CHIME_decbin_1_of_6.ecsv\n", + "Loaded FRB info\n", + "FRB survey sucessfully initialised with 23 FRBs starting from 0\n", + "Initialised surveys\n", + "Initialised grids\n", + "Loaded dec bin 1\n", + "Loaded repeat grid\n", + "Loading survey: CHIME_decbin_2_of_6\n", + "Loading survey: CHIME_decbin_2_of_6 from CHIME_decbin_2_of_6.ecsv\n", + "Loaded FRB info\n", + "FRB survey sucessfully initialised with 154 FRBs starting from 0\n", + "Initialised surveys\n", + "Initialised grids\n", + "Loaded dec bin 2\n", + "Loaded repeat grid\n", + "Loading survey: CHIME_decbin_3_of_6\n", + "Loading survey: CHIME_decbin_3_of_6 from CHIME_decbin_3_of_6.ecsv\n", + "Loaded FRB info\n", + "FRB survey sucessfully initialised with 234 FRBs starting from 0\n", + "Initialised surveys\n", + "Initialised grids\n", + "Loaded dec bin 3\n", + "Loaded repeat grid\n", + "Loading survey: CHIME_decbin_4_of_6\n", + "Loading survey: CHIME_decbin_4_of_6 from CHIME_decbin_4_of_6.ecsv\n", + "Loaded FRB info\n", + "FRB survey sucessfully initialised with 50 FRBs starting from 0\n", + "Initialised surveys\n", + "Initialised grids\n", + "Loaded dec bin 4\n", + "Loaded repeat grid\n", + "Loading survey: CHIME_decbin_5_of_6\n", + "Loading survey: CHIME_decbin_5_of_6 from CHIME_decbin_5_of_6.ecsv\n", + "Loaded FRB info\n", + "FRB survey sucessfully initialised with 27 FRBs starting from 0\n", + "Initialised surveys\n", + "Initialised grids\n", + "Loaded dec bin 5\n", + "Loaded repeat grid\n" ] } ], @@ -77,10 +112,141 @@ "dmvals, zvals, all_rates, all_singles, all_reps = grids.load()" ] }, + { + "cell_type": "markdown", + "id": "294d2281-e64b-467c-990e-5d89f22a0a80", + "metadata": {}, + "source": [ + "# Show it!" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "e4ad7724-445e-4ef4-a260-a5450f9a8cb0", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "(500, 1400)" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "all_singles.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "id": "b464b2dc-95f3-4b4c-81b4-649d40f05559", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "all_singles /= np.sum(all_singles)" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "id": "4e452458-d32d-4a22-b20a-0164aa95c006", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "0.0002946589824842096" + ] + }, + "execution_count": 40, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "all_singles.max()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "729a8fb0-4068-46ff-8d1e-188c74de11c2", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# Assuming you have these arrays defined:\n", + "# z_array = ...\n", + "# DM_array = ...\n", + "# PDF = ... # Your 2D array representing the PDF\n", + "z_array = zvals\n", + "DM_array = dmvals\n", + "\n", + "# Create the figure and axis\n", + "fig, ax = plt.subplots(figsize=(8, 8)) # Square figure\n", + "\n", + "# Create the heatmap\n", + "im = ax.imshow(np.log10(all_singles.T), cmap='jet', aspect='auto', \n", + " extent=[z_array.min(), z_array.max(), \n", + " DM_array.min(), DM_array.max()],\n", + " origin='lower', vmin=np.log10(all_singles.max())-4.)\n", + "\n", + "# Set labels and title\n", + "ax.set_xlabel('z')\n", + "ax.set_ylabel('DM')\n", + "ax.set_title('PDF Heatmap')\n", + "\n", + "ax.set_xlim(0., 1.)\n", + "ax.set_ylim(0., 4000.)\n", + "\n", + "# Add a colorbar\n", + "cbar = fig.colorbar(im)\n", + "cbar.set_label(r'$\\log_{10} \\, p(z,DM_{\\rm EG})$')\n", + "\n", + "# Show the plot\n", + "plt.tight_layout()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "8fed6205-86b3-498c-87dc-bb472f05cf6b", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "500" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "zvals.size" + ] + }, { "cell_type": "code", "execution_count": null, - "id": "6598fbb9-fa3b-4ea1-b806-df5645ca3c7c", + "id": "5ddfa68f-a491-42bf-864c-1e8e3fe32cf4", "metadata": {}, "outputs": [], "source": [] diff --git a/zdm/chime/grids.py b/zdm/chime/grids.py index 19e4b394..7df2b773 100644 --- a/zdm/chime/grids.py +++ b/zdm/chime/grids.py @@ -19,7 +19,7 @@ #import utilities as ute #import states as st -from zdm.craco import loading +from zdm import loading from zdm import repeat_grid as rep from zdm import misc_functions from zdm import beams @@ -56,11 +56,10 @@ def load(Nbin:int=6, make_plots:bool=False): # loads survey data sdir = os.path.join(resources.files('zdm'), 'data', 'Surveys','CHIME/') + print(sdir) # loads beam data - bdir='Nbounds'+str(Nbin)+'/' - beams.beams_path = os.path.join(resources.files('zdm'),'data', - 'BeamData', 'CHIME',bdir) + #bounds = np.load(beams.beams_path+'bounds.npy') #solids = np.load(beams.beams_path+'solids.npy') @@ -68,7 +67,9 @@ def load(Nbin:int=6, make_plots:bool=False): # Loops through CHIME declination bins for ibin in np.arange(Nbin): name = "CHIME_decbin_"+str(ibin)+"_of_"+str(Nbin) - s,g = loading.survey_and_grid(survey_name=name,NFRB=None,sdir=sdir)#,init_state=state) + ss,rgs = loading.surveys_and_grids(survey_names=[name],sdir=sdir,repeaters=True)#,init_state=state) + s = ss[0] + rg = rgs[0] print("Loaded dec bin ",ibin) # The below is specific to CHIME data. For CRAFT and other @@ -76,35 +77,37 @@ def load(Nbin:int=6, make_plots:bool=False): # enter the time per field and Nfields manually. # Also, for other surveys, you do not need to iterate over # declination bins! - rg = rep.repeat_Grid(g,Tfield=s.TOBS,Nfields=1,MC=False,opdir=None,bmethod=2) + # rg = rep.repeat_Grid(g,Tfield=s.TOBS,Nfields=1,MC=False,opdir=None,bmethod=2) print("Loaded repeat grid") if ibin==0: - all_rates = g.rates + all_rates = rg.rates all_singles = rg.exact_singles all_reps = rg.exact_reps else: - all_rates = all_rates + g.rates + all_rates = all_rates + rg.rates all_singles = all_singles + rg.exact_singles all_reps = all_reps + rg.exact_reps if make_plots: - misc_functions.plot_grid_2(all_rates,g.zvals,g.dmvals, + misc_functions.plot_grid_2(all_rates,rg.zvals,rg.dmvals, name=opdir+'all_CHIME_FRBs.pdf',norm=3,log=True, label='$\\log_{10} p({\\rm DM}_{\\rm EG},z)$ [a.u.]', project=False,Aconts=[0.01,0.1,0.5], zmax=3.0,DMmax=3000) - misc_functions.plot_grid_2(all_reps,g.zvals,g.dmvals, + misc_functions.plot_grid_2(all_reps,rg.zvals,rg.dmvals, name=opdir+'repeating_CHIME_FRBs.pdf',norm=3,log=True, label='$\\log_{10} p({\\rm DM}_{\\rm EG},z)$ [a.u.]', project=False,Aconts=[0.01,0.1,0.5], zmax=1.0,DMmax=1000) - misc_functions.plot_grid_2(all_singles,g.zvals,g.dmvals, + misc_functions.plot_grid_2(all_singles,rg.zvals,rg.dmvals, name=opdir+'single_CHIME_FRBs.pdf',norm=3,log=True, label='$\\log_{10} p({\\rm DM}_{\\rm EG},z)$ [a.u.]', project=False,Aconts=[0.01,0.1,0.5], zmax=3.0,DMmax=3000) - return g.dmvals, g.zvals, all_rates, all_singles, all_reps + return rg.dmvals, rg.zvals, all_rates, all_singles, all_reps + +load() \ No newline at end of file diff --git a/zdm/tests/test_chime.py b/zdm/tests/test_chime.py new file mode 100644 index 00000000..1d19db5d --- /dev/null +++ b/zdm/tests/test_chime.py @@ -0,0 +1,17 @@ +""" +File to test CHIME +""" + +import os +import pytest + +from pkg_resources import resource_filename +import pandas + +from zdm.tests import tstutils + +from zdm.chime import grids + +def test_run(): + dmvals, zvals, all_rates, all_singles, all_reps = grids.load() + From 99aed43b89b238fd9a314c14fb46176bb5d748a8 Mon Sep 17 00:00:00 2001 From: profxj Date: Tue, 16 Jul 2024 10:13:42 -0700 Subject: [PATCH 4/4] mo --- docs/nb/CHIME_pzDM.ipynb | 60 ++++++++++++++++++++++++++++++++++++++-- 1 file changed, 57 insertions(+), 3 deletions(-) diff --git a/docs/nb/CHIME_pzDM.ipynb b/docs/nb/CHIME_pzDM.ipynb index 51ef30a2..ce08ebc7 100644 --- a/docs/nb/CHIME_pzDM.ipynb +++ b/docs/nb/CHIME_pzDM.ipynb @@ -180,12 +180,46 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 45, "id": "729a8fb0-4068-46ff-8d1e-188c74de11c2", "metadata": { "tags": [] }, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/tmp/ipykernel_3452856/3641209738.py:12: RuntimeWarning: divide by zero encountered in log10\n", + " im = ax.imshow(np.log10(all_singles.T), cmap='jet', aspect='auto',\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "49d18b7dda584fe29b5b8d17a2508fd1", + "version_major": 2, + "version_minor": 0 + }, + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAyAAAAMgCAYAAADbcAZoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9eZwV1Zn//7n0bZq9ZbFZFMGMICjiAgYwRtyBkRCXuISESEIQxyiiOIxo/NoahCgqOtE4xlFQo6OTcUkYI1F/GXESRLTd0FE0CSioLUahWxQburm/P5q61K1b662zPOfU8369+gV9u+p5Ti331PnU8zzn5AqFQgEMwzAMwzAMwzAK6KC7AQzDMAzDMAzDZAcWIAzDMAzDMAzDKIMFCMMwDMMwDMMwymABwjAMwzAMwzCMMliAMAzDMAzDMAyjDBYgDMMwDMMwDMMogwUIwzAMwzAMwzDKYAHCMAzDMAzDMIwyWIAwDMMwDMMwDKMMFiAMwzAMwzAMwyiDBQjDMAzDMAzDMMpgAcIwDMMwDMMwjDJYgDAMwzAMwzAMowwWIAzDMAzDMAzDKIMFCMMwxrJs2TLkcrniTz6fx7777osf/vCH+OCDD4rbPfvssyXbdezYEXvvvTe+8Y1v4Morr8R7770Xadv9c9lll4W2a/r06ejWrVvg37t164bp06dXfNxxePDBB3HLLbdI9cEwDMMwlZDX3QCGYZi0LF26FMOGDcP27dvx3HPPYdGiRVi5ciXWrl2Lrl27FrdbuHAhjjvuOLS1teHTTz/FCy+8gHvuuQdLlizBXXfdhe9973uBtt0MGDBA+jGl5cEHH8Qbb7yBOXPm6G4KwzAMw5TAAoRhGOMZMWIERo8eDQBFgfGzn/0Mjz/+eImoGDJkCMaOHVv8fcqUKZg7dy5OPPFETJ8+HSNHjsQhhxwSaJthGIZhmPRwChbDMNbhiAy/1CovvXr1wp133onW1lYsWbJEdtMCaW5uxmWXXYb9998fHTt2xD777IM5c+bgiy++KNnu9ttvxzHHHIO6ujp07doVhxxyCG644Qbs3LmzuM2xxx6LJ554Au+9915J6hgAbNiwAblcDosXL8b111+PwYMHo3Pnzjj22GPxzjvvYOfOnbj88ssxYMAA1NbW4rTTTsPmzZtL2vDwww/j5JNPRv/+/dG5c2cMHz4cl19+eVlbnVS0N998EyeccAK6du2KvffeGxdeeCG+/PJLSWeSYRiGoQ5HQBiGsY6//OUvAIC999471vZHHnkk+vfvj+eee67sb21tbWhtbS35LJ+P13V69wviyy+/xPjx47Fp0yZcccUVGDlyJN588038v//3/7B27Vo888wzRQHx17/+FVOnTi0Klddeew3XXXcd3n77bdxzzz0AgF/+8pc477zz8Ne//hWPPfaYr8/bb78dI0eOxO23346tW7di7ty5+Na3voUxY8aguroa99xzD9577z1cdtll+PGPf4zf/e53xX3fffdd/OM//iPmzJmDrl274u2338b111+PNWvW4I9//GOJn507d+If//EfMWvWLFx++eVYtWoVFixYgPfeew/Lly+PdX4YhmEYu2ABwjCM8Tgi4auvvsLKlSuxYMECdO/eHVOmTIltY7/99sPrr79e9rk7Zcth586dkSLkiy++QHV1dSzf//qv/4rXX38dL7zwQjHd64QTTsA+++yD73znO1ixYgUmTZoEALj55puL++3atQvf/OY30bt3b/zwhz/ETTfdhJ49e+Kggw7CXnvthZqaGt/2A8Bee+2Fxx9/HB06tAfC//73v2POnDkYNmwYfvvb3xa3e/vtt3HLLbegubkZPXr0AAD89Kc/Lf69UCjgG9/4BoYPH47x48fj9ddfx8iRI4t/37FjB+bOnYvZs2cDAE466SRUV1fjyiuvxJ///Gd84xvfiHWOGIZhGHvgFCyGYYxn7NixqK6uRvfu3TF58mT069cPTz75JPr27RvbRqFQ8P38vvvuw4svvljyEycC0rlz57L9nJ/OnTuXbPvf//3fGDFiBA477DC0trYWfyZMmIBcLodnn322uO0rr7yCKVOmoHfv3qiqqkJ1dTV+8IMfoK2tDe+8807s4/3Hf/zHovgAgOHDhwMATjnllJLtnM/ff//94md/+9vfMHXqVPTr16/YhvHjxwMA3nrrrTJf3uL+qVOnAgD+53/+J3Z7GYZhGHvgCAjDMMZz3333Yfjw4cjn8+jbty/69++f2Mb777/vO7vV8OHDKypC79ChQ+B+7oE/AHz88cf4y1/+Ehgx+fvf/15s4ze/+U0ceOCBuPXWWzF48GB06tQJa9aswU9+8hNs3749dvt69epV8nvHjh1DP//qq68AANu2bcM3v/lNdOrUCQsWLMDQoUPRpUsXbNy4EaeffnpZG/L5PHr37l3yWb9+/QAAn376aez2MgzDMPbAAoRhGOOpVCQ4rFmzBo2NjZgxY4bAVsWnT58+6Ny5c7GGw+/vAPD444/jiy++wKOPPopBgwYV//7qq6+qaCYA4I9//CM+/PBDPPvss8WoBwBs3brVd/vW1lZ8+umnJSKksbERAMqECcMwDJMNWIAwDJNpPvvsM5x//vmorq7GJZdcoqUNkydPxsKFC9G7d2/sv//+gds5heg1NTXFzwqFAu66666ybWtqahJFROLi1wYAuPPOOwP3eeCBB4o1IED7GiVA+2xdDMMwTPZgAcIwTGZ49913sXr1auzatau4EOHdd9+N5uZm3HfffTj44IO1tGvOnDl45JFHcMwxx+CSSy7ByJEjsWvXLrz//vt46qmnMHfuXIwZMwYnnXQSOnbsiO9+97uYN28evvrqK9xxxx3YsmVLmc1DDjkEjz76KO644w6MGjUqNCUsCUcddRR69uyJ888/H1dffTWqq6vxwAMP4LXXXvPdvmPHjrjpppuwbds2HHnkkcVZsCZNmoSjjz46dXsYhmEY82ABwjBMZrjiiisAtNcl1NbWYujQofjRj36E8847rySlSTVdu3bF//7v/+LnP/85fvWrX2H9+vXo3Lkz9ttvP5x44okYPHgwAGDYsGF45JFH8NOf/hSnn346evfujalTp+LSSy8tzpLlcPHFF+PNN9/EFVdcgaamJhQKhcBC+yT07t0bTzzxBObOnYvvf//76Nq1K7797W/j4YcfxhFHHFG2fXV1Nf77v/8bs2fPxoIFC9C5c2fMnDkTixcvTt0WhmEYxkxyBRFPJIZhGIbxMH36dPzXf/0Xtm3bprspDMMwDCF4Gl6GYRiGYRiGYZTBAoRhGIZhGIZhGGVwChbDMAzDMAzDMMogHQFZtGgRcrkc5syZU/ysUCigvr4eAwYMQOfOnXHsscfizTffLNmvpaUFF110Efr06YOuXbtiypQp2LRpU8k2W7ZswbRp01BbW4va2lpMmzYtcB57hmEYhmEYhmHEQFaAvPjii/jVr36FkSNHlnx+ww034Oabb8Ztt92GF198Ef369cNJJ52Ezz//vLjNnDlz8Nhjj+Ghhx7Cn/70J2zbtg2TJ09GW1tbcZupU6fi1VdfxYoVK7BixQq8+uqrmDZtmrLjYxiGYRiGYZgsQjIFa9u2bTjiiCPwy1/+EgsWLMBhhx2GW265BYVCAQMGDMCcOXPwL//yLwDaox19+/bF9ddfj1mzZqGpqQl777037r//fpx99tkAgA8//BADBw7E73//e0yYMAFvvfUWDjroIKxevRpjxowBAKxevRrjxo3D22+/jQMPPFDbsTMMwzAMwzCMzZBcB+QnP/kJTjnlFJx44olYsGBB8fP169ejsbERJ598cvGzmpoajB8/HqtWrcKsWbPQ0NCAnTt3lmwzYMAAjBgxAqtWrcKECRPw/PPPo7a2tig+AGDs2LGora3FqlWrAgVIS0sLWlpair/v2rULn332GXr37l1cHZhhGIZhGIYyhUIBn3/+OQYMGIAOHfQnw3z11VfYsWOH7mYAaF88tVOnTrqbYT3kBMhDDz2El19+GS+++GLZ3xobGwEAffv2Lfm8b9++eO+994rbdOzYET179izbxtm/sbERdXV1Zfbr6uqK2/ixaNEiXHPNNckOiGEYhmEYhiAbN27Evvvuq7UNX331Ffbu3BlUVgvq168f1q9fzyJEMqQEyMaNG3HxxRfjqaeeCr3w3mhDoVCIjEB4t/HbPsrO/PnzcemllxZ/b2pqwn777YeNGzeiR48exc9rax927ZUH0BlAdwDddv+/evffqlz/r/bs40XnpWrVtP9Oxfs5tEVvEou07fAj7bUIQ0Z7gxB1jpOi8hj9kHn9wtB13Kqvs6rjVOFH9r0iy74su7LOuYz2irQpun3OefwKwM/RvXt3wfaTs2PHDmwDcAmAGs1taQGwpLERO3bsYAEiGVICpKGhAZs3b8aoUaOKn7W1teG5557DbbfdhnXr1gFoj2D079+/uM3mzZuLUZF+/fphx44d2LJlS0kUZPPmzTjqqKOK23z88cdl/j/55JOy6Iqbmpoa1NSUfz169OhRIkDaRYZD9e7fu6JcgOR3/98tPpzP3ftTI82DoJLONO2DJ+3+oh4ApgkSQO3ANWuDc4esHbfK47VJkADmvoAQ0e7Ont9N6E8ptrF0UE0pfbwG3tYxNqM/8c/FCSecgLVr1+LVV18t/owePRrf+9738Oqrr+JrX/sa+vXrh6effrq4z44dO7By5cqiuBg1ahSqq6tLtvnoo4/wxhtvFLcZN24cmpqasGbNmuI2L7zwApqamorbpKMa/sIiDpWIj3yCHxGkEUWVtKPSc+nePw2izl3a4/BD5HX1oxrp7uckyLpfo/Aeo2rRn7XjVnmsqo5P1bmUec5ktl1Gu2W0V8azUnQ7RT6PaJFkJCPzh1EDqXPdvXt3jBgxouSzrl27onfv3sXP58yZg4ULF2LIkCEYMmQIFi5ciC5dumDq1KkAgNraWsyYMQNz585F79690atXL1x22WU45JBDcOKJJwIAhg8fjokTJ2LmzJm48847AQDnnXceJk+ebMgMWGkum9++lbxR8XZeSd/05Cvw6/aZ1F/a9gLl567SN1Ei2uJF1HWNIs01qARVx+XF7+GsMmKQpeMW9b2Kg8rjk/E9d5B9f8hqu6xrraJPFdFWp51U28cw6iAlQOIwb948bN++HRdccAG2bNmCMWPG4KmnnirJY1yyZAny+TzOOussbN++HSeccAKWLVuGqqqq4jYPPPAAZs+eXZwta8qUKbjtttuUH88evJci6O2EjEvm2EzTgVWjMhHiUKkYqbQjF/EgEHHe3G1xoP6wd9A1SNf14A36TqoSJlkRJaqPU6ZQCPIjw4fM74VpfZRMQSJSiDhQax/DyIfkOiCm0NzcjNraWjQ1NZXUgORyD3u27AygB9oL0Z3tnM7CCc3GESCq9WLajqySTjWNT921Ig6Ua0YcbMzDd6P7IZyF+govqo/ZpntYtn0Ta0dktNmEtopuY1DbvgJwZdn4RQfOWOoa6K8B+QrA1QCJ82I7xkVAzMMpNHf+dROUF0pBfLh9pkk1ylpUBJAXGQHkvXkE5A1SKKT1AGoHrFSiQ4DeCJEtkRLZ0QvZ546jI+3IOs+UoyOcqsXQhAWIFrynPewyULhEaTqwNA/uSjv1tB24qAeAigeoKYMULyxK9mDzceusGTJdUMs8dzLvCZMECUC/LkO2IGEYPfCdSI6o9UCi9olCVCebtnA9STvSDioqicR490dKG4CcHF1TByl+UBElgH5hYqMoyUqEBBB/XCrqVGTVEMjqo0SLzawVstMb/lGYhUq3/yzB51oKKqaWFLmvjhmhKhUFuqIiomwAZhVeelHxhtlNFlOZADqiBLBLdKqK8qkWJCJ9cHSkHeqF4qomT2AYObAAIYO3Mwm6NDLm7hY1I5RKUSCiPiWpTxk2AHMFCZVZmWyfhcohK8etUpTomL4aUFNHYkJ6pgpBkrVULXOFiF+lrGq4QkYdLECU4579Kimyv5oi1vZwoyIqIiI9yyFt8XpaOw6mpUK4yUJqjxudKVzUjttGUWJqhMTrQ9bLBxP6KNmpWoDYl1BUp3VnGLGwAJGOewasNGt96HgvkPaNiurFBilERUTaUZkKAbAoEQmV6BCgT5SovsYq1tYA1ERIALHHoyr1CaAdHcliITsLEoYmLEC0kKTQXHdAEhAjCgB10+qKiMS4oRIZAcycTtMPFiXt2CxKbBQkgPo6Ek7Xakd2f0q1LkOWIPkqpR3xcBF6tuBzTYIgkZFEfMS5lLrzTCvt7NOG5Sudtcvrn0pkxI3MdBHdBcKAHlEC2J/CRaXI3YYVzmUfl4prpWo2PRnnhQvZ09lhGD3wHSiFNFGLuJekkksn8kEpol4kTc2G6qiI27cDpcgIoObNrOpwftaiBg5UxJhN19emOhKZ30PToiOyriv1QnFeYJAxGxYgpHBfjiT1IaJ8po0SqBQFIupTkvoU3QavHQcT8rMddOQX63rwUhMluoQYYE8kTMU11fFiABB3HCqn/JWRriW6rdQjI4CpYqQa+pPOzTxzZsICRDnVnn8d4lwK2ZdLd+2E6ql8HZ9udEZG/OyZkg7hYPtbdC86U7ioHbeNosSGwnaZNSQm9E+ir6eM6yezjTykZmjCAkQpcbW933Y6LpWIWaVMmMrXzz+FyIjblgP1dAg/siZKADqF34A+UaLyGpt+76qcXALIbnREdrSZYhs5VYuhCQsQ6ThBRb/0qjjL7lC4RCJmsnIwISri+HXQVSejyqaDbakvXliU7MG2BSN13ruyBQnXkLQjW5BQrcuQJUgojC1K4VmwsgWfaxIEXYYklycXY5tCAntB6FhrI+3DmEK9iLsdDqIFiWlvZr1QESWAvalMDlkocrclwqe6lkvWDFvUF0M0YQpdQG5qHcOogwUIOeKmacURHHH2qVSU6EqVSvPQETGdrxtRgkRWOoTJ+esOWRqgO+iqK7FdlNhcR2LCekCqZqsCaEYeANqpWvqJkxMiG/PPojmwAJFCpV+hOAsUViI8wnDbSxMhUZ0qpTsq4m6D6MgIICddS5RdL7YuOOeFWrRElxAD7BGdtswUJ/M4VNaQZCVdy4RCdoaRCwsQ5bjrP/w+D0O0+Iiyn1SQ6I6KVOrTDYXICCAvzK5jMGTTW3Q/qNRYAHrFmI2ixOSZ4mQeh4r+SUYamynpWhTTfRlGLCxAlJLmdMsWH2E+06ZpVbrqOVD5LFoqa1SC2pCmHQ6yHyQq3ppReYsO2DtAd6AkSmyIhKmeMteNCTPemRYdMSVdS7R4NEOQcBF6tuBzLR3nK+XXUXtnx3Lv46BDeHgRGRkxISri+HWTtoC90nZ4MXVKTT9srznwoiuFi0odjQ2CBNBT3G7S4oiqakgoTqHrIDJCJCvCztPxMnphAaKFuOlXFMSHHzlkKyriboOoyAgg/i2kzAXH3LAoEUtWjll32hbXkQSjIl0LkDfdL+WBvhtqqVoMow8WIOQw5ZKIioqoLCAX8YCRVYhIPTqiw49DVgbobrJyzLauPWPyOh4cHWmHeiE7YNsig86qabrbwKjBlNGuYVR6WqmlXiWh0noRUQXklaZpiYiKVOrf2xY3lIslo/zYOk1uFutKdByzbaJExSBR5nGonGHLFEHC0RGGSQsLEDLYcinSTOtralTE7d/BFEECyJ9pS4YPP3S9DaRUV2LrMdu8hgcgX5SYkrLF6Vp7oBZhZxix2DLqNQjnlGch0KczKkJp1XPqb7ZURC9sT+/xkqXFBB1sFCW61tIBzEh9AsyL3pqWrkW1feLhFKxswQJEOs5Xym8mrKDZsUxLv4pCR1RERHqWGyqpWoDaHG2ARYlIqBwzoGdaYJXHanLaFqDupYMD5UUAAXMFCcWFailMeMtkHb4DteAnRLKCibUibv8U1/WQ/XYri6IEsDdy4EChpsT0CImDylmqALNStjhdqxRq0RE6UJBFuv1nCT7X5LAt+hGE7loRQH9kBJDzINHxFljmg5DTmfZg2zHbmLYFqF9YEDAjZYujI2YtVMsw8mABIoVKswizIj686IiKALRWPVf1wAfMHHBR8ckpXO3YLEpsKW43UZAANAu6vXZlHD/l42YY8bAAIUNWxYebSoUIIC4qAtBY9dzUaTXd6HgYUhmgA3ancNksSmxYWBAwd+IKmSuTA2Laa0oqrVmpWkFVsarbwKiBz7VynK8Xn/pgRKRnOVCIjFTaDi8yHyamr1VA0S+lFC4bj9fmhQUBM2aqAjhdy8+mCLuyX2htT2mTYdLBo2DpuKfd9XYC1eBLEEWaqAigt15EVDu8qF48zZZBJAW/ukRJVo5XdWTBwbQIosrFBQE5EQKAdtoS9Wl0eezB6IXvQCV4T7P3d06/isZ7jnTViziISNNyoPwQBfQPIoHsiRJAzyrnti0YqSoSZEPalulREhkCKkvpWvrhWbCyBZ9rxlBy0BMVcZD1dotymoEbFiXyoTBNLmBXPYnOWhKTBYkJNSQmrE4uyyaves6YBwsQxmBERkUAvZERBxVz5gNmp6Y4sCjZg+rzDNgxXS5gx8KCgLkTV5hUQyJbkHB0hMkOLECkwKdVDzrrRRxk1I04mCZIABqiBLBzSmA3WYiW2CRKdNSRmJKyxelaYm3KmFVMDn6VsjrawKiBR8rKcRelM3JIM4sWIO7BKjM6AsgVJIA9ogSgs06JCr8OWTjPukSJiRFEU1O2OF1LjE0e7jG04DtSKX7F6FyALpe0URFA3Bsk6otYeVE5lauOtAFO4WrHdlFi8nfD1CioydERQLwgkbEyu+gXWvrhIvRswedaOk5QMe/5TDBxryT9KKwk0taLAHQjI4Ads/C4oTRdLWB3Cpft4s+mNW5UFYY7UK8hUTHlbxaiIwyjHhYgplLpldO5NhopKEZGHKg/9B10v9kG7F5tXJcYoiD+TI+QAHbUkZi24jkgN9IM0BckLEQYM2ABYhoyrlimRQmlyIiDqsJRk98EO2RNlOjyS2EyARtqkngtj3JMjo4A9NK1zI2M5KG/OpYHxergcy0FSV8hlVfLnIkzBCMyMgLQjY4A9rwJ9qJrYT+AVgqXbL8sStJj8no9KlO2KNeQUE/X0j1DH8P4wwJEOU5nkPDU67pSmZ1SXERkBJD/cALov4n0Iwtv8d3oeitpu/izTZSoXq/HlJQt2TNsURZOstK1dMcamKzDAkQp3i98zBmwKF0ljoyksKHirZ5Jb1C9ZEmU6Hwraft51iVKTExptCFli/KLHZlttS+KwbNgZQs+19JxvlLVns9i7ipyOwcRfaDs5y5ZREVGAPkLYwFq1iuwJe3GQVcKF4sSs0WJDWlbvOL5Hqina3FqFWM2LEBMJc2VE/2MyWxUBBATGQHMeoh6UZ2npyudicoaGgAXu4tAxaxbqqcANun7bdKK54D482xKuhbDyIEFCFWCroysKyaiL8xsvQggNjICqHvoA+a+CXbQOUjPWrRExwBHRbhVxzoeDqZNjW3KAB8wSzxxuhaFyhTd/rMECxApSDqtps2CxZERFyIFiemFrw62DtIBOscLyD1mCkXuLErCsWG2KoD2gq0mpmsxjF5YgCjHOeUxC9C9u6lGdGQkk2IEEJeqBagfsJg8q5AXaqIEsO+YWZSkR3Vxuwkz6ZlUQ2JiuhbDqIUFiFIqKD6ndoXSRjUyHRUBxEdGHFTOZgPYL0qA7EVLVIsSmT5tEiWqp//NcsoWQH9dD8DWfGeeBStb8LmWTjXKMxsFT79byVVM21+l7f84KrIbFYLExOlB3WQlcuAmC6JEtU+bCtxNnD4XMKsmAzCnUJwfqIx5sAChRpwrIuKqie5X00Q2Mh8VceMWJLKiI4D5ogTIziDdgcrxAvakcNm4uKAD9XoMQF1NBkA38mBCupYavAsW6GoDowY+15SIk3qlahYsQH29BwsRD36RMhNSttxkVZQA+mbhsnEhRV5cMDmqJq4wLWUry+la/HBl6MACRAoVaHhVkY8k6Kr3MPcFjgJU1ZAA6kQJLywoFhYl4rAlesgpW3swNToCpG8nD/kYOvDdqJyEs1856LxSIus90uzPQsQHGSlbDrYMvoLIUrQki6LE5LQtwJ4VzwHaNRmAOYXiIu/vqpT7i4fXAckWLECUEvPWFjULlqzIa1q7IiIjLEZ8kBUdcaPqIlASJYCd0RIqokTWcXItSTJMjJKoECRUV2jnVc8Zs2EBIp286ydkkySfJ90mbDuRs2GpFBQcFYmBzBoSQP0AlgvA21FdQwPYc111ihKTBYkpNSQy2mxidARgQcJQhwUINVTXgojsr3XMhMX1IgmRHSVhUSKfLERLbBQlqgUJQH+2KoBXPQfop2upgdcByRZ8rimhcxYsP9tpi88rsaErvSuzqE7bclA9eAXsrSsBWJSY6EvF2xNb6kgop2xxuhbDVAILEClUcFopz4LloFoQiNi30v0ziwpBAtBJacqaKAHsmgZZpygxccYtlQsk8qrntKMjXG7N6IUFCEX8rgqFK6VLEPAsWhqRXUfihkr9AWBf9MCN7WuzqDo+XmAwHJNmrALMmfLX3rzjfBVQXeFEocLaUADQprcNWYHCsDZD+JzuqCuQtsjci4i+Srcg4HoRzagUJUB2oiW6ZuACaIgSwOwFMW2oJbFhCl2AbuQBkLvyOT/UGHNgASKdakSGO1XMghW2va7ic5Hri3C9iGayKkoAe6MltqdwqSjSVV1LYlIdiWk1JCbMsKUzspqefB7IcwQkM7AAoYaOWhBRfZbOyIio9LBKbTA+UBAlQHaiJbpSuFQfq+mLYZpaGO4gU7iZUkNi6gxb/HBj6MAChBK6Z8Hy85OmvxIRGdGRZsWCRCKqitzdZCVakhUBpuoLqquWRLQfU+tIuIZETYSEYfTAd6MUKphdguIsWH4+dRWgq64XEW2DCUB1lMRBl8rMSrTEtlXIHXSIEtPrSKinbKmoIaFYP0Jv+FdNoAi9WsXjhwFA8Q5k6M6CBZhbQM6REYPQIUoopTQBLErSYpMoMb2ORFXKmQwRlaXoCMOohcqwNiN4BlZ5qJ8FC6A1E1ba/TkykhGCXovZWFMCZCeFKyuixKQZt2SfJ5NToAC6M2yxIGHMggWIdPJo7xhCTnVQ7YcocRJnP10zYaXdX9RMWLptMBXC0RL7oiU2ihIVg0NTi9tNEiSAWYsNOpghRsjMgsUogQWIaci6YtRmwkqzr+6oBgsSzVARJUC2oiUsSuKjY10S2Su3Uy9sV1FDIkM8cXSEsRMWIFTwXgkKdSAi+kAdU+tSi2rwLIgE0JHCBWQrWqJahOkUJSZOBaxSkJgy9a8JA30ZfUjE2mQMowAWIFKIcVpNO/MiU51MqxcRZcNtx4EFiWY4WtKOLdESG1YjdyNTNJhaR2JSypZJNST6qa4CqjtobsMuvf6zhOZLzfjiFw2hJFjynp9K90/rv9L90vgXYSPIHkOEXMCPbLw3l8qbotrnRyYqj1XFcak6HtnHItO+rPMj696VdU1lt5UxgZaWFhx22GHI5XJ49dVXQ7ctFAqor6/HgAED0LlzZxx77LF488031TRUIixAdBLVZ8TtT/z6ybg/ItAlCESJiTSIPJ+6xp5MTKiIElU3h0pBAugTJCaLEtWCRKQPmedHdptFIls4GUQVkR8FzJs3DwMGDIi17Q033ICbb74Zt912G1588UX069cPJ510Ej7//HPJrZQLCxDpODNguTqXsD6hEsGRBlm20uyva1+R50AEBj9HskOWoiVZipKYKkpUHIdM2yrOiwhMjY7wg4QCTz75JJ566inceOONkdsWCgXccsstuPLKK3H66adjxIgRuPfee/Hll1/iwQcfVNBaefDdSJWwqIhKvzqLzyvZX0T7Zdio1E6YTTvSfi2FSm2JTYsLAmqP0ZZ6EpnHobKOhGtIxNaPKHrVbyjNzc0lv9fU1KCmpia13Y8//hgzZ87E448/ji5dukRuv379ejQ2NuLkk08uacv48eOxatUqzJo1K3WbdMERECrEeTmhQy6KTJNKs3+lUIpqiH4JxS+2DENHtERHChdHStKh4lhkHoNpKVuqakhEoDIlUgNB3ZXqHwADBw5EbW1t8WfRokWpD69QKGD69Ok4//zzMXr06Fj7NDY2AgD69u1b8nnfvn2LfzMVcgLkjjvuwMiRI9GjRw/06NED48aNw5NPPln8+/Tp05HL5Up+xo4dW2KjpaUFF110Efr06YOuXbtiypQp2LRpU8k2W7ZswbRp04o317Rp07B161ZBRxHSSeQ9/8aFygBTlyDQLYRE2fCzJQoWJIaShRQuv0GezEGUTaJExbHYUkciCtltFYFqoZ8tNm7ciKampuLP/PnzA7etr68vG5d6f1566SX84he/QHNzc6itIHK50udCoVAo+8w0yA1T9t13X/z85z/HAQccAAC499578e1vfxuvvPIKDj74YADAxIkTsXTp0uI+HTt2LLExZ84cLF++HA899BB69+6NuXPnYvLkyWhoaEBVVXvYcerUqdi0aRNWrFgBADjvvPMwbdo0LF++XMVhthPUF+UD/h/HXhSiotheX6ZNrZt2f1E23HbciLhOsuwyCtCxbklQB8ILDCZHVpqPg8xjUXFN3D4or+sByE2DckM1ZSubOC/B43DhhRfinHPOCd1m8ODBWLBgAVavXl2WyjV69Gh873vfw7333lu2X79+/QC0R0L69+9f/Hzz5s1lURHTyBUKBfILz/fq1QuLFy/GjBkzMH36dGzduhWPP/6477ZNTU3Ye++9cf/99+Pss88GAHz44YcYOHAgfv/732PChAl46623cNBBB2H16tUYM2YMAGD16tUYN24c3n77bRx44IGx2tXc3Iza2lo0NTWV3Ki53CbPlp0B9AKQKxUdQS9EkkRJRElIUX11Wjum7y/ajix7qmwzCtDRhau+aVQOpFQcm4rjkX0cso5B5rmRdU5ktFl0W71t3Abg2LLxiw6KY6l9gR6a83KadwG1myDlvLz//vsltSUffvghJkyYgP/6r//CmDFjsO+++5btUygUMGDAAFxyySWYN28eAGDHjh2oq6vD9ddfzzUgsmhra8NDDz2EL774AuPGjSt+/uyzz6Kurg5Dhw7FzJkzsXnz5uLfGhoasHPnzpKCnQEDBmDEiBFYtWoVAOD5559HbW1tUXwAwNixY1FbW1vcRhwJQ6NxRQfV9B2RqVJp/FeKqPMqOjNAZvYFp20ZDpXaEpnYlr5lQy2JrPabnrIlo4ZEBJyupZv99tsPI0aMKP4MHToUAPAP//APJeJj2LBheOyxxwC0p17NmTMHCxcuxGOPPYY33ngD06dPR5cuXTB16lQtxyEKkkOOtWvXYty4cfjqq6/QrVs3PPbYYzjooIMAAJMmTcKZZ56JQYMGYf369bjqqqtw/PHHo6GhATU1NWhsbETHjh3Rs2fPEpvugp3GxkbU1dWV+a2rqwst6mlpaUFLS0vxd+8sCamJk3ql6oqJimTnU+yfJsUpbfvTpogF2aOeWsVpWxaheiYu1SlcOtO3ZByT7OORfQyy0qpk2paRsgWIb6+Ma8cihCrr1q1DU1NT8fd58+Zh+/btuOCCC7BlyxaMGTMGTz31FLp3766xlekhKUAOPPBAvPrqq9i6dSseeeQRnHvuuVi5ciUOOuigYloVAIwYMQKjR4/GoEGD8MQTT+D0008PtOkt2PEr3okq6lm0aBGuueaaCo8qApXpVkmhUu+Rdn8R9R4i7aS1pcKun23R9hmFUKktMV2UqBAkgNycflPrSEyaRhcwq4ZEM3noz8vZpc7V4MGD4VcF4f0sl8uhvr4e9fX1ilqmBt2X2peOHTvigAMOwOjRo7Fo0SIceuihuPXWW3237d+/PwYNGoR3330XQHvBzo4dO7Bly5aS7dwFO/369cPHH39cZuuTTz4JLeqZP39+yawIGzduDNgy5SxYUYXpujE1TUpGmllaZGV7yM6+UJ2Bw0jG5hQuFaknqo7H5Bm3ZLVd1TS6slKhqKZsMYxcSAoQL4VCoST1yc2nn36KjRs3FmcHGDVqFKqrq/H0008Xt/noo4/wxhtv4KijjgIAjBs3Dk1NTVizZk1xmxdeeAFNTU3FbfyoqakpzoyQZIaEQOL0FXH7E7++Ms5PWtLYStsW3fv72RB5TkWiYmzEosQybBUlqupJdByPDGQeg2l1JCrEmQgM7Yg7oH19RJ0/RoyK7YDcnXnFFVdg0qRJGDhwID7//HM89NBDePbZZ7FixQps27YN9fX1OOOMM9C/f39s2LABV1xxBfr06YPTTjsNAFBbW4sZM2Zg7ty56N27N3r16oXLLrsMhxxyCE488UQAwPDhwzFx4kTMnDkTd955J4D2aXgnT54cewas5Lge3t6zHnQV4oiTtLht6F6p29lf19S6afeXZceNabUeqvwwilCdwqXqBtKVugXIqz1wkD0FsMz2i2y7jDoSkQ9QBxUpW9wJM/ohJ0A+/vhjTJs2DR999BFqa2sxcuRIrFixAieddBK2b9+OtWvX4r777sPWrVvRv39/HHfccXj44YdLinGWLFmCfD6Ps846C9u3b8cJJ5yAZcuWFdcAAYAHHngAs2fPLs6WNWXKFNx2220SjijhGwgVoiOJbR3rZKTt00UJoTRtEGknzKYou7Jt6/DDKMQrTFTWlNhWTwKYJUpMFCQm1WXIaiu54R+TMYxYB4QqweuAuOtL8mhfB6RL+6+dsOd7742Q5j27eaHQX+haZ0NEP07Fhkn2dPlQ6YdRhMpHjcqbx4Y1PQBef0OFbUrnYRuAMbTWARkK9KiK3l5qW9qA2nfkrAPClEJhSMsA5lwJXWlOIl6yiYiWi37ZJypdy2vPweQIBkdKLEPltMBBHaqp6Vsqvtgmzrhl2mxbMlK2ALlTIDOMHEwZ9hpGyGn1i3ZE7V5pgbUXmVOzmja1rqjngKx6D5PTqmSKBBYllkFhrRITRYmK45ApSADzBuOy1/YA6KZsMYx4WICoxE9YJBEisrYTWZtgemREp40weyJsqrCtwr5uf4xkslLoLjtKAphRjwHIewNjUg0JIOc8GCRI8mifiUonsif7Y4qwAFGCpwMIi3DEuSKir5rI55bpkRHRNhxEF6CLHh9lQZTI9slIRncKl2kRBkDucciM8piWsiXLrozzUO35l2H0wAJEOhV+ySudmlcUVFKUTI+M+NmSMRuWiWlVOkQCR0sswyZRomPWLdmiCmBRItImoC7flWHkwgKECjoiH3GhMJjXPTWvKBsi7YTZFGVXlX1dvoL8yfbJSESnKDFpQA+oj/RkuY5E9jokgPGdlrMYIJMJWIDoIumZp3SlRA7mVe9LzYbbjhsWJdG+ZPoL8mn48z27qKor0TFbFWCOKFEZIaFcR2JSyhbDyIHSsNYiQtKukkY6RBeiuxFd1Kx6alwqUQ0VEQ0uQKfrT7ZPRiKyoyW2zrplQnG76SlbouwalLLFReiZggWISoJmwaq03iPt1ZM9c5OuNCvdUQ2TC9BtWM9Dx0tAfvFoEe4RiIzULR2ixKQZtzhK4m9XtBjRPdJnsg4LEOn4KIyws66zFkT0MyXrkRE/W9RTq1SNjVRHEqikcMn2yQhGVT2JDQXuKovbTRIk1Kf+ZRg9sAChRJzUK9VXjMJgnlJkRKQdEfaC7JqaVkUhWmKjT0YgLEqiUd12yoLEtFm2NFIFHpVmCL7UVKA8C5Yb3WlOuiMjIu3IsudnU5RdVfajfMn0F+ST07iYQFiURKMybYuyIAHMKmxnGDlQGNJaSMhpzUdv4lsrIqIJMgeguiMjOvYXbcfPnqxrxrUeYvzZ6JMRhA5RYlqBu2mF4qa1V2YdEMOkgwWITsIK0N3bxLET118QFN7ip42u6N5ftB23LQeu9aDlL0s+GQHYOOuW7AJ36sXtptSRGLDyOYV1QGQtGcSUwQJEJUHRj6T1HjKumi0F6N79K7EhKzKSxpZMmyps6/Slw1+WfDIpMV2UyK5FUFXcTjltS1XKFsOogwWIdKqRaGLpqBQtlVeMUpqVzql1RT7/VNR72FTrYVsUISs+mZR4nxmyF0wE6EcaAK4jceB6D8Z8WIBQwYQidJ1igIIYEmUjyJ6sSIbMdUNk+dDhi32yKCGLinoSFiWlmF5HYqAgiZOWzlgDX2pToHSlKAzkKURG3DYcqNhSYTfMhyw/Qb5k+mOfLExIIjtKAqhLf3KgHHUA1ERJqNaQMIxYKA1rLSIktzLpLFgiCszDEJ0CpLoAnIIYCrJFtd4jSwXoOqIIsv1S8cmihBhBqb6ihImKm0DWoNkkQaIqZYsgHAHJFHypVeJXfB72hRMxQ1YUsorPK7Wle39RNkTakW3Tz65I29R8yfQX5tc2nxwtMQSZ6Vu2pG2ZJEiATIkSxlpYgKgiblRDheiIQsZbfJOn1hVhw23HgbIg8bMtw0eQL45c2OWTRQkxZKZv2VAoDmSzjoRh1MECRDoJTnElqVeyEdXP6Y5syIiMVGrHzx7Xe6j3QcVvFkQCR0uIY+qsW1zcvgeZ9TqK4BSsTMGXmgomzILlIHIwb3JkRIYdNybXe9hQU0LRr20igV/kEsXkAnfTU7eo1pEwjFioDGmzQ9Ii9LDPKtlG5sAwbVTBxMiKaDuybfrZFWk7yIeNg1gqA3YdPm3yx8RA9WKJJha3U04z46EeQw++K6UQ87TGCTeKjoyEbau7xoFSZCWNDa+dtLZk2gyyrcK+aB86/UX55miJWf6YGHBxeykmp2wRoQOAKs1t2KXZf4YgeAdaTFD0I+gqJP08LaIHuDrTpGTUfGRJkPjZN9WHTn9hfmX7puLTJn9MBLaIEtPqSHidD8Y8WICoIu6ZjkrRUnnFbClAp2RDhq0gm6LshvmwodaDWrREtm/bzy+LEmKYKEpMqyNhQcKYBwsQ6QQtDuXBlCJ0EUXXFArIRdpIa8drS4S9ILsibauwr8tXkD/ZPsN8ZyGNyxYRxETgfi7KnHFLZnG7KaugA8YIEgqzYMmYb4HxRfelZuJC7UpRiChQaINoO0H2RNgMsm1yWlUWIgg6/VKIXqj2x6JEMSZGSABedJBh0kFtWGsJIVGPpLNgqYqMUHiDb0tkxG3HQXSKlWlRDJvfruv0GeRXtm+bryeLEgKoFCVZLW7n4R+jF74DVeJXfB4Wcoy6OiKvnug+Ls1g2abIiJ89EwvQudbDHJ9hvm06Vp2ihAWJBmSJEtOiJIC1NySnYGUK3Zc6O8SNaqgUHVHISE9KKwZ07O+1IdqWCQXoNr+BphItsdWv7ntHhj+OkhBB1oKJphW3ywqPM4w8WIBQIkqk6L5aogfyusVIpTa8tqjWe9guSmzylzW/FPyxKLEQmSu4qyhup5yypYAq8DogGUL3kJZxMO1KUEhzotAGUTZU2PSzK9K2CvsU/cn2Sc2vLdeTRUkG4AhJO6YNMJgswHelapIWoUdtm2QbP0QPbHl6XjnPJpkRdh2iRLQPnf50+dTl1+brqav2iUWJIkyccYtFCWMnfAfqJKrgSqbwiNpfZ32DLZGRIHtUU7bCfNgwEMvCYF2nXwrX0zRxHuZHli/Ggw2ixJB1PqLgIvRMoftSZ4ug6EfcAvUk26RF1IBZpBigEBlxoGIryKYou6rsh/mR5SvMp22pTWF+Zfqm4M9UUaLaF+PCtGmALRUkjNWwAFFF0jMdtL2OK0alcJtCZMTPFtWIhi2iRLWvIH82+gzzbYvo0yVKZPgJ8sWiRAGyVm+XkV/LgoShDwsQFYiKalC5WlRSnNL226IECRehq7Mf5Uumvyz51OHXtloPPz+yfKk6HmY3pq1JYshK6FXQP87hWbCUoftSM3FJcqWitpX59k9XmpTINqSx4bWT1pafTYrXL659N6YP+ij61OXX9GiJbREMFiQaYFHCMElgAaKaoDoQv22itkuyTZztKby5pxhdqdSGny3qqVW6Ixg2vF3X6VOXX1tFpi1+OG1LE6aJEoZRBwsQlfgVn4fN+qC6DkRGn0apgJxCVMPEeg+bhUIWBus6/eqOLMjwxaKESYWqtUkMvJgUFiLU7T9DsABRRdyoRtQVUX3FRD2kbImM+NnKYhE6BaFgy8BZp09dfnWKWtvEj0g/LEo0wIKEySYsQFQQ9yxHiRQqV4uCGKDQBtF2ZNv0syvStgr7Ub5k+gvyaaNA0OHXtgiGSl82vWzIPCpXbydGWEaIKrgIXRm6LzXjICvyIbvA2O1DZ5oUF6HTtO2178b0QV+YP9k+g/zylL3ifMjwE+RLth+TjyPzqKwjYRh18B2oGp1F6GHbUXlrb5MNP1smplbZIBSoREts9KnDrw2RBZV+dB0HCxJJyFwokWHUwAJEJ1HhRpX1IDIGECKjEpSK0EVGR9Lak21Xtm2dvoL8sU+5fk2/d2zxoyOyxIJEIhaIEk7ByhS6L3W2CIp+JIl46C5C11UnQSmqIfqhamK9h+6UFVm+qPm0LXKh2qctYiHMj0hfNogexoWs1dsZJj0sQFSR9ExTLUKXMYhPKyZ0CwlTBImfbdPsR/mS6S/Ipy2Ddd1+WSyI8yX7Oy3SB4sSRXgjJH4RE4ZRB4Uhrd3EDSmaeiUoFH/LSI+iVIQuO40hC0XoNvnT5VOHX1X+bIvKqEh9siXtk6EDp2BlCt2XmvEjLEUr7j5JsaUIXdSDi4vQxdvW6YuKP10+dfm1UZiYNphXYV+FHxYlDGMVLEBU460DSVOEHnebOMjo3G0tQk9jy5YidJH2dfnS4U+XT11+KVxPm0SJSF+6RJyJwophGOGwAJFB0FkNimyIqA+RgcjOXWSalU4bfrZEp1iJsCnTrir7unwF+bPRpy6/Ou8dE8VClC+TvtcqU0pl2Gfk0QFAFYE2MEpgAaKKfMD/g7aLK2JUQ6X4m0o7RNqRbdPPrkjbKuxH+ZLpL0s+dfi1La1KpS+Tv9emCx6GYSpC93DWfkQWoVO7WjIG8FyEHm3TtDeGtg5ko3zaJhDC/Jp+bm2KYAT5MUnImWqbSQeFIvQ2zf4zhO5LzcQl6kqluZKyOnYKRegUohomFaGrsK/aDyV/sn3q8muryLSl3iPIh0nny1TbDMP4wgJENUmLz2UKjygbomobdBaQU4tqcL1Hcj+yfOnwp8unLr8UridHS/TZl+3DVNsMw7AAkULcs5p3/SSxY1oROoXIiCgbfra4CF2O/ShfNvnT5VOXXxvvHVsihzpEiSntZ1EiF07ByhS6L3W2SBL90C0+ghAZ1XAwXZBwEXq4fdE+ovzZJhLCvvM2HSsFfyxK2D4l2wxjMbqHs9kgrqpXkW4lCpGdrohogmhhJFJgpbXnZ9OUh7NKH2G+ZPrT5VOXXwpCQZY/m1K4ZPsxWTT42TfFNsNYAqUhrZ0kScdKa6fSq2lzEbqudoTZoxwhUWXfz4dMXzr86fKpyy+F62mqKNHpx6QIqKmRDBYk8aiC/nVAdPvPECxAVJMkDStquyTbJN1f5CBZZxG6aBsOVGwF2RRlV5V9Xb6C/NnoU5df3feODH82iRJdLxtMFA6ibHPaFsOwANFK3vUT9Pckn4tEVopVpXao2PCzxUXo8nzo8BXmU5dAkO2bQvRCtT+bRIlIXzaIOBNtsyhhMgYLEBlECYe40Y9K/i4TWTUSpgsSFTUfImwG2RVlO8yHzQNZ2T6jfLMwoetL9/GY9r02tdbN5P6aEmEvZFXBs2ApQ/elzg5JU6n8tqd0tWRFSEy34WdLhD1ZNoNsq7Av2odOf2E+dfm1KTqkW9Sa9PZfpR+2b59thlEEpSGtncRV9CIjH0m2pTbzh002guyZUtho00AszJ9sn7r82i76dEcXRPvSmfok0o/JosHPviltt0GUVEH/qNS0c2Ywui8140dUJCRs+zS+3HARur8NN5RStmTapeBDhh/dPnX5tVkoBPkz2ZcN0RKTRY8tgocH1gwxWICoxl0HEhUdiaolkYnMAbdtUQ3K6VU2CQZKg3Vdfm1Jc1LtT3e0xBZRYtJx2GJblt0CuN6B0QoLEBlECQfv35NEPHReMVFvU6iICVEPERkPI1MfnmF+bBhc6vZLIZpguz+bRIloP6aLKxNt6+rfdBA3ZV12Gxgl8KlWRdIz7bc9paslK0Kiu4BcVFSDRUk8HzL86PKn0y+F6IVMn7ojGDJ82SJ+WJTYZ5thFEBpSGsvIuo4RAgYL7IfElQiG1SjGpRTt/xsy/Ch0k+UP5k+w/zaMGjX5dO2NC4WJZX7MKX9ptpmGMGwAJFNJWc4SUpWpT6i9rOxCF2knbS2vPao5w+H+VDpR5avLPmkcoy2HJ+OwbxoHyr8mC56TBUOJomSqt0/utvAKKGD7gZkDm8dSJgIiPqbzHzJvM+PTlui2iPqmLy20iLyfEfZlXHPqPKj2leWfLI/s3zpPBaZtmXbF4mp11dF/8WE0tLSgsMOOwy5XA6vvvpq6LbTp09HLpcr+Rk7dqyahkqEb0EZBJ1V7+d+IiTqiui8Ym7fFNKRqNgQaSfMpii7sm3r8BPkS6a/rPjMoj9Tfak6dzqOw4S+T/V5oRrJYCKZN28eBgwYgNdeey3W9hMnTsTSpUuLv3fs2FFW05TBAkQHcc663zaUrpbojtaxR8WGSDsi7Mm2K9t2lB9ZvnT4o+TTpmNU6c82XyruDRYldtnWAYXIjAL/Tz75JJ566ik88sgjePLJJ2PtU1NTg379+klumVp0X+psEOdLJTryEWd7ikWBVGyItBNkT4RNmXaDbIu0r8uXDn86fGb1GNmXfvsqfJg6uDfVNpOajz/+GDNnzsTjjz+OLl26xN7v2WefRV1dHfbaay+MHz8e1113Herq6iS2VD4sQGRTyRkOStUS6SNqP9EDYxEiQLeQkNGxi0xrC7Ir2raffRk+dPgK8qfDJx+jWF+y/On2ZVoKl8l9k8zzo7rdOwXZFgmhCEhzc3PJxzU1NaipqUllulAoYPr06Tj//PMxevRobNiwIdZ+kyZNwplnnolBgwZh/fr1uOqqq3D88cejoaEhdZt0Qq4I/Y477sDIkSPRo0cP9OjRA+PGjSsJURUKBdTX12PAgAHo3Lkzjj32WLz55pslNlpaWnDRRRehT58+6Nq1K6ZMmYJNmzaVbLNlyxZMmzYNtbW1qK2txbRp07B161b5B+hX9xG2bdh2Mr+sogvgRNgS1R5RxySyTX62RF5bWXbDfMh8kPj5kv3gUu2Tj9Fsfzb5Udk3yTgGU+3LPDe6B/rEGThwYHF8WFtbi0WLFgVuW19fX1Yk7v156aWX8Itf/ALNzc2YP39+oracffbZOOWUUzBixAh861vfwpNPPol33nkHTzzxRNrD1Aq5W3DffffFz3/+cxxwwAEAgHvvvRff/va38corr+Dggw/GDTfcgJtvvhnLli3D0KFDsWDBApx00klYt24dunfvDgCYM2cOli9fjoceegi9e/fG3LlzMXnyZDQ0NKCqqn2OtalTp2LTpk1YsWIFAOC8887DtGnTsHz5cnUHW0mHovOKuX3bWoReqR0/e5TX+Qi6j0yb2lO3Px0++RjV+DM5WqLieGT7YPt6bDMAgI0bN6JHjx7F38MiDRdeeCHOOeecUHuDBw/GggULsHr16jJbo0ePxve+9z3ce++9sdrWv39/DBo0CO+++26s7amSKxQKBd2NiKJXr15YvHgxfvSjH2HAgAGYM2cO/uVf/gVAe7Sjb9++uP766zFr1iw0NTVh7733xv3334+zzz4bAPDhhx9i4MCB+P3vf48JEybgrbfewkEHHYTVq1djzJgxAIDVq1dj3LhxePvtt3HggQfGaldzczNqa2vR1NRUcqPm+ns27ASgG4C9dv/f6Tz8BEje8y98/kYVER2gqE5UZGdM1ZYKu7Jt6/Slwx/7ZF+UfKk6FpP7J5Pth9kuNANflI9fdFAcSy0GenTW2hQ0bwdq/xlSzsv7779fktr14YcfYsKECfiv//ovjBkzBvvuu28sO59++in22Wcf/OpXv8IPfvADoW1UCbkULDdtbW146KGH8MUXX2DcuHFYv349GhsbcfLJJxe3qampwfjx47Fq1SoAQENDA3bu3FmyzYABAzBixIjiNs8//zxqa2uL4gMAxo4di9ra2uI2wokSD6rC2irD0CJsiLKTBpHnS2WoXhS601ZkCm/V/qj5tOXcqjw+3ccl276qcybTtmz7IjG57Uwi9ttvP4wYMaL4M3ToUADAP/zDP5SIj2HDhuGxxx4DAGzbtg2XXXYZnn/+eWzYsAHPPvssvvWtb6FPnz447bTTtByHKEjejmvXrsW4cePw1VdfoVu3bnjsscdw0EEHFcVB3759S7bv27cv3nvvPQBAY2MjOnbsiJ49e5Zt09jYWNzGb/aAurq64jZ+tLS0oKWlpfi7t0jJl0q+9N7to/ZPcxXD9qVSYO1to00zY8my6WdXpG0V9nX5CvJno08dfm31p+oeVXE8Ko7F5P5Jddtl2Caf+5Jd1q1bh6amJgBAVVUV1q5di/vuuw9bt25F//79cdxxx+Hhhx8ulh2YCkkBcuCBB+LVV1/F1q1b8cgjj+Dcc8/FypUri3/P5XIl2xcKhbLPvHi38ds+ys6iRYtwzTXXxD0Mf/Kef+NsW+nf0yKykxXZoTq2KNRqyHgQ2fTglOFDhy+KPnX5NV0ohPkzuQbK5AF9mA+RfkztW1W/gNEFhSiNQv+DBw+GXxWE+7POnTvjD3/4g7pGKYRkClbHjh1xwAEHYPTo0Vi0aBEOPfRQ3HrrrcVFWLxRis2bNxejIv369cOOHTuwZcuW0G0+/vjjMr+ffPJJWXTFzfz589HU1FT82bhxY6rjrCgsqjuUKsq/iLCwqPCy6BC1jJC3qekRKn2E+VIh1nWkO2ThWFX6U+VL5/GYZF+FH9W2ZTwTKAzcGSYhJAWIl0KhgJaWFuy///7o168fnn766eLfduzYgZUrV+Koo44CAIwaNQrV1dUl23z00Ud44403ituMGzcOTU1NWLNmTXGbF154AU1NTcVt/KipqSlOD+z8+BLUIeQ9/wbtG7QNtQ5GZOdHyY7ojt3EB48uH7YMZHX61OXX5uupwpdO8WPKoDvKj0zbJogeXf0Nw1QAuVvziiuuwKRJkzBw4EB8/vnneOihh/Dss89ixYoVyOVymDNnDhYuXIghQ4ZgyJAhWLhwIbp06YKpU6cCAGprazFjxgzMnTsXvXv3Rq9evXDZZZfhkEMOwYknnggAGD58OCZOnIiZM2fizjvvBNA+De/kyZNjz4CVmDhnWnQHFweKIXqvHZ2LGIq2JeocxbErynaYDxtSq1T7C/Opy69NPlXdp6p86fzemdZ/iHp2xLUv0odq27wQYXAbGCWQO9Uff/wxpk2bho8++gi1tbUYOXIkVqxYgZNOOgkAMG/ePGzfvh0XXHABtmzZgjFjxuCpp54qKcZZsmQJ8vk8zjrrLGzfvh0nnHACli1bVlwDBAAeeOABzJ49uzhb1pQpU3DbbbeJP6C4X6iwbaL2T3MVZQ+ERDwQZNio1I6fLa75kOtDh68wfzJ96vJLRZjYcHy6XgaI9qHCjw77LEraqYrehGFkYsQ6IFQJXAdkoGujPPasA+L8OJ87/3pFSt7zbxA65CO1NTGotUeGLZk2VdjW4Ue1L91+bV8/xWZ/Jq8zodKP6fZl+0hqe1cz8BmxdUB+SWQdkAvkrAPClEIuApIpKsnR1H3FqEUSREYjZKVsibDnZ1OU3SDbIu2r9hPmS5a/KL82+WR/cn1xtISGfY6WMIw0dA9n7STorMaJbIRtQ/VqyaqPoFI/ksZOkD0RNv3smvTAjPIjy5cOf1nxmUV/pn4fuLZEr+0gH6acG4ZJCdUhrX1QLUIH6C6gJELYUC4eFxlx8bMp2naYDxl+VPvS4S8rPm32p9uXLdESUwbepkdiHPu7BNoUBRehZwo+1SqgXIQetj+lN/SUoiN+9qhGSGTb1uEnyJdN/rLik4I/04/NlmiJ6eLKhj6cYRTCAkQ2UelYYX/TXYRO+a2/6OiIaFsm1nyY/nY4C/6y4lN3VEGWryB/Jr4QYOFDz7ZI+wwjGRYgqsl7/p805Kj7ilEctFNL+/LaEWFPtt0g2yLt6/KVBX9Z8WnrPcrREjr2ZfswORIjmyroH+Pw9MTK0H2p7SQq6lFp9IPq1aI2aKcobPzsibAp064q+1G+suCPfZrjT7cwMVEAmW5fhQ/VoodiDQiTKagOae0jbR2IaF9eqHaijj3ds2v52UljS6bNILuibKuwnzV/1HzK9GvrtbTNT5Avk15ucLSEYcjCAkQFacWHiloQmR2dCAEgK/WLooCQUU8SZFuFfdE+ovxlSSTI9E3hWtrgz5Yohio/pttX4cPkNKswkqaky2oDowQ+1bKJSscK+1saUSIKygNsasLGzyYVAZfEvqk+wnzJ9BfmU7bfMN+2nF8b/dkUxVDlx3T7sn1wtIQxDBYgqsl7/p9U8VO4YrLSrCjaoWQryKYou1E+RPuhMrCU6ZOiX5MH7rb7syWKEebHpPNluihRYV8kVdBfBK7bf4agMJy1j6ioR6XRD8pXi1JUQ6Qdry2KKVtBdkXZjvJj6uAojk9dfm3ymUV/Jn7vVPkx3YcNQjQPLkJntEN5SGsXaetARPvyIvMBQCGCIMtOGlsybaqwHeZDpR8ZvuL4ZZ/sT6cv3d87047FxmgJ1UgGw8SABYgK0oqPqP1FXEWZgzuRHTM1YeNnK609WTbDbIu0r9pPmC9Z/qj5ZGFihj+dA21VfkxLHzK5r7Wt7iNpSrqsNjBK4FMtm6h0rLC/pRElIlExwNZdQC76zZIqUSLCbph9UwdhOv3p8JkFMWSzP5teCphe96HCh+n2GUYALEBUk/f8P6nip3LFRD9kqEU2ZIS6ZYXPTX6Dp8uXDn9Z8alaDFE4PtN92TAgtsGHSvHGNSCMZqgMZ+0iKupRafSD+tWiOPiXJWzS2vOzafpbSFuEQhZEAjWfMvxS8GWiWIjyZdKAPsgHp3HRhFOwMgWfalXIrgOJu00cZHWcugu/ZadZUUzb0m1ftI8s+QvzKdNvVD9iw/m1qU5CtS8bRANHSxhGOyxAVCBbfIi+irI6TmqRDZlpZGltBdkUZVeV/SAfMvxQ8yfTJ0W/Nl9Pk78TOtO4TBrQB/ngaAnDSIEFiGyi0rHC/lbJvjKhGkGQJWxE20prT7ZdVfbD/MjypcOfLp+6/Np8PW2KLtjmx1bhI9KHn/0dgmyLpAP0LwTYQbP/DMECRDV5z/+T5jxSumIsSNLbE2FTpt0w+6J96PClw1+YT9m+KaV02eBP90BetC/dx2NSJMD0aInugT6TeSgNZ+0nKrIRtQ31qyUzpYlKJMKkNCudb+5E+wnzZVstRJhvm3za7M82XyxM0tlX4YPTrBjDoD6kNZNKzmraOg8ZV5LS4DoL4kaFXdm2o/zI8MXRBBYmpvizzZfN9SUsrtSTNCNEVhsYJfCpVkGaNCsdwiPMtujBNYX0KE6zsm9gpNOfDp9ZEEM2+7PJl+4XD3wc8ey3CbLPMBXCAkQ2QWc4zplPs68sZEYiRNqiFtUwUZQE2RftQ4cvHf6y4lO1GKLiz0ZfJvYlNgsTVemzuuAISKbgU60ab3TD+4XTGfGoFIo1FiZENUQJpjC7Muyr8hHmyyZ/1HzK9EtFLMjwZ5NYCPMj2hencaXzIcMPwyiA4nDWXvKef+NsG/VZJXbcqBhoUIhGUBcQ/HBkf0l82ujX1utpmx8Vvmw5Z7YcB8NIgAWIDGQIBVmRERUCRWbaFgVxI9pWmE0RdsPsmzhYoepPpk+Kfm2/nionTzAx9UmFL93Xho9DLlXQPz2wbv8ZggWICpLmNVJKyVJVu0Ax1YpqVEOmcLBpsKLbX5hP2b45gmG2P12pT6J9hPky8VhsEiY5wTYZJiEsQGQTdIYrTcOKu69MVLztpxCJEC1u/GxStxtmX4afMF86Busy/Yb5tsknlboPFiZ0fKjyo/NYTDwOhlGI7qFs9vBGN7zREd0Rj0qRmWZFxZZp4sGmgUSYH1n+4vjNgk9bxJDNQsj2wbxoPyruBZuuiSqSZovIagOjBD7VKsl7/o2zbdRnSfaPgvJbIVmChNOsxNtX7UeXv6z4zIIYsk0sqPRlWy2LDWlWtgkTxkpYgMigEvGQ5u+irqLqt0IUCshVpJOJsCnTrir7YX5k+dLhj33aI4ZsEwuqfdk02LZNmHANCKMZFiAqSHqW46Zkqbx6lOs+/OxREDeybQbZFWVbhX1dvsL8sU+5PmX5pVCnpNKXicXiYX5E+9J5LCYKLApUQf+olGfBUobuS20/3jOcNg0r7r4qkF33kcaeTHEjwp4sm0G2VdgX7UOHL/ap168NUTBb3sir9qPCl03nTJXAYhhJUBnKZpO868f9WdQ+lKE68JctlkxNsTLRR5QvWf7CfOoSCTJ9Z+H8UrhfTY3O2HTudF8b045DFt7xkK42MErgU62SqOhHlBBRKU5kdog2FpCbWveh04cMP9T8yfYb5tsmnzb7s82XTcdjuzBhGI3wbSkDGeJBdS2IzA5R1IBXdq0GJYGjwm6UD5V+ZPiK8ifLZ5TfLPi05RhtGlyr9mXT8ejuH02JaDBMCCxAVJD0LMdJydJ15WR1iKIG/tSjGipFiSjbOvyE+ZLlL8ynTdEEHT5tv5bsi7aPMF8qjkWVH9OFSRX0F4Hr9p8hWIDIxnuGvWlYSSMbVK+YzIE/lToS0baCbIqyG2RbpH3Vfqj5Y59yfcrwq/IYKfiyTZio8mPivWCrMGGshOpwNhv4iZAwYVLJ1aKSm04lquG1l9WIhoo0riA/snzp8Mc+5fumMLCW4c+2AbZKX7YN5rkGhMkgfFvKICptqpK0qrQ1JJXuR3XAa0odiSibumyLtK/Llw5/1Hzq9G3LNbXt+0FBbJl47nQfi83RjDz0j0p1+88QfKpVkUZApBEmaZHZ2cpMtaIgbqJsirAbZJvfoKbzp8unTL9Rvm0YuNvuz6YIQ5gfE8+d7mtjszBhrIQFiAqSnuU0kRJVUI8cyK4jEWFTtV1RtlX6iPIly1+UT11+OYLB/rLgy6bj0S3mRPthGEFQGMrajfcMu8WF+6dSe5RQIUqyOqOVSW/pVD8IsyQUKPm05Rip+GNfNHyo9EVBnFCiCvrbyrNgKUP3pWa8hEU/VAgVFeFiKrNQURZMUXZF2g6yL9pHmB8ZvqJ82hRN0OFTh/BT7VOlPwo1GSp9qRxg29RXcjSDsQQWIDKISp2qRFyk/XtcVHTkWUq1Uh3NMPkhSGkAnRWfuvzaIjZ1D0ZV+jLVjypfNp431fA6IJmCBYgqKo1eqBIecVGRdkRtwC+qbX72RNqVbVuHnyBfMv1lyWeYX5m+bRUKOvzZNvC17dzZeN4YRgAsQFRQ6VmOiqRQgXrUQGbEJY0tFXaDbIu0r9qPLn9hPmX61RXBCPNtS9SEij+Tj023H1Ovk+7zxjCa4VtTNt4z7E7Dcv8EbR9ljyqyU6MoRTVUihJRtsPsi/Sh0o8uf1n0S0n82XCMth6binszS+lpMnxRwjse0tUGRgl8qlUSVgMStG3UZ0n+nhTZg1Cboxqmp1npftDaFk2gJk5sOk4qAtcGMU3h2Ex8+WHbeWMYBbAAkUElZzWNuJB1FWV33pSjJKpEiQi7sm1T8iPLXxy/7FOeT1l+KbwdV+3P9EEvhT6GozMMIx0WIKpIcqbjpGTpvnImRA1kCxwRNmXaDbIt0r5qP7r8sU/5vqm87Tfdn8rrZ6MwUeWLyv1ACU7ByhR8qmUT9IWSlYalE+qihHr7ouyKsh1k3+RBly5/FH3q9G2L4LTZn+7BtSpfpp67MD8yfDGMJigPZ+3EG93wCpSwOpGkVyvp9qo6bNsLyE2t/7B50KXDX5hPnb5t8sn+2FdSH6L9hPky9dwxjAJYgKgkTFyEfR71tzh/j4Oqt6pZjGqYXP9BJYphU21CHN8cwRDvT5ZPKv5s9SXan21+VPuSBadgZQo+1TKo5KxWKj5UX0FVKUcmFJBTE2MqbYf50OFLhr84fm2KJujwqeOaqvZJIR1JtB/VvsL8mXpcuq9VQbAPhkkICxBVJDnTaSIlOpDxYBApSPzsUbUp026QbZH2dfkK88c+5frU5df2aI2pA+swX6b3MzZeK0IUOgCFKv1tYNRAbShrH1E1HklDjiZdMU61Mkc4UHiIy/IX5tOmaEKYT9m+KV1TWT6p+DP52ChEg2y9VhYLE8ZOTBrO2kdYoXnY3yqxWyky3+yYICDS2pSdBmWTMKHkT5dPnb6z4NMGf1kUQraJINF+VPtiGAGwAFFJGnGhqw5EdfE0NQHhtUn1uOP4EOmHyiBIlr8onzL9hvlmn3L8yfJL5Xtiqy8Z/rISDSJYA9KWb//R3QZGDXyqZZAmeuHdVpfwiELWw4e6KFFZ9yHKdpQfUx/gcfzJ8hnll33K86nLr63F6Sp92SqETBddDKMBFiAqqPQspxUyOqAuIPxsymifCLtBtk2LlsTxJctfmE+b3uyH+ZTpNwtCIcqnDf6y8tZftI8oX6r9sTBhDIL6cNZ8vGfYW3ye92wj+ooksafyQUpJlKiMapgeLZHhh5o/23xG+ZXpm9I5Zn/0/dlWAxLmz9TzJxFOwcoWfKp1EOesJ41+iLiSKotjVYgSisXjMiMaWRMmOnzaKBKifNtyjqm8pbbdn62+RPvTHQ0iWAPCZAsWICpJIyCC/q76CpqUbiRSkPjZE2EzyK4o2yrsR/mR4SvKJ89gJd+vTcdJ5a24Dn/sK70/k4UQw2iCBYgMRBWhUxEdcTChKF1VKpgIu0G2TS0WpTJQkOkzjm8etJvnM8qv6YNPKr5E+6NyXKbfHwpprcqhtSqnuQ0FcHhIDRSHsvYRJkiSXgHTrpiJBeSUxYON0QxqA1mboglhPmX7zsp1pRIhsuF8UujfRPujFO2S4Y9hKsS04ax5eM+wX8F51GdBtuL6TIOqhwz1qAZ18UBhUGLDgCvMny6fOn3bJMaoDKZt98fHJsaXbH8EX/K35fNoy+uNgLTlCwB2am1DVmABopI0qVWyC9ArtS2rToFaAbmpqVYUHqS2DCh1+dTpm33akUpGJaJper9D5dhk+WMYhbAAkUElZ9UvChJli8LVU1X7YVJUw4SIhs0PbYo+ZfoN852lWhdZfqn5NFkwZDX1yfR7hGEkQGEImw3SipK0tlRjgoAwTZQE2VZhX7SfOP5sGsRG+bXJZ5Rfmb4pnWMb/Nk8qKbiywZ/gmirqkKb5iL0tipOwVJFB90NyARhNR55JBMUSbet9Ec0MnyosknZbph9Gai6X8J8yRbglHzK9KujH4jjW7VP1f5s+b5QOZ8qfdnkr0qSbSaUwYMHI5fLlfxcfvnlofsUCgXU19djwIAB6Ny5M4499li8+eabilosD9mPVSbsDPv9LR/jb0n9VEKYPZlv27MW1ZBlN8i2SPtxfNniT5fPKL+6fNvkMwv3kkp/Nh9bFvwx0rn22msxc+bM4u/dunUL3f6GG27AzTffjGXLlmHo0KFYsGABTjrpJKxbtw7du3eX3VxpsABRSaXiIuzvOq6gzAGCKlEiy67J9R8ifcTxZ8vgLsqnTt9Z8SnLtw7xp9qnSn82H1sW/ElmF6rQBr0pWLsUTA/WvXt39OvXL9a2hUIBt9xyC6688kqcfvrpAIB7770Xffv2xYMPPohZs2bJbKpUOAVLBn7h0yRCwS1U/MKwKsLdlSArhKzSrgyboq6TihC9zWkHUT5lf5+oHa8On7YdL6VjtMGf7dfPdn9MLK6//nr07t0bhx12GK677jrs2LEjcNv169ejsbERJ598cvGzmpoajB8/HqtWrVLRXGnwbagCv7Nc6ZkXNUh2UPGGxK/NJkVLqLY1zLZI+2E+ZPjS4S+O36zNKKXLtw3F22H+ZPlkf+xPlD8Gzc3NJb/X1NSgpqYmtd2LL74YRxxxBHr27Ik1a9Zg/vz5WL9+Pf793//dd/vGxkYAQN++fUs+79u3L957773U7dEJ34Ky8Z7hvOf/3rcReZ/tgmzF8Sd6e8r1H7LsqmyrKNsq7OvyFebPNp9RfnX5tskntXtJhl/2Z7c/GT410IoqtGpOwWrdnYI1cODAks+vvvpq1NfX++5TX1+Pa665JtTuiy++iNGjR+OSSy4pfjZy5Ej07NkT3/nOd4pRkSByudLzUigUyj4zDXIpWIsWLcKRRx6J7t27o66uDqeeeirWrVtXss306dPLZhEYO3ZsyTYtLS246KKL0KdPH3Tt2hVTpkzBpk2bSrbZsmULpk2bhtraWtTW1mLatGnYunWrvIMLExdhn8f5m6qwqsxwrizbKmyKRHbI3PYUAB0pB2HHqdN3VnzK8q3ruqr2yf7M9hfmk6mIjRs3oqmpqfgzf/78wG0vvPBCvPXWW6E/I0aM8N3XGbv+5S9/8f27UyviREIcNm/eXBYVMQ1yt+fKlSvxk5/8BEceeSRaW1tx5ZVX4uSTT8b//d//oWvXrsXtJk6ciKVLlxZ/79ixY4mdOXPmYPny5XjooYfQu3dvzJ07F5MnT0ZDQwOqqtrnn5s6dSo2bdqEFStWAADOO+88TJs2DcuXL1dwpB6CrkTYFaJ09YLakpWohszjD/OhIs0qCykxOn1zapca3zakzYT5tN2fLJ9Z9bdLgq+UtKEKbZrfi7ftPjE9evRAjx49Yu3Tp08f9OnTpyJ/r7zyCgCgf//+vn/ff//90a9fPzz99NM4/PDDAQA7duzAypUrcf3111fkkwqUhrAAUBQDDkuXLkVdXR0aGhpwzDHHFD+vqakJnEWgqakJd999N+6//36ceOKJAIBf//rXGDhwIJ555hlMmDABb731FlasWIHVq1djzJgxAIC77roL48aNw7p163DggQdWfhB+ZzXJmc57/q3UDgVkDZpViBKq7YyyL9pP1D1nenpDXN+2DLji+NXpmwfS5vvT4dOGY9Qp3hnpPP/881i9ejWOO+441NbW4sUXX8Qll1yCKVOmYL/99ituN2zYMCxatAinnXYacrkc5syZg4ULF2LIkCEYMmQIFi5ciC5dumDq1KkajyY95IezTU1NAIBevXqVfP7ss8+irq4Oe+21F8aPH4/rrrsOdXV1AICGhgbs3LmzZNaAAQMGYMSIEVi1ahUmTJiA559/HrW1tUXxAbSHwmpra7Fq1SpfAdLS0oKWlpbi794ipUDyPv93/xv3KlQiYtJiUr2AiqiGzNoPUfaj/PC8/+b4zVI0IcqvLfUYOnzquI+oHaMtfZGu7yWTmpqaGjz88MO45ppr0NLSgkGDBmHmzJmYN29eyXbr1q0rjn0BYN68edi+fTsuuOACbNmyBWPGjMFTTz1l9BogAHEBUigUcOmll+Loo48uyZ+bNGkSzjzzTAwaNAjr16/HVVddheOPPx4NDQ2oqalBY2MjOnbsiJ49e5bY69u3bzGPrrGxsShY3NTV1ZXl2jksWrQostCojKQpVGHRj0r9pEHlg8uEqIbswZGuVC7RPqJ82eIvjl+dvm0aBOkSYzywteMYbfcX5VOmX0HQSMGSV9h9xBFHYPXq1ZHbFQqla5HkcjnU19cHFsGbCmkBcuGFF+L111/Hn/70p5LPzz777OL/R4wYgdGjR2PQoEF44oknigu1+OGdNcBvBoGwmQXmz5+PSy+9tPh7c3Nz2UwJoVSaWkW9DsSk+g+TUsKi7Jvog6I/3b6zJE50+rbFJ6VjzMI5leGTgpgmWAPCZAsKw1dfLrroIvzud7/Dc889h3333Td02/79+2PQoEF49913AbTPGrBjxw5s2bKlJAqyefNmHHXUUcVtPv744zJbn3zySeDMArHngZZZA5LUlk5MGeyrTrUyTTRk5eEc5dsmn1F+ZfvPynmmNpAW7TcLqV0UfRKPZDBMHMhNw1soFHDhhRfi0UcfxR//+Efsv//+kft8+umn2LhxY3EWgVGjRqG6uhpPP/10cZuPPvoIb7zxRlGAjBs3Dk1NTVizZk1xmxdeeAFNTU3FbUhSSWpWJT+ykOVPtj2R50XFOVd5XW26jyrxqeM4s3rMOnzq+N7Y9N2hdF5lQekYVfQLkmhPwdL/w6iB3G36k5/8BA8++CB++9vfonv37sV6jNraWnTu3Bnbtm1DfX09zjjjDPTv3x8bNmzAFVdcgT59+uC0004rbjtjxgzMnTsXvXv3Rq9evXDZZZfhkEMOKc6KNXz4cEycOBEzZ87EnXfeCaB9Gt7JkyenmwHLi7czyHs+D/u7n60oX6KIsqXirZYpUQ0b6j9E+4nyZ8sb5zh+dfq2za+u80ztWG154571Y5TpO8rvDgk+GSYB5ATIHXfcAQA49thjSz5funQppk+fjqqqKqxduxb33Xcftm7div79++O4447Dww8/XDIjwJIlS5DP53HWWWdh+/btOOGEE7Bs2bLiGiAA8MADD2D27NnF2bKmTJmC2267Tf5BBp31sKtR6d9koWOwTG2WrDC7omyH2RfpI8xPVgYCtg3WqfqV6ZvafWWLTx2DaAovwWT7jONbpzBiGInkCt5yeyY2zc3NqK2tRVNTU8mCNbmZro3yADoB6AZgr93/jxsF8f4fMT6niqxOlO1mw49un7r86s71zsox6zzPqn1n4fxm4RjT+t7RDPyqfPyiA2cs9XLTAHTvobcy4PPmXTii9kMS58V2TBvGmkEl6VMy7YTZUNVpynq7blqqlaoog24/svzp8hnl17b0jTj+bYpUZentN7VraksfkaV7iGEEwAJEBZXUgETZietP5LYOstN+ZIgSynbDbIuyr9qPLn8Ufer0beMsWixA5fmkmGpli884flX6bJPgi2ESwAJENpWeYe9+lGpAdNQ8ZDmqoVuc2LK2QJhP3b5tFEZR/m0ZtEf5lOWXhVi2fMr2TYA2VKHV4oUImVJYgKgk7/nX729h+yXZRwc6IgSmRTVMTLXiYlC5PnX61ek7SwM8agLFpu8PNZ86fVssThj7oDaEtYO0ZzVMqIiwrxoTB/mmRktU+wnzJctflnxG+ZXtn4/ZTp/UjlGWb76P1PkWQBvyaNMeAeEl4lVh2lDWXIJSqpJeARl1IHFR8XDIqnjQLUxk+NLhj6JP2b6j/PMx2+tThl8etOv1qco314AwmmEBIpuwInM/ESI6TUskKjpqTrWKti3DT5gvrgGR75ujCeb75ZqMbPnU7ZtwJINh4sACRCVpUquop2NxYXq0XVG2VfvhN7D6/cr0HeWfz7Uav1nxKcMv9xlqfUuiDR3QhqroDaW2gVEFleErExUlCdqWOiamLZnY5rh+TPel02eUX52+bTxmqoNKmwayLMbk+ozjV5dvHmkzmjFpKGsOokRDWjsirq6J6TcmRjUoCIYs1IDo9m2bX8q+bbu/KN5bNt3PWew3GEYjLEBUEFTj4f7x+3uYnSR/S0NcuyamWplgO8y+SB8q/cTxJ9NvlG/bBsxRfmX752POpk+ZvimKMZ1+ZfpWSBuqOAUrQ7AAkY2oiIXuAvQoTB3gqy4gNzX9ieKD1yafUX51+7d1YEXtmG08z9SO19bvsOqXhQyTEgpD1+wQN7rBNSCV2zZR8IiyTdGXLH8Ufcr2HeU/iwMr21LLsnaeqZ5jWb7j+JctEBz//Kqf0YxJQ1lzoFIDkmYfQM/DPasF5CofSiqFSZg/XT51+rZVJET5z9p11uXXtvOctfqiKL8q/GukFVVo1ZyCZempJQkLEF14a0G8n4ftU+nfk6LjTRFHNej5kOFLp884vm0byMXxb+ugioWCft9ZurZZ8M8wAmABIpswgZFEbFCuAZH94DExjSvItkj7YT5E+4nyJcNflE8eMKv1q9O/baKM6v1l271FWfDr9k9QnOxCXnsR+i7ktPrPErqHrtkibg1InM+j/kYFE8WDbOGgu3Bc9SDDxkFclH8e1KjzKdM3VaEgy28WRSjlY5bpl2E0Y8IQNntUIlSS2o5CVSGcaJ+2plqJ9KP6IZ+1QZxOv3H82yqOsnatqZ5rFgpq/cr2zzCSYAEiAxnCIYkNVb5UhcupiwdVb/51CyDRvuL6te1tfpRf2f5ZHNHxK9s/VaHA11mPf9ltSAmvA5ItWICowK/uI+/58ft7JfZVomogY2IaV5BtkfZV+wnzJcufLp9RfnX7t/W4KQpg2b6j/Nt4zJSvs27/ql4A8OiP0QzfgrKJGw2ptNaD8hXUUUthQkRDt3AT6UOnvyifsn1H+bdVJET5t/W4KQ+a+ZjV+rf1HmcYhVAevtpH0hSqSgrTTcDUdCibIhqqH7BUB1E2DyR48EjHr2z/fMzq/MbxTcG/g0FihVOwsoXpQ1mayKoBSWJH9pVV+QadunjQLUxM90XVJwX/ugcxth035eudxWPW6dd2/w62vshkjIdvQRWIqgGhlIqlcvBiqnhQ+eDNch2IbN9R/m0VCVH++bjV+dTtP6vXOgv+GUYTLEBkk0RIVCIwKF9BXbUU1IVJlA+RfjjVSr9fmb7j+M/igFmnX5m+o/xn9VrL9G2Kf9ltUEAbOhBIwSpo9Z8lKA9f7SOuwAj6fxw7JsDChL4fGb50+ozym2XfOv3betyUxZFO/7Ze77j+qbSBYQjAt6sMRImGNHa4BiSefdMiDVlPtWKRoN5/Vo9bpm/Kx53l652VNgAkR3+tqEKr5ghIK0dAlEHwFswI3loQv8+D9gmzpwquAaHlR/WAQtdAgrJI0D1g4Lfq6n3L9M/XW4//OG1QkeqkW6wxjGRYgKggbnoV14DQsW+LMAnzIcNXXL+2Ddri+M6yfz5utX4p+LdVkMfxraINAJ12MEwFUB6+2kEl0Q2uAaFrX3eqlUgfOnzp9Bnll4J/3QMWW99q83Gr9RvHNwX/VNoAqG8HwXFEG/Jo09wwm9cB2blzJxobG/Hll19i7733Rq9evbS2h+AtyBRJ22nIvLq21ICItK/bh2g/Ub5k+IvjU6bvOP51D1iy6j+rxy3TN/Xvmmz/VNoA0GkHYxXbtm3DAw88gP/4j//AmjVr0NLSUvzbvvvui5NPPhnnnXcejjzySOVtYwEigzjCgWtAxPiSHdUw5Rji+BHtS4e/uL51D1iy7N/WwSrlehCZvtk/nTYAdKIqDHmWLFmC6667DoMHD8aUKVNw+eWXY5999kHnzp3x2Wef4Y033sD//u//4qSTTsLYsWPxi1/8AkOGDFHWPhYgKkiSXhXHRpzPKaBzYG+ScFBVbxLmS4c/WT7j+JXpO45/3YMlmweLWT32LAs0Cv7jtgFQJwzC2qN3silfdqFK+zoguyyaBWvVqlX4n//5HxxyyCG+f//617+OH/3oR7jjjjtwzz33YOXKlSxArCJtdMOQ3M3EcLpV5fZF+tDpL8qnbt82D5ao+8/ysev2n+Vjd5OFdjBW85vf/CbWdp06dcIFF1wguTXl2DCUtY9K07DSbJsU1YNCkwb1uutARPuK40+Gzzi+dQ8Ssuw/y8eu23+Wj11FGwDz2gGwWGEieemll/C3v/0NZ511FgBg1qxZ2LJlCwDgkksuwbhx45S1hQWIDNJGOJLYrcSOCFQ/pDiiQdcXVZ+yfcfxr3twYvNAkc99NLame8VtA6WaDEptIUobgRSsNotSsPy44oorcOONNxZ//9Of/oRf/vKX+PLLL7FgwQI88cQTytpi+O1qCEFpWH6RjqDoByXxERfbow2m+YjyJctflE/dvm0eJFEYHFGOYMlsg27/cdpgs0iL49+BkjigUB/CWMuWLVswcuTI4u8HHXQQxo8fDwBYsGCB0rbwLSibuNGQpBES06+czmiDKD86BZYMXzr8xfWte6Cq27/uNmR5kK7bv+5jl9kGKulFVNoB0GqLYlrRAa2aIyCt2KXVv2ycdCsHd51IY2Oj0raYPow1i7hnW1gNiMRQYmtOjl1Vg1AbiuCjfNniL8onBf8U3qDqHqDp9i+zDdTPPbdBTRsAWgKhkhGcZaKFScZhhx2Ge++9F+eee27J5/fffz8OPfRQpW1hASKDtMIhid2SvyvMXYzrS6RQsSGli1LxuI5pd2X5jevfVoFEoQ26r32cNvD15za40X0/ulGdesWjv0xy66234tRTT8V9992Hww47DLlcDq+88gqam5vx+OOPK20L34Kq8daAuGtBvH/328/XJuGiqaC2iY6gyB5o647MiPYT5UuWzzh+dQ9ObPYf1QYKAzKbz78JA3Tbo3ludN8PbiiKFcW0IY82zcNS24vQ99lnH7z44ot45pln8NZbb6FQKGDixIk48cQTlbeFBYhsvAIDPr8HfRa6veFfkrD2qxInpkRNovzI8EXVp2zfcfzrHqRnfYAsuw267784bbD5/CdpA6D/WjioFAWUzg9jJCeeeKIW0eGmg1bvWaOSGpAy8VKILz7yrXJ/ZOEcY9CPMD8BP7Lti/aj2ldcnzJfb+jyG8c3Bf8U2iAbqr6pnP8stMHEdqhqT5x2MZnjP/7jP4r///Of/1zyt9tuu01pW1iAqELElz1q8K1KIAT5UyVSTBcmUX5U+9IlFGSiewBAYRCiewCk8/hNOP/cBnr3o8qBObX2EMBZB0T3j80sXry4+P+LLrqo5G/33HOP0rZk6NZWSNhZzbv+9etg8p5/i5+HDLBViI1KCWtbq+DbT3a9SVhzTU+3Uu0vyicF/7bnwus+/3HboNu/7jbYfh/GbQOQ3XqMSh6VhIcFjD4KhYLv//1+lw0LEBXEPctB2/kNrCmLjrhEHYMogaKi3kTlA1z1YEH3wECHOIryy23Ijv84bdB9/FTaAGSjHW6SPqaotMvuF/1MALlczvf/fr/LhgWIbOJENwK3Syk88m3xt01Dq6SeTEX0xJZZuuL6kuFPl884fmX7N6UNugfosttggn8qbQBotIPCPenABeQkoJAC1Wb5QoSvv/466urqUCgUsHXrVtTV1QFoj340NTUpbQsLEJOIEh+qBEdSvzIEStC5UBE1Acxb30Snvyifsn1T8B+nDbqP3/Y2UBj4UWgDoP9aJGkDoP+76YVKFMOPjIkWJhmtrXRuEBYgMgiLcMSuAfEMgMPEhy7hEReVAkW2MCn6UTSNcJbSrfgtvl7/3Ib4baCQ90+hDQCddjhksT1u0qZ8a6QNVWjlCIhQ6uvrccQRR2DUqFHYZ599dDenBIK3oIWkrgHx6cGoi44khB2LKHFiUzF8ia+Qv9kmFEx5a6vbP4U26BYIsttgynWQ3QaATjscqIkDjmIwGrn22muLtR19+vTBqFGjcMQRRxRFyaBBg7S1jQWIbCqqAdk9gE0pPDooFCm7pNWBaBYngFnF8CX+Iv7O6VZ6/FMY9FAYlFJoA6D/XsxCGwB6wgCg2SaARQsjjCOPPBIfffQRfvjDH6Jfv354+eWX8fvf/x6LFy9Ga2srevbsiSOOOAJPPfWU8raxADGJCEGhUnAk9S1FoAT5FO1LZzF8iS+FhfFFn2JdxvatezBk+4CQ27AHCu0wqQ0AnWsC0BQrAN3Uq0q3V0Ab8mjT3LA2qJ2KVjYvvPACli1bhiuuuAKHH344lixZgqFDh2Lnzp14/fXX8fLLL+OVV17R0jaCt6AFREU4nN99a0BCoh8B6BQecYnTRmEixcaaE0B9BAXQk+IV5ZeKf25DdtoA6BfNcdoA0GmHg+7r4oZyFIMjGIwkpk+fju985zu49tprMXr0aMyaNQtXX301Ro0ahVGjRmlrF6+ErgK/NCzf7QIGmPm2skF1h3xb8ccW3Mck9fic8+n3I8xHa/SPSIJWh5exUnzRZ8wfWej2b1IbZMNtiH8vUGmHKqicl6RtUf16NmnbdLSRMZZu3brhhhtuQENDA95++20ccMABylc+98K3r2z8xIffWXcPEJ3Bqc+AOMmAvEqxOGmTVAcSdszCU7tU1JwUfSksjAeiRYiOKErRtxzXsfxTeGNM5S2x7ZEMCm0AaLQjSRdDMc2JwvfWD+qpV4RpQwcC64DY81LXy86dO7F9+3acc845+PjjjzFz5kyceuqp6NWrl5b2WHTr2k/YQFy12EjTBpFCRWntic3iBIgWKIA+kUJhIGZ7GwAa7TCpDQC3wwtFsQLQbRegJ/2KR3+Z4LrrrsPatWuxdu1avPPOO+jatStGjhyJMWPGYNasWaitrdXWNr4FZeAb4Qj4PY9Y0Q/q4iMJYe0VHUVRFj2hUHdS4k+TSNEZRQFoDMJsbwNAox0U2gBwO7xQFCsA3XYB5ogWxjiuuuoqDB48GNOnT8d3v/tdDBkyRHeTirAAUYFfGpb3/0DgwNJvEJ1WdFTFrEFokzWQDcBKcQKojZ4AeiIogN4oCqA/1cmUNgA02kGhDQC3IwgWK/EwLYJBVLy0oYpACpZe/6I5+uij8dprr6G+vh7XX389Ro4cWVwLZNSoURgxYgSqqvQcMwsQ2cSuAXH1CLsHq2mFR1yRIdqGLNESdeyqUrusFiclvi2LogA03hJTaANAox0U2gBwO4Kg1B7KosC0CAYXsGeG5557DgDwzjvvoKGhAa+88goaGhrw4IMPYuvWraipqcEhhxyCNWvWKG8b34IGETYAFyE2RBGnLTJEiqroCZm6Ewdpi0ASjqIALFRUtAGg0Q4qb8q5Hf5QFAcU2+TGwghGWjgCIo+hQ4di6NCh+O53v1v8bP369XjppZd4HRCrSFQDUogV/TBFfMQlqs2iBYq1qV2A2vqTok/NURSAhQqlNgDcDi+mtQOgF1lxoChYHExLvwKsFTCMPytWrMCVV16JtWvXoqqqCsOGDcN3vvMdXHjhhTjzzDNx5plnamkXCxAVxK4B8R9IegfPaQVHPkX9SKust+0eVAoUKqldDkpTvBx0RFGKviV3QzpTvoptiLENhYEolYEelXYANK6LQ5ba4oaiYHEwLf0KaG+znS/6GQ/PP/88vvWtb+GYY47Btddei+rqarzzzjv4xS9+gX/7t3/D8uXLcdhhh2lpGwsQ2cSuAdkzSHQGqX4D47jiI43IEGlXlmAJOw8mR08ADREUQE8Upehbs0ihEEkBaAyIqQxAqbQDoHFdHEw8Lw6URYFJ6VeAfgEjiTZUoZVTsISyePFinHHGGXjooYdKPr/11ltx/vnnY/LkyXjjjTew1157KW8bCxCDCBt0yxIcaYlqlwyBQiV6olqcOGhJ8wL0ixSAhlAB7E/7ArgdXqi0w4GSWAHotceNSelXAAsYJjarV68uEx8A0KlTJyxduhTf+MY3cMcdd2D+/PnK28YCRAaJakBaY0U/ggbVVIVHXOK0X7RIURU9iTNjmQ6Roi2K4mC7UAH0T0cM0BkQm9YOIDvRHQdqbTIlrcmUdnrhWbAywyeffILBgwf7/i2Xy2H27Nm4/fbbWYBYS2ANSOkgxX/a3fLeKo3oELlooYzBsx9Bx6s6emLyzF1utEVRHHSmexXbEDEKULH+DQWRAnBNhh9U2kJNGAB005tMiWJw9CKQNuTRpnlY2oZdWv2Lpq2tDZ06dQr8+6hRo/D2228rbNEeWIDIJmYNiHtQWFWMglQuPlSsjh7Xh6yBtOroierphXVFUACNURTArEgKQCPtKyvRFMDMtgDZFCsAXcHiQL19XkR0N7qPgVHKfffdh29+85s49NBDy8RIjx490NTUpKVdLEAMImzArUJwVIpOoRJ2zmyPoLT71BdFATIgVAAaaV+m1acA2RuQU2oP5UE35bYBdkQwOAUrMxx99NH42c9+hs8//xz5fB7Dhg3DEUccUVwJvW/fvmhr0zN+5FtQBrFqQArF+o840Y+ggTRl4ZEU1YNpSuIE0CNQ9vhmoZIJoQKwWPGDUlsAeoNwau1xY9qCfjYIGEnwQoTicVZCf/fdd9HQ0ICXX34ZDQ0N+N3vfoetW7cil1OQ5hsACxAVhK39sZuggaLfIDmp6FAlUmTXhKgUKNSK4x1kiJR233oiKQ7a61IA/TN9FdtBRKgA5qWAAbQG4xTrHygKKAcTohm6BQCP2pgKGDJkCIYMGYJzzjmn+BmvhG47vjUg4Q91ZyBaqfjQFRXR/bZddUE3xSmGATsjKYBh0RQgOxEVgI5QAWgNxim1xcG2aIYJosWNbgHjQHD014YO2iMQbeig1b9K9t9/f+y///68EjoTTdAg0LQ0LB1v23UUdOuIogB6Ur32+GahUoRTv8qhJFQAWgKBUlvcUBYsgBmixQ0XkTMMAGRI6qkk7/pxf1ayzZ76D/egLSj6YYv4iEPV7nMS9qParyzy+bbAH1lU5Vtj/chE1zV202H39y/qRzr5tvg/UtvRGv9HNvlC/B9V5BP8UGqL6teMlNtWaRt1t9dLmvZTO5aMMXjwYORyuZKfyy+/PHSf6dOnl+0zduxYRS2WB9+CKigRIv4PzKABn99ALMngrKpKn0Bpa5P3Zld1upWOqE1cESIjigLojaS0+9c3DbEbEvUpDqZFVYDsFNW7oRbNoBzFMKVexMGWFCyCtKIKrZpTsFT4v/baazFz5szi7926dYvcZ+LEiVi6dGnx944dO0ppm0pSPxnuu+++WNv94Ac/SOvKTHxrQMJ7IGfgWYn40Ck4vMRpiwyRomPgqnOwrHo2L4e4URIKKV/t7dCf9gUoEitUhArAYiUKamIFqGxkYELqFaBfAHAKVubp3r07+vXrl2ifmpqaxPvEpUOHDjj22GOxePFijBo1SooPP1J/FaZPn45u3bohn8+jUPDv3HO5XHYFSIUkER+UREdSqIoUjqKIg4JQaW+H/voUgJhYoSRUABYrUdgWyeBpcCtDxK1v12yzwmlubi75vaamBjU1NUJsX3/99fjZz36GgQMH4swzz8Q///M/R0Y0nn32WdTV1WGvvfbC+PHjcd1116Gurk5Ie+655x689957mD17Nv785z8LsRmH1Lfx8OHD8fHHH+P73/8+fvSjH2HkyJEi2mU2fmfVG/1w1X+4B2hJ1vtIIzyqUvSibYoz93SIFI6i+ENBqADZiKoABhbUAyxW4kBVsAD0RYuDqSlYAA0RQ5A25JWPL8rb0N7XDRw4sOTzq6++GvX19antX3zxxTjiiCPQs2dPrFmzBvPnz8f69evx7//+74H7TJo0CWeeeSYGDRqE9evX46qrrsLxxx+PhoYGIaJo+vTpANqPUSWpi9DffPNNPPHEE9i+fTuOOeYYjB49GnfccUeZeozLokWLcOSRR6J79+6oq6vDqaeeinXr1pVsUygUUF9fjwEDBqBz58449thj8eabb5Zs09LSgosuugh9+vRB165dMWXKFGzatKlkmy1btmDatGmora1FbW0tpk2bhq1bt1bU7lBifJ+CCo/9CnKrqtpiDcqrihmV5T9pCLMrw1+sNu0+J0E/UnwSK5TXXTQvu3jeje4i+j3tiHc9ZBfVxy2oz1RRfUmbCBXYA0hUZK+y0B4wp6DZlHb6IaqInMrxWMjGjRvR1NRU/Jk/f37gtvX19WVF4t6fl156CQBwySWXYPz48Rg5ciR+/OMf49/+7d9w991349NPPw20f/bZZ+OUU07BiBEj8K1vfQtPPvkk3nnnHTzxxBOxj+eWW27Bhx9+GP8EKCBXCMqbqoDt27fjN7/5DZYuXYo1a9bg1FNPxT333JNIoU2cOBHnnHMOjjzySLS2tuLKK6/E2rVr8X//93/o2rUrgPbw1XXXXYdly5Zh6NChWLBgAZ577jmsW7cO3bt3BwD80z/9E5YvX45ly5ahd+/emDt3Lj777DM0NDSgqqr9Dd2kSZOwadMm/OpXvwIAnHfeeRg8eDCWL18eq63Nzc2ora1FU1MTevToUfw891vXRnkAnQB0A7AXgE47iw9edwTEPXDbsxp6sqiHioG+bHS9/ZBZMB/qV9XbYiJ+3ciMpiRBdupXUihcGwdlxfVxoNQWN8TunyKqoixpMPGRZWKb/djWDBxdPn7RgTOWurxpDjr1EJPmVClfNbfg57W3JDovf//73/H3v/89dJvBgwejU6dOZZ9/8MEH2HfffbF69WqMGTMmdjuHDBmCH//4x/iXf/mXWNt36NAB+++/P1auXIl99923+PmOHTvw2muv4cgjj4ztWxRCe87OnTvjBz/4AQYPHoyrr74aDz30EG677bZEAmTFihUlvy9duhR1dXVoaGjAMcccg0KhgFtuuQVXXnklTj/9dADAvffei759++LBBx/ErFmz0NTUhLvvvhv3338/TjzxRADAr3/9awwcOBDPPPMMJkyYgLfeegsrVqwoueh33XUXxo0bh3Xr1uHAAw8UdFaSUYn4sEF4OMQ5FhkiJSpKIkug6FqBnEI9BIW0L4BO6pcDhWvjYGS9ikMWU8HcVBI5US1aTCwkF3UJ7XlsC2MXqrQvRLirAv99+vRBnz59KvLnrELev3//2Pt8+umn2LhxY6J9gPYX/Mcccwyee+65ogjZsmULxo4di7Y29bXEwnrDDz74APfeey+WLl2KL774At///vdxxx13oGfPnqnsNjU1AQB69eoFoH3p+MbGRpx88snFbWpqajB+/HisWrUKs2bNQkNDA3bu3FmyzYABAzBixAisWrUKEyZMwPPPP4/a2toSxTl27FjU1tZi1apV6QRIaA1IePQjCL8BciXCIw95N5mq6fOijjtLAgWQOxClMBhOktZFRaxkTagAxMQKYH7dCqA+ukK1lsWLibUjXkRfWirHxQTy/PPPY/Xq1TjuuONQW1uLF198EZdccgmmTJmC/fbbr7jdsGHDsGjRIpx22mnYtm0b6uvrccYZZ6B///7YsGEDrrjiCvTp0wennXZabN+5XA5XX3016urqykSIwESoRKT+Cvznf/4nli5dipUrV2LChAm46aabcMoppxTTnNJQKBRw6aWX4uijj8aIESMAAI2NjQCAvn37lmzbt29fvPfee8VtOnbsWCZ++vbtW9y/sbHRdwaBurq64jZeWlpa0NLSUvw9dp2L5yz7PairfFKwgPKBb1zRIVNoiPApU6zoiKLoms0LoDEQ1S2UHDiqUg6lonoHo8UKwILFIU19ionixYHiYD/pcRHNHLSZmpoaPPzww7jmmmvQ0tKCQYMGYebMmZg3b17JduvWrSu+fK+qqsLatWtx3333YevWrejfvz+OO+44PPzww8WSgyQ4heaOCKmurkYup+e7mPoWPOecc7DffvvhkksuQd++fbFhwwbcfvvtZdvNnj07se0LL7wQr7/+Ov70pz+V/c17wgqFQuRJ9G7jt32YnUWLFuGaa66J0/Q9xFiEMIgk4kOH4EhD3PbKEioUoyhF3xxNkdYGBxOjKgAtsQLQSwMDiAoWgN6aK15YvMSHoxdSaCOQgiXT/xFHHIHVq1dHbueOSHTu3Bl/+MMfUvt223SLkIcffji17UpJ/TXab7/9kMvl8OCDDwZuk8vlEguQiy66CL/73e9KwkQAiguxNDY2luS/bd68uRgV6devH3bs2IEtW7aUREE2b96Mo446qrjNxx9/XOb3k08+KYuuOMyfPx+XXnpp8ffm5uayqdqSkvfMkFOsAYk5WDVNeCQl6vh0CRRAXsG8rnQvgIZIoPbGnkpUBUgmVgBagoVidAUguIq9g+qi+0rEi64C/LQzg+kWMF5knUYWNsxurrvuuuJETsAeEXLKKafoalL6237Dhg0CmrGHQqGAiy66CI899hieffZZ7L///iV/33///dGvXz88/fTTOPzwwwG0V/GvXLkS119/PQBg1KhRqK6uxtNPP42zzjoLAPDRRx/hjTfewA033AAAGDduHJqamrBmzRp8/etfBwC88MILaGpqKooUL7EXogmpAXEejt71P5zP/PAOhpOKjiqNIkX22wydkRQdURRAfyQFoDPwpNIOgFZUxYGjK9FYI1gAM0SLg87Zw0RObUxNzLgJO8UEU7Da0IFABCT16hQk8ZtG+Oqrr0ZVVRVuvPFGDS0SdAvu2rULy5Ytw6OPPooNGzYgl8vha1/7Gs444wxMmzYtUX7ZT37yEzz44IP47W9/i+7duxfrMWpra9G5c2fkcjnMmTMHCxcuxJAhQzBkyBAsXLgQXbp0wdSpU4vbzpgxA3PnzkXv3r3Rq1cvXHbZZTjkkEOKs2INHz4cEydOxMyZM3HnnXcCaJ+Gd/LkyeJnwPKc5ahVzp0Bpt8AN86AW6fg8JKkLTI7njjnTbRIiVuvY7NQAWhEVZK0A2CxEgWlIns3mU0Jc0iztopJ4gWgM/1xVsQMYxzvv/9+SXG7Hz/96U/x05/+FED7ZFL77LOPiqYBECBACoVCcWGUQw89FIcccggKhQLeeustTJ8+HY8++igef/zx2PbuuOMOAMCxxx5b8vnSpUuLqzXOmzcP27dvxwUXXIAtW7ZgzJgxeOqpp0oKcpYsWYJ8Po+zzjoL27dvxwknnIBly5aVFMc/8MADmD17dnG2rClTpuC2226r7EQEUVIDkq7DDRtEUxIdlRL3GGQJFcrpXgALFTcsVvzJqlhxoHTdHCpd/FH5GiwmRFzciFg0koqIcVCx6CSLnMxw5JFHYsqUKZg5c2Yx08dLU1MT/vM//xO33norZs2ahYsuukhZ+1IvRLh06VJcfPHF+O1vf4vjjjuu5G9//OMfceqpp+K2227DD37wg1QNpUjgQoTueqGShQh3okOnHa61PlpR4/odCI5+BA2OKxUeogSL7nCpHzrbpGoqYj90LeJY0gZNCzoGQWlRP4BWe6gsBOmF2sKQDpSunR+kFo2Mg2ntDYPoPRvK583A4XuRWojwwqYrUdOjfLE+lbQ0f4Xbaq8jcV7S8tlnn2HhwoW45557UF1djdGjR2PAgAHo1KkTtmzZgv/7v//Dm2++idGjR+OnP/0pJk2apLR9qQXIySefjOOPPx6XX365798XLlyIlStXCqnip0agAPn/PBt2Qvsq6N12orrbdgAorv9R5SpCd7+JdgSIn/CIKx6oRkUoiBZdbdApUBwoCBWAllihOLik1iaKgoWqWAHoXb8gjBMubkxuexxk3t8sQHyxSYA4fPXVV/j973+P//3f/8WGDRuwfft29OnTB4cffjgmTJhQXOZCNanv7tdff71Y2O3HpEmT8K//+q9p3ZhNWQ1IeehYhPigKji8UKgLiWqDrjQvB93rpDjIFCtxU7+AbKV/OVBrU5JUMAdKUxgDdNPBHHSIFmNSxPxIU/PiQOE4ghCRZqbDNkOKTp064fTTT8fpp5+uuyklpO6NP/vss8Bpa4H2xf+2bNmS1o25lNSApOssgwbNpgiPSohzbDLEAvV6FDcUxIrsqIqpYgVQM6ik2CYguWihJlgcVAmXSkSLg2rxUqlwcWONiPFC4bgMpA157RF63f5l88EHHwCA0mLzIFKf6ba2NuTzwWaqqqrQ2spK23um88U6kLZY0Q+/AXElwiPJ2++0qPoi6xIpcX3L9A9wVMULJbEC0BQH1KIrDtQEi0MlwkV1ephJ4sXBGhHjRYaocUPxmBnS/PnPf8b3v/99vP/++wCAPn36YPr06bjyyiu1pZoJmQVr+vTpgetjtLS0pHVhHiFn1f0gKyk+DxjAeQe48es/9Iu+pG2Qmu6jWSjoFEkOOqYi9oPFSjjUBAu19rihKlgAM0SLQ6XihUKdiwgR44akoPEi4phliySGFLNmzcLBBx+MRx55BDU1NWhoaMC//uu/4tFHH8Xzzz+PPn36KG9T6t7u3HPPjdzGxhmwEuFZhDDqoekMFJNEOCgIjrRQSPfRVRsSx7eKNlBJ/XIwVawALFiSQDUlzIFypMVBh3hJE3VxoCBi3IgWNG6MEDca2YUq7ZPU7CIwUYwM/vrXv+Kxxx7DkCFDAAAHH3wwpk2bhrPOOguzZ8/Ggw8+qLxNqXuspUuXimiHvVR4huOmXIkUHhRSeeIQ55ilrZlBQCRQaANA736hJFYAmtEVgGb6FWXRAtAswPdimnhxECFiHKiJGS8yxY0bFjqMl+HDh6OxsbEoQAAgl8vh2muvDVwjRDZ2V9tQwrPAkDP9blVVW8nAKe56H3EHW0neaMclrU1Kb85ZqMhvB7WoCmC2WAGyG11xQ7ltgBmixcFU8eJFpJgB6AuaIOIInUK+DQqWPUxEG4EIiG7/spg+fTrOO+88/OEPfyhZHb2pqQm1tbVa2kSn57CJkLMa9FByD9KcgWOlEQ8ZokMklAakLFRotYPSveFAqZbJwYboCkBbsABmiBYHE8WLF0piBhAvaPwwVeQwZjFnzhwAwNChQ3H66afjsMMOQ1tbG379619j8eLFWtpE69tuI3kUz/KeFdArXb08uKOnLjoqhcqAVGfaV7t//UXscdvhQEmsANkVLEmjKw4UZwhzoJwaBugZVKYRLwCNhSZFiRlqQiYMFSLHj0K+zYLKUSYujY2NeOWVV/Daa6/h1VdfxbJly/Duu+8il8vh5z//OZ544gmMHDkSI0eOxMSJE5W0yZxvqaVUoTVW9CNoUFOJ8FC1bojqUKbuWZ5MECl72kFLrAC0BIvKOidqgsWBaloYQD+aYZJwcUgrYAAaIgYQG5XxYpK4MY1WVKGD5hQo3TWusqirq8OECRMwYcKE4mdfffUV1q5di1dffRWvvfYafve732HhwoXYunWrkjbxN0kVuztEdxTE+4CPm3IVdyCle4HCSvxTGYTK6oSo1B5QEysArTZRja4A9ggWgEWLl7Rvw3Wn84gQMQAdIeOHTHETBIseRgadOnXCkUceiSOPPFKLf76rZeA9q57f/R4yVb5RkGTiQ7fgEAGVQahuoQKwWAnD5OiKG0oTMjioXAnYRtHioEMMmC5gHEQJGS+UhU0YMkRPoaqVU7AYrbAAkY3rDKftROLOkJWWMHuUZoigUDhNQagA+ovp97SDnlgB6LaLYqSl0qm9KUdaALXCBTBPvADi6hGoCBkvsoSNg6kChwrts2DpHZZSGuPYDgsQTTgP0fzur1zx84Doh99AJdlChWI6XlF2KA4+KQgVIBtRFYBeFMOBarsAmoLFgXKkBaAfbXFjonhxk9XpcGULnLiwEGJMgAWIDPzOqs8MWO4HdtCgxzvgiDs4op6ORXGQR2WmKd3F9A6UxApAN4pB8V52sEmwAGaIFgcTxQtAc7Avc6YoisebljhCqJDfhRYFbWGYIFiAqMBbAxLxUHMezEnEB3XBkRYqg08K0RSATkTFgdrb70q/D1SErhvKggWgL1oA9cIFSCdeAHMFjBfqA3zV0+BSPx864YUI1bB161b84Q9/wAcffIBcLof+/ftjwoQJ6Nmzp9J2sACRjesMJwnPypzpqtKHeCVoefATEAlUBBNAT6wA9ASLA0VxQFlMAbQL8B1MEi4OpgoYL7IG+KYO5HWt++GlQKQdjFruvvtuXH/99TjllFOwzz77AABWr16Nq6++GvPmzcOMGTOUtYUFiCI65L3RjNZi/UdpDUj5g7J8TZC44kT/HBeUH/xURAKVdgB0U3aopYM5UBQsDpTbBtCPtgDp+1CTBYwDFSHjhVcptw+OgMjnhhtuwMsvv4xu3bqVfP6zn/0Mo0aNYgFiPCFnNeih4H7QOQ9m/3VBwtKw9AsOUVB7Q05FJFBphwPFQSTl2gKKa+M4pEnjpB5tAfQsMGaygHEQJWTcUBU1XqhEK7ywMGIqJZfLYdu2bWUCZNu2bcjlckrbor93ywL5AgDXIoQVPpSCBgiihIcJqRRBUJmGFqAjEqi+AacYZbFNtAC0oy2AGREXNyYKGICGiPEiQ9S4MUXgVIoIYcQpWNnkxhtvxPjx4zFixIhiCtamTZvw5ptv4qabblLaFno9k21EnOH2gGN09CPuKunhTZHT4YiwSy2Vh+LgUvaAjVJb3FCsYQHoRem8UBWgDiaIFjemvqARHRmnKGi8yBY4ftguelSwi0AK1i4CL1RlMnnyZEyaNAlr1qzBhx9+iEKhgH322Qdf//rXUVWl+qUQowRv9MO7/ofzWdl+FQoPWWJDFtTeilOsOaAkEKgObqndR24oR1kAMwSBCWliXkx6QRMHGam+JoiaKHSInjTsMqy9jDiqqqowbty4ss8bGhowatQoZe0w/1tPkYiz6vdAcn+2ZzHC+OLDNMGRFkpvxVmsRGOLYAHoixaA5n3mxSTxApgZffGDkphxUFW/aIPQYRhZnHbaaXj//feV+eNvo2zyAPLtnWuSvM244qOSB5PuNUMo536zWImGomABaIsWgL5woZ4i5kaHGBDRb+pOLwHEv6yiKGiCoDxRC4uj9nspp/l+Mul+roSzzjrL9/NCoYDPPvtMaVv4jtfEnihHq2/0o3z78jqRuD6oYdPgUmZnRbXGgKJgAWjfV4C90RbAHPGiWwDYImLcqIi+2z4oBNSLoxxhMcbI45lnnsH9999fNgtWoVDAc889p7QtLEBk4HNWq/Llq5tXRfw/acSDquAQAdVBr6nRFYAFC2CnaAHMWS/DFOHiRrcAkNHP6z6mKCikGGdBBDH2c+yxx6Jbt24YP3582d8OP/xwpW1hAaKCskUIK+tMgzphEQ8k2x5q1GogAFpiBaCbpkP97Tb19gH2CxdAX8qKDSLGi8yXV9SOtVIoiCCR7MIu3U0oow1V6KB5WGrL/RrEo48+Gvi3FStWKGwJCxD57F4DBAhbhDA6+hF3hqwgdERHTCn6NF2sAPSmMXbgWZz2QL19gFkL/Zm8yJ/o/pjyoEnls4fyeWAYphQWIIrIF6fh3fNvnPqPSoWHDelYFFN3KLYJoBddcaAsWAC619PBhGiLA/UaFy82LfKXJUEThgnPPVPPrQraIyB6z4+t1+fSSy/1/TyXy6FTp0444IAD8O1vfxu9evVS1iYavadtuKIefvjPcOUWIuX1ImH7hn2eJSgOJim2iWp0BaCbFuZgysxNpggXE1cndyOqcJiKkHFQ8TyxdaAXBZVndY5IOxg1vPLKK3j55ZfR1taGAw88EIVCAe+++y6qqqowbNgw/PKXv8TcuXPxpz/9CQcddJCSNtHq9Sylg2cRwjjEX5QwWSdCpfPzQn1aTYrpYABNweJANS3MgXq0BTAn4gKYE3XxolvEAGJnQKImZoKg8izKqhBisoUT3Vi6dCl69OgBAGhubsaMGTNw9NFHY+bMmZg6dSouueQS/OEPf1DSJjN6KpPJhz9Y2lOxyqMfftv5/T/KtilQH5xRFAYA7fNGPSWHerQFMEsQmFLz5cUWEeOgYjpXU0ROHEx6ToqEYgSEU7DksXjxYjz99NNF8QEAPXr0QH19PU4++WRcfPHF+H//7//h5JNPVtYme3oR4lSV1YB46z/K1/lIGvHIWkdKOc2EqmABaLfNRtHiYIp40fUANnl2KRkzJFESNV50LOhnk+hhGNU0NTVh8+bNZelVn3zyCZqbmwEAe+21F3bs2KGsTfyNloEn6uFdAb3SzltG/YeulWFNmoGGomBxyHrbAHNmbrI5VcyNKdNvB0HlDaisaV8pC5swKK9iHhcWUYwuvv3tb+NHP/oRbrrpJhx55JHI5XJYs2YNLrvsMpx66qkAgDVr1mDo0KHK2sTfBtm4xEfwOh7R0Y9K6z+odtomTaFJUbA42NQ2wIwiaJOmm9Ux4DFZwADiIsm6jyMIXrlcH7Sex5Ta0k4rqpDTfO/Yeu/eeeeduOSSS3DOOeegtXX3REf5PM4991wsWbIEADBs2DD8+7//u7I2sQBRhDcKkt9d++F+2MUpPDdZdIiE8vSuNokCE+oITBAtDiaJF8BMAQPQGPzbtrhrEigu2mfrwJJh4tCtWzfcddddWLJkCf72t7+hUCjgH/7hH9CtW7fiNocddpjSNrEAkUE+uPMNGhD4rQeSbKHB9KLD5jxmFiyVYYIgoJ4i5ob6jGJeTIu+ONgiYrzIrvOjeMyioCiKdEKxCJ2RT7du3TBy5EjdzQDAAkQJVbtrQpyHR5yOMG7KVdqpfWVj6gwzlPP1qQ+4TZm5ifp5dGNS1MXBxOiLmyxGMHRNZEL9vDBq2IW89u/9LouHxVu3bsXdd9+Nt956C7lcDsOHD8eMGTNQW1urpT32nmkidAiJhgB+s2HFScOKfrDb9LbHpMGXTZEWwIxohgltdDBNvADmChg3ugc1DjIH+CYP4rM2gyNAYbKG7J3zLPPSSy9hwoQJ6Ny5M77+9a+jUChgyZIlWLhwIZ566ikcccQRyttEo1fOAFVVpdGP8vU/4qVgxUnhYvZAvciY+loUJkQJTBIEJhZomxrFdGOjmPGiehBvsuChQBZFVxRtBIrQbb2vL7nkEkyZMgV33XUX8vn2Pqy1tRU//vGPMWfOHDz33HPK20SzJzUcb9QjXzYNb2UdjyjxYUrHZ9Kc/tRFC8DCxQ/TBIFp7XWwQcQ4yJrkg6qwCYL6c8TWgSTDVMJLL71UIj6A9lmw5s2bh9GjR2tpk1k9noG4Z7+Ks45HUPTD+9CrtI7EJEwZxAJmFBdTj7YAZkUzALPuUcDs4mzRUV4qgsZB1eyFpgmdSjH9+SefXbobwCikR48eeP/99zFs2LCSzzdu3Iju3btraVM2eiKCtKdgxan/SCY8uNM1axCbdFBFvabFjSnixSThAuh/s2uyiHEjUtBQEzNhUJimPSsiiElGGzoQSMHqoNW/LM4++2zMmDEDN954I4466ijkcjn86U9/wj//8z/ju9/9rpY2cS8gAe+aH8CeTt9b+7Hn735RkHjiI91K6HQEC4VBCfUiaJsL8gHz1p0wTbw46P6u2bbYn+waPJMEThwoiCCGr0GWuPHGG5HL5fCDH/wAra2tKBQK6NixI/7pn/4JP//5z7W0iQWIAhxBkqTTFSU+KAmMKEwdWJny5p16bQtg3tStptZkmPpd8yKyf6NwPEHommTENuHDMFmlY8eOuPXWW7Fo0SL89a9/RaFQwAEHHIAuXbpoaxMLEMk4a4AE/j1kNiwH78Mn3mro5ggPkVCPYLgxoa0mRVwAMwr03ZgqYAB7RIyDrD6T0jEmxeTZFVk8BZNHG8mFCNuvmd7rZtN9c+mll8be9uabb5bYEn9YgCjCPf1u+7/B9R/OIMqv849TyF4JOkLiVPKATUrBMamtJhTmO5gWeXEwPZUpC4v9qXwZRO3YdWKyeGIYEbzyyiuxtsvlcpJb4g+NEaBleKMe3pqQSgc7cVdHD96fVs6n6PZw/UA4NqeKuWEBkxybohlZjmRQjnybcP4Yxib+53/+R3cTQmEBIhn3GiBBEY040Y+oNK1yu7TEhgqykn5jinBxYAETjYjvqw0ixoHiYFXF4J7icYuCsjjKIgWC16MNeeQ092O6+9EswWdaEd6ZrfIBwsNvn6jPgvZPg8zwNbUcS5OmmgXMiroA5rXX1EXzRPUBFB7AWUjN8kP3IN2Ec8QwjB3of9JYiHfl87K/Rzxkks54lWTgQSEv1qb597MiXkysEdA5mDIxCuMg8mUGBTHjIHNwb8vAXbcAYtRBMQKya3dOiO42MGqg83SwmKoq/9XN/fAWqxdt+EZDwgcKFMSGbLI40DNJuABmihfAbAED6BfngB11XnHQMXDXPVBjGIZJA83e3CL8FiUE9tR+OCuiA/FmvQp7oKsQHEketCY8IE0UMFmJujiwgKkMUf0BBSHjIKu2jaqwCcO0aIXu74PNVHIvUIyAMNnCvF7XUJwOImhQ4Dclb1zxkXSgoerBJdsPhQdaVtbJcDBRwADm1b640X2fy3ixQUnUAGon7TBR7IjANMHEqKe9r9PbN+jub7NENntCyURNu1vJQoJ+D8g4AwObO31TB6YOJq2T4WBa9MXB5HvFxtmlZEVrqQkbPyjOUJhVUZRVqtDKERBGO9zrSMYtRoLqOIIWJHRv4ybq4W2z6BCNiWk2JqaNAWZGX9yYLGIcbBQzblSkoZogcpJCURQxDGM3LEAU4XTw7vSqoLU9vFP2ukmyOnp0m8wVKlQGP1kUMICZ6WMOpkdiABr3f1YX/NM9uYeNAohhAE7ByhosQCQQVHhe/HuFD7BKxYfJQiMIWwZyJgoYwNwoDMBCxg/d3wM3PF1uOLoFECVE9SPZPKdZPGaGEixAFLBnal3/iEac6EdUmpYXG0WHDEwVAA4mTo8LmBuFcWODkHGwPTXLgafLtYtsCgeGsQP9Tz7LcdYAKfvcNf2u+zM3SSIeaR6spokVSg90k+sCTBdfNogYwC4hA3AEw4tJ/auJ59cGdNwjuwjel63ogIL2FKwOWv1nCRpPrAzgXmDQv9DcHeHwH5BE7ReFSQ/CMGx7W2uqEDBZfDnYtFaGjEJiKqLGQWUfpvve1IEtzwiGYehD6+liCd6oR9QaIKXb+i9KGFSwHmyHHyRxsGEQbfIx2CImRaeCUBA0QLYX/qPYh+ruaxi9iLwnKUZAmGxB/ylgOMHRjNZi/UfYrFfl64GIT8EKaydVKA1gTBYADnwMe9B9HIBYQUNFzLhR0d9Q6iNEQVEUMYwo2r+zer+3NvYbVOEzrYig1c33/H3PAzkfsG1a8WGayAhD5LFQ6HBYAOyBj0MsWV30j0J/R6FvYeynknt9F4HvB5NtuHeUQFBxeViko9xGuPiIl4bFHUwcbBEztgyc+TiC0X1MblTNQERd6ITBfXA7svpFPr92weuAZAsWIJKJs2q5X/TD/few30v/lq4zNmlKQ6qDEhEPRN1vTVkAlKP7WByyuPifjn6Jav9iKiwU9BD23Slgl8KWMEw5LEAU4Y1+eNf/8FvnI34KVvzO3SSREYatRb+AHSIGsEfIAHaKGTc8dW4pJvWTlPou2zHpvmAY6ugfpVhIVCcVbzasaPERNVDlzjI+thX92rS2hE1CBrA/NcsLT50rF+7nmTh4v4cUZ8HaRSAFa1cG+xBd6B9dZABnMBgkIqJWOS8XI/6DS1EPIhNmWqE80OC1JcqxSci4oXIfcgSjHWp9l0nnjhELtXuRYaihf1RgOUGrm3sXJPT7f9yoR5IBry2dYhZy4VnIBENB0AB2ixoHjmBUji39LWMXVWgjGQFhsgWNp3gGcA/AKn0oJRUf/PBLjo25/jbWy9gqaIBsRzOo9FnUzxNjLlTucYq0ogodOAUrM9B56lpEWNTDi7cY3S/64R1sqRAdpnSSlAcKos8hlWO1rV4GkDNLDyVR46Die03lPk2DKf0fw1RCFdrQxve4Np544glce+21eP3119G1a1ccc8wxePTRRwO3LxQKuOaaa/CrX/0KW7ZswZgxY3D77bfj4IMPVthq8dB7QlpG2OKBQVGRsPVC/AZ/SR+WNj1cs5CK5cDRmWioCBpA3tSjFIWNG939C5V7m2Hiovs7w6jjkUcewcyZM7Fw4UIcf/zxKBQKWLt2beg+N9xwA26++WYsW7YMQ4cOxYIFC3DSSSdh3bp16N69u6KWi4f2k8wigmo/KrHhJsoWd2yVYXtuP0dn4kNJ1ABq1lSgLnLCMLHPo/L9sQETr78OKK7N0oYqFDT3PTJTsFpbW3HxxRdj8eLFmDFjRvHzAw88MHCfQqGAW265BVdeeSVOP/10AMC9996Lvn374sEHH8SsWbOktVc25j5lCBM0hW7QFz5O9CNqpqww/5VCsYMKwoQBk40RDAebj03WNKfUhI0bHd99E77DsuBBMwOo/d7xHRdOc3Nzye81NTWoqalJZfPll1/GBx98gA4dOuDwww9HY2MjDjvsMNx4442B6VTr169HY2MjTj755JK2jB8/HqtWrWIBwgQTLDpaA+s/HJJEPJI8wEwSFnGRfUzUBke2RjAA+6NPDrLXb6AscPyg2i9R++4zYqF632WR9ggIjSL0gQMHlnx+9dVXo76+PpXtv/3tbwCA+vp63HzzzRg8eDBuuukmjB8/Hu+88w569epVtk9jYyMAoG/fviWf9+3bF++9916q9uimg+4GeHnuuefwrW99CwMGDEAul8Pjjz9e8vfp06cjl8uV/IwdO7Zkm5aWFlx00UXo06cPunbtiilTpmDTpk0l22zZsgXTpk1DbW0tamtrMW3aNGzdulXacYVNrev9PE6kxP1Z2ICtCq1lP0xy/M5j2h9KOPeR6B8qyDo+SsfoJY82pT+2IuO7zz90fijD31l9bNy4EU1NTcWf+fPnB25bX19fNi71/rz00kvYtWsXAODKK6/EGWecgVGjRmHp0qXI5XL4zW9+E9qeXC5X8nuhUCj7zDTIvdr54osvcOihh+KHP/whzjjjDN9tJk6ciKVLlxZ/79ixY8nf58yZg+XLl+Ohhx5C7969MXfuXEyePBkNDQ2oqmpXt1OnTsWmTZuwYsUKAMB5552HadOmYfny5amPIahT21MHEtzpOX/zdg5hkZK4/pNiagfVCjPe/Ip++FF8U5uFaIZsEULteIOg1F+Y0gcwNKF0LzN66NGjB3r06BFr2wsvvBDnnHNO6DaDBw/G559/DgA46KCDip/X1NTga1/7Gt5//33f/fr16wegPRLSv3//4uebN28ui4qYBrkRy6RJkzBp0qTQbWpqaooXxUtTUxPuvvtu3H///TjxxBMBAL/+9a8xcOBAPPPMM5gwYQLeeustrFixAqtXr8aYMWMAAHfddRfGjRuHdevWhRYEJcWbZuX+HCiNYPgNSIPqScq3iz+Ytb1zVXV81AY5st7mURM2WVsngxcCTI7tfRyTDWR+96uwS5rtSqGUgpWEPn36oE+fPpHbjRo1CjU1NVi3bh2OPvpoAMDOnTuxYcMGDBo0yHef/fffH/369cPTTz+Nww8/HACwY8cOrFy5Etdff33itlKC1sgiJs8++yzq6uqw1157Yfz48bjuuutQV1cHAGhoaMDOnTtLCnYGDBiAESNGYNWqVZgwYQKef/551NbWFsUHAIwdOxa1tbVYtWqVUAHi4CcygtKugtYNibsyuht+EMsjK8XJWRE2QPbEjRcKKWUmnCcmO1D4TsjA1uOiTI8ePXD++efj6quvxsCBAzFo0CAsXrwYAHDmmWcWtxs2bBgWLVqE0047DblcDnPmzMHChQsxZMgQDBkyBAsXLkSXLl0wdepUXYciBHojgAgmTZqEM888E4MGDcL69etx1VVX4fjjj0dDQwNqamrQ2NiIjh07omfPniX79e3bt1jM09jYWBQsburq6orb+NHS0oKWlpbi795ZEhyiBqZhf48jPlSJDps6KJMGNTavjeEmS8IGUPd9Mule98OmfsfB9GuSFBuvoS7krXXF6GDx4sXI5/OYNm0atm/fjjFjxuCPf/xjyZh13bp1aGpqKv4+b948bN++HRdccEFxIcKnnnrK6DVAAAMFyNlnn138/4gRIzB69GgMGjQITzzxRHGOZD+8BTt+xTtRRT2LFi3CNddck7jNzkAruIg8rCbEK0TC60vitSd7XU+W8/SzEqlxkFlYSlXcuNH5/ab8PdBJFvtcW7HlWlIswG/bVYXCLs0pWJL9V1dX48Ybb8SNN94YuE2hUCj5PZfLob6+PvUsXNSg/zSNoH///hg0aBDeffddAO0FOzt27MCWLVtKFOXmzZtx1FFHFbf5+OOPy2x98sknoUU98+fPx6WXXlr8vbm5uWyqNi/e2a+CFiT0W+cjjviIGlza0llSJ4sCJ2vCBlD30DZB6PhhSn9D8fvEtGPKPaQKeZFihtGLmU85F59++ik2btxYnB1g1KhRqK6uxtNPP42zzjoLAPDRRx/hjTfewA033AAAGDduHJqamrBmzRp8/etfBwC88MILaGpqKooUP+IuRCNiocAw8RFn4Je2E7f9IWDaACRLtQkq6pYoixyAFwKUje39G6MGilGEuPB3gNENuSfOtm3b8Je//KX4+/r16/Hqq6+iV69e6NWrF+rr63HGGWegf//+2LBhA6644gr06dMHp512GgCgtrYWM2bMwNy5c9G7d2/06tULl112GQ455JDirFjDhw/HxIkTMXPmTNx5550A2qfhnTx5spQC9KC6jvbPWkNXOfd2cEGDs2QLEXLHwzML7SFL4saBRU45lAdTWRJHTDCU71FZyOqrKI4C2lqrsKtVb79Z0Ow/S5Dr1V966SUcd9xxxd+dlKdzzz0Xd9xxB9auXYv77rsPW7duRf/+/XHcccfh4YcfLinGWbJkCfL5PM466yxs374dJ5xwApYtW1ZcAwQAHnjgAcyePbs4W9aUKVNw2223CT+eoGJybwqW3//jiA8R0RZGLllMz3LI8rHrmIHONNETlywOPBn6mDjLZNSiyAyjilzBW+3CxKa5uRm1tbVoamoqWbDmELxY/H8V2lCDFnTD5+iC7eiCLz0ipLVsrRC/wvSwKIkfaTqXrHdMlAe1OuDzwecgDbaKIkY/JgqAJMh8Frc0f4Xbaq8rG7/owBlLdf3ob8j10DuzU6H5c3zR/2skzovtkIuA2EBw1MO/iDxslfOwFdHjfJ522yzC6VmlqDgf1M+D6u8M9fORBNsHiUy2MeF5GjQDJ8PohAWIZLyiwxv98H7u3ieO+KCegpUmdSILed9ZTlFywyKnFN3fWweTzhmTbah8Z0Ri4zExjIP9IzwiJE2hChMfMlOwKOVaU2qLg2miiBe/2wNHtpJjywDIlushG1uut0pMOGf+Ly93aWhJOG2tHZDTXoTeQav/LGHWaMoQgqIeQUXkYauch62IHufzOO1j4qPy3JkkdjiCUQqFQYlJ50s2FK4How4brrcNx8AwYZgzwjGUoEhG+fS75et8xBEf0SlYagbMFPK8bSt2ZbFTCtdhJMO0AYzp5ztLmHZvyYTyuQh7hvCLSEY39EcdlhAW5Yjavnx/OaKDgohIA6X2myaGVD+MWPBEk7UBue7zzdiDqfdS1kVBW2sVgRSsbPW7OqE/CjCQ4KhHUApW8Crn8VOw4nVclAbpNqP6PLPgCccEwePFhEFU1kQSE4wJ96tIqIqFuM+e1oxdL4Ye5j2VDSOoU/ZOv+tXpB4vBSu8E5Q1ELbhYWPT4IkFTzg6Bwsmip+42NAPMPZBVRyEwS8Hmaxh75ORGEG1H1Hb+/0uQ3RkcSBB4ZhNFUEseOJDcTBksyhi9EPxnhcJRbGQ9HlG4fnnpbW1CrmdnIKVFfgpJIFy8dDq+7nzt7ApeoNseYnbIVLsdLKMjuthoujR/cA3WQD5YfsAkWF09xlJ4Ocyk0VYgEgmbNrcoMLy4BQs/5XUk/pOQ1Y7ShMH7UGw6EkOpcGMbWKIsR9K35+0UHwGVtImisdRaMuj0KZ5WKrbf4bgM60I9+rmlSwkGFaoHrVvvPbR64woQeX8mDqQ133+TD1vftg0mPPC4qoUm6+1bHT3OVHobp9u/wzDAkQC3i920Loezt/Cptj1Rj2CHkhxOxPudMxG5/UzeRBP6b43+TzKhgfcdkLp+5cGKschIoVyp4B2MEwaWIBIJjwFq9V3O3fBupugldST+k4C54qnw6ZiX90PX1sG7rrPoyhsuR6mYst9JAPK50bXM9U7fiAp9lur2n90t4FRgj2jI+K4oyDxUrCCxYdo0cEiQx6Uzq3pYojaoCLrA3Bq14Ohi8n3CpU+nKRgYJgUmD0iIUrQTFZ+HVlYMToQvTBh0Gf+7VLfkVLtNLOYa677QWq6APJi4qAq66LJdky8J0Wju5/zQ9dzUHaGBMOkwa4RAUGCOsOw6XfdBeul+yRNwUrXEVMVDyIw4dhsE0nUBga2CaI48KCD0QW1738UFJ4Rmfu+cgpWpsjeE1gT7ql143TEYeIjuK4keQdPoZNl/KFybWwTQg4mDIiyKJIYsZhwn4uASn/pRoeAiOuzA8HzxWQLfrpJwNvhOx1CUBF52CrnUQsT+u0ThMwOOnNvapCddBaKD3ZbRZGXrAweGfuh2I8Eoft5pts/w6iABYhkgjrd8ul3y9f5SCM+0nb23AFGY8I5slUkmTCYyYpIYszAhO9MJVDsh1W3qZIXFSRfbrTlgNac/jYwSmABogh3IXqcB0GY+EgrOih22IwcqF5rW4WRG1sHfAyTFKr9kIPu9qkUA06/xP0ToxsWIBIor99o3f1vUAqW/yrncSMeMlZGV2mPKSULg3MT7qEsXAcmG5jwfUsKpWNSHU2wVjy07v7R3QZGCSxAJBO2Krr7b3HW+Yi7KnqYjSRtZfRgwnXIwuDchOsgmixc17hk8fqLhvo5pLIooEyCxxO7lLWBYfxgAaKIOLNYuf8WVR8SZj9JW3RAMvc0BJ6JqBzd91AUPJCuDOrXlUmH6deXyrNDdQTC9OvGMH7wyEoCYVGP8m1bQ4rO40U8ZC82RKXT14Xpx59FAWXrA5uFFT1svdfSQLnP1Jm+pOJeib8wMcH7llOwMkX2RiaKCV4VPXgFdBEdSNLOhfIDg0mHSdc2i2IpCSQHDYxRmNQfuKFQ96B+diueOp+xF37aK8Ld6cdLwYpfmB5lM6gdMqDwkDARnrK1HVMHR36wmMouNt3HSaH6DKC8KKApfhhGJPyElEBw1MN/Biu/ug/nb2F2gz7b87d0D0GqDxIbseFcs4gqJcuDUIYWpvYvugfWKv3L9uXtjzpQ7J84BStTsACRTNDK5t7pd6PW+UiSopVk4GPag0lkJ8359GIx7V4Kg8UUkxabvg9x0C0WvNgd8eBRMmM+LEAUEZZG5Sc+kqyG7t4vbhvSQu1hUwk2HIMIWIiVk7XBI2MvpvVzuttri4iI6sO4j2N0wwJEAkFRD+8XvjT9qrzmI474COvEKulgdHf+jHpsu+YsqBgK2Pa98oPiMaovFDezrpLitUMrgJ0E2sAogQWIZILqOKI6rThRkihfcW2rgGRnZwA8mE4O32sM044p3wWd7VSZziQz6mDKtWYYBxYgiggTEGELDUatDeK3T5jvNHAHpx7bzzkLLMZmbP3+Ujou1fUQslOXZJ3b8rEEwZXQ23b/6G4DowQWIBIIjnq0lWzjXgvEr0YkjfhIvg4If+sY9fB9lxyTRRtfb3WYcK51FVOrqn9QJSYYxkRYgEjGKybidrhh4sOv86Sw+il3itnA5AGwDfD3zBxsulaUZl5SWUBNafXy5HaDrxml68lkExYgCvGPdrRGzJBV2kkkFR9pOjabHp6MOPi+CIcFWuXwvVU51AeUumddkr/OhsyXe+KvLcnvGq8DkilYgEggTuqUO/3Ku09QtCTOwoRhn6fdViTUH5Y2wCtx64Hkg51Rjg19nG7R4KB+ZiuzxASQ/Fq1SGkFw8SHRyiS8YqJvEd4RG3v7OP9e9B+cdqSFhserFmAr1M0LNLow/dxOFREgh/6XnCpSJuiISTi4D+FP937hskG/PSVQBKRULoWSPk6IVH7i0y/yuqDPqzD5xWx7Sar9zwjF8qiIAwqg1KV7ZDZB2RqDQ8RcApWpmABooCgug13xxe1zkdQulbYdsHbmLlwkg5sOhYTYQHIuOHvYzuUB6B61plSM2o0QVBQmJCGYeLAAkQy3sJzb+1H+fatZdv72Yv6LMhuJfBDn9EF33uMaZg6sNPdbtNFBCDnHMqySXIdECZTsACRQHAKVngxukjxkbQz1z3Q0/3wY5LBMz0xuslqn0HtuG1dy8OkNTyo3RMVwylYmYIFiGSq0Bo4w5V3Ot7S/YLFh78QifetEdVpW9PhMRXB159h9mDa94FC7ZOKl16mTb0rR5z4X2vT7lnGPliAKCKsxiNskcF4UZDgh0mlnbypnZOp7U4LRySYLJC17zcFoeCH6oi5aUJCpl1R94TurAdf2qA/AkHwtNgKCxAJBEUz3F94Z/Yr/8UJ46VgBXVEcTsWUzt1phw+1wyjDqrCIAjdg021s1qZISZE30O8DghjGixAJFMe0YjX6QSJjzSig1dFZxjGVEwb9FeKbrHgxaZFAGXal3F/ykyZ7kDsPmOyBwsQRVR5oh97PvfWggTXevh1cGEdFK+IzjAMIw5q4iAMnS+NVPk2bcVyrsGMgIvQMwULEAkERT284iJIbETVeQR1Yjrm/2YBwTCMCkwa/CeF0oDStohHuw+96U5xEHUeeB0QxhRYgEjGW8+RR9Q6IG2ef0s7zqBFDaPsVQJ1cWHzgISpDJsWLuT7mw4mDNZ0t1F+6pRZK5arFhTRdsJn2mQY1bAAUYjfF94tSESKj2TpV3I6dh5AMarhe85ObBssUTse9VEPs8QEIDpzQI6oMB5OwcoULEAk4O1cgma4cnceUfUeQXUiYZ/5t41XRI+C2uCAIjztrz74/pQP9XOsu32yB75ZXa1c5RS7eV4JndEMCxDJ+EUzkiwyGLUuSNBnXp9xUCkwdD9AmXTw9WNkYuP9ReWYVL81z6qYaLdFb82OPWMSFiCMXliASCDuFLp+6Vfu7cLER3jdR3inxzNxMIw98PcwPdTPoc5UG9kvpkxZt6PdJl1BYQU7d//obgOjBBYgkgkq/EoiEpLMkBVlKwkUOjYKbWAYRg02fd8p5OfbtGI5ZUEB0HyxF/6ikiMgjF5YgCjCu/bHnv97p+ONl6rlt32QvyjEr/BqzyCCYUyCv3vJoCASgtBRc2f6+h0UBQVAc0asDixAGM2wAJFAUNTD3aF5p+ONWucjaNuwffzblmZaXvqDGxPayDBMKZSFQByoTNChsv/L6iKAAM+IJY223T+628AogQWIZJxOz516FdYRlm8fPjuWex8vSTs2NQtC8bebYWRjxWBEMFREgh+6+kUTFwF0oCooRNkTcd44BYuhDAsQhQTNYOUtOo8rPioVHmI6R7oP8zTwwI1h1EBZEERBof9TG+0wa90OihGKdltyRUVc8mhDHoXUdoTTBv3rcOj/amcGFiASCJu9yi0y/D7326f9d/+ZsYK2j/u3MGxanIphbMfkAb0MKIgEP3S0S1XfmqVFANttiTmvokQFw5gECxDJ+E+zW9pRBM94JX8ldIqdsQ3ww4Bh9kBVDMRFd/tV9q0miAgZdkWeYyqCIvzFJMEICJMpWIBIICh64RUh7vSrqKl2xa2EnrxT0y0seDDPMMHoHhxTgOo50NV3qugzs7II4B579EVFEhskBUgr9Kdg6fafIViASCbOVLp+f4+zGGGUzSQdlQmFgkwwVAdgTHYx+Z7U/dIFMFdEyLJNUVAAtEQFw5gECxBFVKHVN9rhtxp6XPFRqfBI25FTFRXcATNZI8v3PAWR4IeN63dQXwRQdPtsERVh57gDxQgIkylYgEggrMbDvU3YooNB4qMS0VFJRy/7IZrlgZOt8DVlqIqCMCi8UDF9AcB223YLCoC+qIhLvq0N+TaCAoRTsDIFCxDJeBch9M5+5d6m/f9JV0IPEiTxvkVU3vSowqS2MowfJg7y00JBJPihZ0YrM0REqV1xbaa2/geVNT/ybTS/IwwTBAsQCQR1SN6OszT9KslK6H5/j+7AKum4bVlZl6FFFgfRtkFVFIShu4+xYe0OqtEJBxYVrja0hmRGtBKMgDCZggWIAvzEQ1DnFL0YYXzxkaRjFzeVoXmDEi88OGaoYOIgPy1U+xDb1kWScTzUohOi7aWunxQQpQgTFfH237X739RNEQ+nYGUKFiCS8Z9mtzTNKv5K6P7T+3oJewik6YRtXkCL0U8WB9smQFUQhEGhzar6LpnHyoIiGkqigmFMggWIBLydmp+gcKdfOb/77VNuo7zDFCU4qM90QgkeLDMyoTCAVgHV41Tdb5kiItyIXbNDpC0WFe37p/u7FtqgPwJBs0uyEhYgkimParT61oI4hNV6JBEfcdcbqRTdwoIFQDagOkC1HdPOu+7+SNX5ktnvURUU7fZYVLTvn2p35Nv8/88wOmABohC/qEbcldCTFKnH9R+9PS9OmAbTBnGMPrJyr+gWCn6oPvemiAiZdkXdBzaIinYb6fZnMcGYCAsQCZSnU5WLh6j1PIJSrpKIj7gPDZsWJszKQC5r8HWVC0VhEIbO+0FVf5c1MQHQEBTtNswWFbkYvnMUu1QuQs8ULEAk4yckoldCjyc+4q6MXrpNsm8XL0gojywfe9YxbcBfKZTucdUvSrK+Ojkgbm0KFhXxREUo3v2z0QWR5IknnsC1116L119/HV27dsUxxxyDRx99NHD76dOn49577y35bMyYMVi9erXspkqFBYgEglY196ZZhS866C8+kixG6GcnCJsXJKTaLiaarAzUVWLS90FndJVXJy9F5EJ3IgRFux29NRUAMVHBkOeRRx7BzJkzsXDhQhx//PEoFApYu3Zt5H4TJ07E0qVLi7937NhRZjOVwAJEMslXQo8/M1bwZ+G9UqUPdRUPZJMGR6LhwbZ9ZOF+ppSCCeg556aICAeKYqLdltlRCiClqBBxqeO2n9bXtp2dAKoItEESra2tuPjii7F48WLMmDGj+PmBBx4YuW9NTQ369esnr3EaYAGiEL+oht8UvX4PnDQroccdIFCcp10GPNCnDdX7xjSoCYMwdF5zG1Ynt1lQtNtJt7+IIu2KhYVKUZGkDfwYVM7LL7+MDz74AB06dMDhhx+OxsZGHHbYYbjxxhtx8MEHh+777LPPoq6uDnvttRfGjx+P6667DnV1dYpaLgcWIBKIE+EIehAFLUoYbLuyVdBNWZAw62KBB+PmYdLAvxIo3ZM2rU4uUkS4oSgo2m2l21+rqADSD+BliApGGM3NzSW/19TUoKamJpXNv/3tbwCA+vp63HzzzRg8eDBuuukmjB8/Hu+88w569erlu9+kSZNw5plnYtCgQVi/fj2uuuoqHH/88WhoaEjdJp2wAJFMvJXQS0VJlPhQITqoLQwlE0oDKsb+AbwMTLuHdbVXVV8kS0wAdOonyu2lt6FdVADpBva6RUWS/Sl2GW3Q367d/gcOHFjy8dVXX436+nrfXerr63HNNdeEmn3xxRexa1f7d+7KK6/EGWecAQBYunQp9t13X/zmN7/BrFmzfPc9++yzi/8fMWIERo8ejUGDBuGJJ57A6aefHueoSEJOgDz33HNYvHgxGhoa8NFHH+Gxxx7DqaeeWvx7oVDANddcg1/96lfYsmULxowZg9tvv70kfNXS0oLLLrsM//Ef/4Ht27fjhBNOwC9/+Uvsu+++xW22bNmC2bNn43e/+x0AYMqUKfjFL36BvfbaK/UxBK2E7h5YeVdCD9qn/P/iFiNMul35fvasFmwSPECnhc33JaVjU93fmCAiSm3SExQAiwqloiIIv2Og89UmycaNG9GjR4/i72GRhgsvvBDnnHNOqL3Bgwfj888/BwAcdNBBJXa/9rWv4f3334/dtv79+2PQoEF49913Y+9DEXIC5IsvvsChhx6KH/7wh0WF6OaGG27AzTffjGXLlmHo0KFYsGABTjrpJKxbtw7du3cHAMyZMwfLly/HQw89hN69e2Pu3LmYPHkyGhoaUFXVXuE0depUbNq0CStWrAAAnHfeeZg2bRqWL18u9HjirIQetMhg3JmxSrcRm3ol46FPaVATBA/y9WDCvaEbk86RruinTPHgRYaYaLdLJ93JjahF77TPAJXmOHS3HbBTQBBaB6RHjx4lAiSMPn36oE+fPpHbjRo1CjU1NVi3bh2OPvpoAMDOnTuxYcMGDBo0KHYTP/30U2zcuBH9+/ePvQ9FyAmQSZMmYdKkSb5/KxQKuOWWW3DllVcWw0733nsv+vbtiwcffBCzZs1CU1MT7r77btx///048cQTAQC//vWvMXDgQDzzzDOYMGEC3nrrLaxYsQKrV6/GmDFjAAB33XUXxo0bh3Xr1sWakaASyqfhbfONjvjPlNVatp2f3SR/87NfKTatJkwdkwagNmHzeaeUJqlSPADyBES7bbFRiT12xdgRuYJ2akEBZFtUiLgWSdpA5yufGXr06IHzzz8fV199NQYOHIhBgwZh8eLFAIAzzzyzuN2wYcOwaNEinHbaadi2bRvq6+txxhlnoH///tiwYQOuuOIK9OnTB6eddpquQxECOQESxvr169HY2IiTTz65+FlNTQ3Gjx+PVatWYdasWWhoaMDOnTtLthkwYABGjBiBVatWYcKECXj++edRW1tbFB8AMHbsWNTW1mLVqlWBAqSlpQUtLS3F371FSg5xIxx+hKVbxRUf0VGQZD2PjIGXSQLC5oGnTvi8hkNJFEShWjQ4yBQP5b5oiwnAQkEBZFtUiLo3eBYsMixevBj5fB7Tpk3D9u3bMWbMGPzxj39Ez549i9usW7cOTU1NAICqqiqsXbsW9913H7Zu3Yr+/fvjuOOOw8MPP1zM+jEVowRIY2MjAKBv374ln/ft2xfvvfdecZuOHTuWXExnG2f/xsZG3+nL6urqitv4sWjRoshCIy/uaXaDptwtrwcp77XCUrOCPnPsJ21rpegQFVkcxGbxmFVj0uA/LrpEQhAqxUO7PzkCot22HLtk0p3cmD4oN739lGyIpg362yW5W6qursaNN96IG2+8MXCbQqFQ/H/nzp3xhz/8QW6jNGGUAHHI5XIlvxcKhbLPvHi38ds+ys78+fNx6aWXFn9vbm4umykBKB8g+okHvzSr0r/7p1xFTcu75/Pwb3Glg1gZIsOEAbUJbTQBGwf2aaEmDIJQLRjK/csTEKV+5NglF50AxA32dA/KTRcVtgoKhgnBKAHirALZ2NhYUnyzefPmYlSkX79+2LFjB7Zs2VISBdm8eTOOOuqo4jYff/xxmf1PPvmkLLrippJ5oP2mzvWudu6NjESJj0pWPw/azw8RIkPfNJtmDOZEwIN5MZgiAJKgWyy4USUc9viTa1+kkHCwTlAA+gflLCr24Hcu1H4tGaYMowTI/vvvj379+uHpp5/G4YcfDgDYsWMHVq5cieuvvx5A+ywD1dXVePrpp3HWWWcBAD766CO88cYbuOGGGwAA48aNQ1NTE9asWYOvf/3rAIAXXngBTU1NRZGShjhRifYIiL8oAYJTrpKIjziD8UrEhqxBvgnigQf9ybFxgF8plIRBGKpFQ6lvNX5kCAmAWLqTg6hj1T0oZ1HRjhndSHJaAVQRaAOjBHICZNu2bfjLX/5S/H39+vV49dVX0atXL+y3336YM2cOFi5ciCFDhmDIkCFYuHAhunTpgqlTpwIAamtrMWPGDMydOxe9e/dGr169cNlll+GQQw4pzoo1fPhwTJw4ETNnzsSdd94JoH0a3smTJwufAasKrahCW8l0vOErpQeLkjiroEcN4pMIDhGCQIeoyJJI4MF9MkwRAEnQKRa8qBIPDrJEBCBYSDiItEkhSiHChumigpKg4FmwGIMgJ0BeeuklHHfcccXfnZqLc889F8uWLcO8efOwfft2XHDBBcWFCJ966qmS2QCWLFmCfD6Ps846q7gQ4bJly4prgADAAw88gNmzZxdny5oyZQpuu+02qcfmHfyXpl+1+n7uELYKetAgP67YqEQkyIuCmNMr8uDfHxsH+UmhJAqCUC0WvMgUD26kCAmAnpgAaAgKgEUFpesZZMecRy1jKbmCu9yeSURzczNqa2vR1NRUsmDNHZhesl0XbEcXfInu+BydsR1A6exX7nSs8EhJPPERJjySCAdRIkOHqLBZHPAAPxoTBEBcdAsFL6qEgxtpIgKQMxAzYQCaFBYV6aEiEAE0fwHUnoKy8YsOnLEULmoCavS2BS3NwC/Kx3WMeMhFQGzDuxJ6+//La0Gip9kNTs1y+ynfT2YURN6ogLqAYBGwB5sG+0mgJgyC0CEY3EgVDw6yfIg+dzYJCkC/KDB54ULRdoBkx8OPMEYzLEAkEDZ7lTvSET4Nr3/KVVixeth2cf9Wvm363lGnmLBNKGR1sB+EKSIgCt0iwQ8lwsGNbH8yzjG1QajuKIUIG7pEBYVjdyNb/FLsO9ugXxjp9p8hWIBIxm/q3NJoR2tZlCRKfMRdET3O39ztqBSZAoOygMiqGLBl0J8EigLBi3LB4EWFf1nXQXTbqQgKgMbA2tRIBZVIkxfd33WGEQALEIV4p9MNm143bN2QMLthn/nZjoNIgaFDUNgiFLI48HdjggiIg3ah4EVHe2ReS569So0N3TUVlfqnJCp03quW9KeMubAAkUCYmAib4Srs/86+QX8L+syvDUGkERoyhQVVAZEVQWDLwD8O5MSBH7rbqOJ+MGHmKgdbBIUIG6aKCirXUIVNyrRB/zFn6HmnGxYgknGnU/kJk6Ai9SDxkUR4hImOSsSGKJGhQ1CYKhayNPh3MEIExIHScei4j2QfP1Ux4UBBEIiwwaJCvw0Zdin1T0wmYQEigTiRiziiIaiYPfj38B4ljuhIIzJkCQuK4sFmYWCNAAjClOPTeY+pOkc8e5UeG1kVFVTOv0x7XoLOmcXPMMYMWIBIxl047ggEv1qQqGl2w4RLkPCQIThEiAybVkuWhfUiADBHCIRB6d6ybdYqgK6QEG1P98A8TRt0t51KJIB6RM4EWgF0INAGRgksQCQQp8bDu/aH9+/+qVnxxEeQ8IgrNioVGbKEBSUBYZ0wsO14ALMe2rrOv0q/WZu5SpQtnQNzU2etomYDUNcfJW2vjX0/YxQsQCTjH/UojXZ4az6ixIdXdKQRHEnFhiiRoVJUGCMaTGlnUkwSBEFQujaq2yL7+plQvEtlMKrzbb/pooKCKAyCUv/CMIpgASKBwJQoj8iIs3ZHVJ2Hn/gIEx5xBUelQkOWsCAhIii0IS02iAE3JlwTnW1Ueb2pFtvKsgXQKHQ2VVRQECXUJh1Q6Ydi37kTQI5AGxglsACRjCM0glKv3NGPoAUJ3dsCyURHHMGRVGyIEBlKBQXFjtaNTaKA+rkOg1rbVd8XJs5aJdImpbUddImKtL4piBIKolC1XYYxEBYgCglbiDBoxquoiEdS4ZFEbFQiNKQJCwodt4lCgcJ5EwH149B9b9gg6CmKCYDGG+csiwpqgkLXrFWiobi8Vhv096W6/WcIFiASKBcTpVPrxl1gMEh8+ImONIIjqdAQIjJsKIJNC/VBdRimtp3avaDjPMr0SX1aXQpiAjC7FkTE/rrrSWTYAuj1LwxDGBYgknGnU/mlVPmlW3mn5XVHPbziI6nwSCI2KhIa1AcglWDKYNuUdgZB/eFN4fyqaINJ32EqggJgUVHp8VN8oWXixAtJodAGJtOwAJFA0oUIg/4flG7lJzrSCI7EQoPCwzoO1DpYau2JA3VR4Ael82xbhMOBspgQZYtC6g8XqKeD+n3KlNIKXgckQ7AAkYy7lsNvSl7/KXdbU4uPMOERW3BU8kW0pcOn3gmZKAwcKJ9bnW2zJS3R1ilwARpv67MqKijW9ej2kQbq7WOshwWIBOIuRBi1sGBYupVXdKQWHEk6IyoPcp3242CaSKBwzuJCqa062mJqBJFiobnpogLQl/5EQVSYMCkCwzBlsACRTHHq3NCFCMtrPoLER9xoR6joiNux6szplWkvCqrCwbQHIuX26mwbr83hj02CQoQNHf0vhdQ1SnU9caD6vIiCYrvboP+5QfG8WAoLEAl4Z69yr/PhTsPyzpYFeAvOS9OtoqIeqURHki8dhYdzGBQ6EN2daBTU2+dAqZ067isTU0VEnycqA1Ldg/NK/dsSpaAsehmGSQwLEMn413iUz3gVNtNV+2e77cWNdoR11nE7XV0PPC82vDGuBEptCYNiOykMLFSeF1NmrqJWaK57cG6qqKBw7h1Ufdcp9nNJ4NEeQwy+JRXiLT73rQHxFJu7ox6REY80oiNJ56r7TWAYuh4SVB9OVNvlQEEouLFxwgMTvmtUohwAiwpd+wO0Ba/pJBkv6GKn7gaARhsyAgsQCXin3XWvAeJNvXJHP+KIj9jRjrCO3KRZsLJQrA7QaYcf1ESCA4VzpqINpq1JQElMANme+UlnPYhJs1ZR6EtEwCM6xiD4dlVIeepVedqVV3y4ox6REY80okPlLFjUZ9eh7DMIqiIBoHOedLXD1BmrRNqlICYcTBYVpgsKW/p+qgSdC1NGem3Qvw4I5WepZZhyWxqF34rnDt7UK/eMV7HER5JoR1BnJHMWLGoDFt0+/KDawVF8kPNsVTRts6AoxURRQeHcy7Klw74qKhm1eY+dR34MAfg2lIzfQoTO56VrfpTOeOWbchUlPkyZBcukh5YbKsKB6oOUSrt4tip9dqkManW/7dfVR+putygbKu2ahogoRyvoPM+YzMICRALeCIhfTUjJ9gGRj0Dx4e04kkY6ZM2CZUL0Q2enS+UBSqUdbrJyXUyLdNi0NofuwXnWRYWq75kNA+uqCvaxIcrRCiBHoA2MEky8RY2idA2Q8uLzPelXpfv5plz5daxRERI3IgrTk24rcl8vWZp+kUIbHKg84FWfE1OjHDKuF5UBqe7Buamigsr180Klb9FN0HlIIkyc68OjPIYofGtKoLwGpHzdj5K/u37Nt8UQH1HF6H77xNm+0u0q3d4PE6YMpegvCCoPdN3nw5YoB+VZ5qh8/1lU6NnfwbRZ23RQ6cjLfW7jipHWFP4YRiJ8W0ombOXzqta2YvpV2QKDTicbVeMRFSEJ2zfJ3yvd1oHywEml7ShYMOj1L9uvKQKb0mBU58Da5Cl8qQhCB919CiVE1HFUIkaowylYmYIFiATKIhwB6344lM12FSU+vF8QWbNgJfkiUhhoyLYXBAXRQKHTtFU0uJF5rWUcB8WUR1MFRVrfaffXXQPjxtYXQCJROVtVG+wRIUxmYAEiGSfqEVR87qRfla3x4WwaVeMhahasuJ2+rql5TUpriYvOBy2Fh7zqNpheM2SjmBBhI6uiIssvfUxARJSD06cYi+FbWwJlqVaunsi76jngM9tVlPhIOwtWnIdE0ocbF6bb7deNjjbwmhzh2CQogGyKCkqCQsV3nELkWARJIw9JoxyyRAjFiElWn28ZhQWIZErXASkVH1WtrvSroMLyqBqPqAhJnL/JXAOEwmAkiCwUpuvuTG1ck4O6iHDDgkLv/rqPW5QNL7aIBxH4nYuks1XFESGIsZ0fPMpjiMK3pgRC1wHxrHoOoFxkRImPILES9ZmfrSBkF6XHbUcSTHxzTc2nQxbS0kxL66P2dlv34DqrooLK9QtD94sPUaSdrUr3TFVBNvMAdkrwxzAJYAEimT0RkD3T77pnviqmX4mYBSuo04960MgoSo/rW4ZPlfZ0+3GTlcX8VPgzKepGaUCqe3CdZVFhSpG5SaSt4xA1U1WUPz/b3n1MGO21Qf8sWBzdU4YJt6RxhK4D4ln1HEC5yIgSH3EiIKrWAKn0y0o1tUCFbS82pinp9m3aWgRU02R0D6x1FWnrPm5KNT06bKtE1WxVomeqCrLl1xY/McKjP0YzfAtKxol65NHmKkBv/1vJlLveDi3OLFhB+4Rt40fUNqpnvjJhcOegWjxkIRXM9IkEKE+qoFv46xIUaX2n2Z+CEJRtz2TSRjkcG7JGU35244qPsN+5CN0fCm3ICCxAJBC6DsjuP+XDohth4iNutCPoSyRKbOgUGFTfFkfB4kEspr3dpZYiQ8GGTlFhuqAwNQ1RFybOVhXXXj7g/0GfURQfTOZgASKZknVAdhegl8x8lWQWrLCIhyzBkfQhRyHyYUNxpe01JLKPT5Z924vLTRYUafbX3W5RNtxQEhBxj03miETFbFWVEkc0AKXtjZtq5bdv0P4MoxC+BSUQvg5I+79la384BM2CFVSs7t0u7LOg/aP2qXS7tPu4oTzwU23bD5vEgypf1O8pKoNa3YNzU0UFhXMfBsVUkzRtqmQ0k3S2qjRUmjYVp8Dc/VnU/s7fCwHt0QmFe5JCGzICCxDJlMyCtbsAvWTmqyBh4SdCwhYgrERwhO0X9++VbuuFSlqDSrsOLB4qw7TBmS2CAjBTVNgmKCgNlJK0Rdaow68NomerCouCBH2eplg8THzEFS5B21GKkDGZhAWIBMJmwcpFCYugwvSgVK2gzyqZBUtWBET3m0jRdrywgKgM02aqkmGTStqhTnFksqigPlsVJZHiUGmb0s5WlUSMiIqIJI1eBO0bJjbipFn5bcOjP0YzfAtKpmQldK+wCBIb7t/jLkCYdAasOA+BJA8K1TNlidjfDxMHxbr88GxVcmwB2Y1SpPEran/d7Zdlq1IqaYOMkUVQO+L6ElHDkST6UYn4iKrTiEqzCtreT8zsAj1aoT81jCNDymABIoGwldBLCs/dn/n96yc+wgrRvdvG/Tzqb1H+0toUtZ8fFKcxpeDHdPEg0zaVqIQDhdQtE2erAmiICer3qQxU1nIkiXKIECFe4oiPJHUecafS9dsnLNLh/RsPtBnNsACRTHEdkLa28ql33WLET1jEiYp4/xb1WdjnXv9xqORBo3sw5GDi4NiBBYR625TuO93fIY6uiEGXiJDRf4hKW0pTyyFCYFRas5E04iEy2uG16f2bn68an7YxjEJYgEggbB2QMmHhl4YVJjDCCtHDPgv7nMpUvBTSTmTbc2NDupdsHxRTm9xQqk8ydXBucg2IaDteTHpLnaStla7JEWfEUqkIEVWv4d0u7qxUcSIdzud+NqOiIFFrhVCAwv1OoQ0ZgeptaA3FGpDWtvKpd/1SrNwRkaB0q7iiQ6bgSPrA1TnIEG3HDYsIfbapiglRtrIoKNL4pbK/Gx2DGZnfOVEjBu95iStIkggRP5LMVCW6WNy9bZxoR9pIh9um124etFP4mEzAAkQCYbNglQkL9++ViI+o3937BiGiNiSOHxE+RO7rh6wBg6mDfJn2TTnXlGpCWFTo2R8w536VSdy2Jh1ZxJ0G190OUaMXmcXiaaId3m29f4sb6ajy+QwAOoIeXISeKViASKa4EnrrrtLO25uK5Scw4qwN4ve7375h28b5Wxzbae2K2s+NKfPum2rbwYTBGcU32zoH1qYWlqfdn3LkjIJPEaOCNHUcaafBFTlTVdz0qbBt/bYJS6FybxsV6fB+7hcFifMZw2iABYgEwlZC90298qsLCZp+N0x8JJ2KN87fZRWj6y6iFdEGW+wC2VzUz8EGMQGYHaXQLShM/M7KQlaUw21X9cgjiZCI2idNtENEpMO7fd7zN7/t/QQMxWl4mUzBAkQye2pAELzgIDyf+/3f/XtQelaQnTifyxAalTx8dQ+iRNtRZdc0ASHLLhUxIcqG7u+DjuglJUGhWkCoTP9I+wY8TZQjTQpV3NqMSiIe7t/jFpZXWtcRp94jKH3KLwoStL3f5zUAOoAenIKVKViASKBsHZC2kFmwnN+D0rPCBEnYIoVRn8f5klEpRqcyGFRhk4UE3RQZFhSVo/u4RdnwYvJgJW7bkwgVkbUZfogSH2mLxaPW4HB+D9ou7udB0ZGw1Cq/iIjneAp54KscGEYrLEAk44iRfNj0u26iUq/iRDsqER06C9F11oiItOPGhJoIFXYp1+BkWVCk3dfk43ajUkDoSsdK+5RPOmOVc5yV+q10HQ6/z0QXi8et6wiLdARtH7eAPGpbzzEVOgGtu//ftvtvOzpV48svOgBoAcPoggWIBMpmwXJPwesVHs7vQelZQTUesgrR4/w9zHal9kTul3ZfL1TfyMu2CdAXUhSvs6771tQoBQUh6IeJ9Rt+xDmOJCMB51zHESKiRhhRQiOqxsO9TRJREWcNjkqKxcNSpfw+i0qrcv1ecG3bWgXs6NQBbfkqtFa1G29DHm2owlcgKEBaob82Rbf/DMECRDJlBehuYeF05EnER6XCo9IIB8UidEoDliyLCcrHTqWOQPebfh3r71D6fgJqhAQFsZLmaa66QDzIR9JZqfw+E1EsHifSkbRY3BsViYqAVPlsG5JWtbOmPcLRlm8v7nBEhyM42nbv0Lr7/9tQDWALGEYXLEAk4BYd+ba28il4/f4fJCz8oh5pREdasSGzCF33G1wRbZBly4F6REK0LYCWWDRZUKTxr7vdItqgyqYuwo4lyZM+rhgJmy43bL8k0Yqwz+KkWkWJCvfvYYLC+SxpsXjQrFVxUquC0qp2Rzlaq/akVLXlO5QJDgBoQxVa0LHss1ZU4XMe/jGa4TtQAVVuMeH3/6B/44iPqEL0qAdspXUhlWyXdFsH3fnmou04ZCki4cYmQSHChomigoqgUCkgKIiVSp/Y3rbHtROWRpV0Fi0/O0lmpfL7m4hi8TgzTbn/FpQq5W2PXwQkbH+vwPFJq3JEh1twAHvSqtrFht9nXlFSg23ap5vyoQ36Z8HiFCxlsACRgHvWq6rW3f/3ig+gNA3LT3zEiYrAZ7ugz/z2jdpexjZedKygLmJ/BxPyz7MinigMak0UFAANoU85EkcBkVEOWU//ONELINmifkHRjqB94tZ1uEVCUAqVd98wYeHevtK0qt2fu6Mc3rSqHagpRjIA7E6xymMHOu5OscoXP29Bx+L2zmetqEITyXl4mSzBAkQCRdGxm7z716DZsLz1HkEpW3EXKPRu60aEkEjycFe1cnrafR0o559TjkgAtISEKFs66ihE7G/ySueybPlBcSrdStboSBrlkCFCosRHkgUA40Q7woRJpZEOv8+j0qeitq0wraqlxj99yhEU7roO57MW1BS39RMgzrZNIEgr9K9PwhEQZbAAkUxV6+672Ssy3NEPN0ECI6gI3e+zpMKj0gL1OD7T2Ey7jxsqKSOy7FGOwlCyo/stv677WHe7qQtnaoQdW1xxEkdgRG2TJP0qLILht0+Q0IiKdlQa6Qja3y9K4d0nqIA8blqVR4AUOu3Z1BEdOzpVF2s4gFIBUf5ZDXagY/v+2FP3sQMdfQRI+7ZGCBAmU7AAkUBRdOwm5xUefr8HzYQVN+Ihogg9ziBBltDQURtSqV8ZNtxQjEiItkcl/U33wDrrgsLEhTdFUskTOO40uEDlAiPob0kiGH77hIkNP+Hg/jxKWLj9+YmNoOhF1Gdh0Qt4PvMKk5rSbQt5oKVmTw0HgKLo2JM+taeGw51S5Xzujmg4ERH3tjtcAsTZ1itiWtARW7WHGpiswwJEMsUC9LA0qyTiI0p4iBQdUYMDqgKDiqigWich2pZIe7oFhQgbJooKave7CeJBBEHHGefJ7D7flaRsBfmIIzz8toubahWVQhX29zDBEiQY3Nsn+SworaomwI8rquFEOYJmqvKmRLXBr64jX4xoeGe1ckSFs507+uGOjDjbeQXLDtTgc4ohRE7ByhQsQCRQ5X2oeIvNkwgLv6hHGtGRtDg9ar+k28T1J8qPiP0cqAoKqsKEymxXptaAmHzcotqgy7YoKn3COsem+gmdVHyERTvCtguKZoT9LSpNyruvn7040Qvn804BbfATIDV7ajiAPYXjTg0HUJ5S5Z2Vyi/dyi1A9kRAanZ/vmdbt/hwp2A5v3+Jzp5tO+JzMIxeWIBIpqwA3S0svOLDKzCSio+4QiTteh+yhIYOYUFxkEVNmFB7s21qYbbO/XUft2x7VEkT4XD2T/OUThLlCBMfUdtHpVkFCZWwugyvvaDi7yB7cVKrgtKtHAESJEp2f+4uHN/RqRoAStbiCJoW168o3E+AONuGRTXcKVhfoktZpMP9ubPtdnTGl5n5EjJUYQEiAbfoyDkRDz+h4I2MAP4CBT5/c5NWeIgQG9RWTKcw4KI6aKMkukx/S59lQSFz/EIwOySQtDNWRT2F04oQL2GpU0B0nUfcWg3355VEOoLSotztDLLVyfO7X1qV87m7TsObauURP+4aDgcnyuHUYACl0+LGLQp3RIV3W3f0whEl29HFNwKyHZ1L/DnbeoXJdnTBF20Ev2Q7wSlYGYIFiARyQQKhFeXCwvk9qA4EiCc84gqOtGJDd11InDaI9idqf9F2ADppTqJs6BYUafdnQWGWeBBB0PGKnK0qjKT1GUGfxS0WD4qKBEUzwv4W9nlY9MLvM79UK/f2NfAXIJ6ohtvuzt3pVu7F/1qqytfU8E6L606p8hMV3uLyqPoN7+dfoktRxDh2vkTnMmGy57Ma7GjpiLbWKrS2VuGrbV2Axh1gGJ2wAJGNV3y4P48SCHFqRYKiJEF/j/s3P1tJ9k26XRyfIv2k3U+0DWppTqLsmCwodEdnKAhmWWLCxOyPpE/LJLNVVeI3jvDw+ywodSpsW7/twiIdQSlU3v2DIiN+fwv7LCitKkyUuD+r8V9tvKWmtNDbSakKmpXKT1SE1W94RYl7e3ex+Y6Sz9ujIm5h4v7sS3Rpb3NbFb7c1rldbGz7/9t7/+C4qvv8/5H1YyWtZQlLWLZjY0MC4WfTFAeDGUpICJS2oSFtIUkngYwzE4byKZTQDJRSTIfihkwpTT+QNhnXkBYS0tCk7rckYL6pKYQmBANTiAkYsMDClt2VWWvX0q606/v54+7Ze+7Zc+6P3Xvv7krPa0Zj7bnn3r3S2vI+et7P+90LFCpfdwFAHsA+ChDSXChA4sDPqdAJEZM4MZVuyUTRgreRoYVh9nk9VxTXbuScKM4VtMIb76ivAzT/62rmm/KFOuFcpRXEg989xPE/m+45gzxPI0KkEfGhEwGm803lU16Cwq+ESj3fz/3QCQN5f5CyKpMA6ZKuIe0VGY7ZXv+2uPKgP79QuFz+pAoT4V6oYmVaU1Yl9qrCRC6rKqETs+WUIzYKKaDUYf99zUsfBdhrQoBMoPU4CsBq8j00+/kXEBQgcaN2v5KzHjpBUa/4CCM4GnE2mp0JqfecRs4TNPs32lFep9lCIqprNPM1bde/h1HcQ9LXDUsj9xHmf0XxPEGFSKNuCAzXMAkI3ZpXCVUQYaIKhSDrpgB52PC4ycHQiZJU7flzqWBtcWeVMikArjkbXqFwADXuBeB0uxI5DTWTIYSFyJHMVlwNUUIl7qGIFHKHF2O2kMLRgn0fKHQDWbiFhhAg6nqhsvYuCGkqFCBxoL5BKCtrupa8Jc0xk5PiV2YVNA9i2hvkmNc1w16n3r1RnNcKooKCIrrzF6pL0Urith6i+PsbxZt7wP09CPo/ZJAch+n+TOfp1oPmNOTHYdwO3TX8nI4wczXU54qirEptl1t5LKaNi9a4s73mtrg6AaKWSamlUuIacn5DdjVMYfFp9FeD5eK6Yk0u5RLlVDNH+lAspFAudeJoqdMup5JdDcB5nEWt05GFXoAcQutRAtDR5HugA5IYFCBx4+duyELDJD6CCI+gosP0BqOe8qww16hnX737gebNbojifGD+CIoorrEQXYpW+L6rtHq4PMz9hQmIC5L439JPdOj2+JVaBREmpnIo3TVMzoW818vBUK9rcjDUNWWquGtNukfhcsz2dqPU6bTA1U0KV0Ph8t5aVyPlWhfXkPMXqqshSqgAuEWF1K2q6mpgwBUUny2kcDSbDudqCCGiCpAsaoUJpkFIM6EAiQNd5kMWFeJzkyuiu06QTlhJCY6ohUYSAmM+iIpWeVPajoKi0XOB9he1gqSFRByuSqP/c9UzRTyIy6Gj3rC4l/AI43b4iRKdiFDPN4kVnRDRrevEg1dZlTrsrxdaB0RMG5/ttXu3qiVVIsOhzuAAALejES6/ITsgcvjbyYsIp8PdrUrsm0YfZssVAVLowXS+H0fz/UC+wy00VFejBEdQ6ASIWJeFRlVs5CrfuCnY9scekGTZsWMHLrjgAu2xZ599Fh/60Ie0xyzLwu23345vfOMbePfdd7F+/Xrce++9OO200+K83dihAIkDL5Ggczd0IXSd6+GXA/G6B9Oa6Xy/c4IeD7onyL1E9RyNnCPTCi7FQhYUjZ7frkIIiEdEtEp+Iwh+9xrmf7Z6xEjQ52tUfJiERpD9fk6HSZiYXArTms790ImYlGFNvnYKtdeQ9nm1xdXlLwDUiA/ZkRDta1X3QjfsTx7qJ1/bHurX7xI3qgCpDgA80ueIjUKHW1ToyqqyMJdVyeuyUMF0ZXEOttA4UPlzqrIuBEgRLcc8L8HasGED9u/f71q79dZb8cQTT2DdunXG8+666y7cfffduP/++3HSSSfhjjvuwMc+9jG8+uqrGBgYiO+GY4YCJG5MZVVeIfSg4kN3HD5rjXS7ikKMeN1Do9etd79MM12KVhAjzXZpmiGG2vGedSQpIJJ8rnr+l9LdX5Dr1BMUr1d8BHU8dCIkyF5TByqdQyGvB1lT11WnwzRrQ7dXdUAkt0O0xi2mnJIqXShcFg/yAEBTfkN1KnRtcdWweFESIC5RoREgRfQgf2TAFhuFHqDUBZQ6zOVTunVZaOQr3x/hdGQqezBXOTAFW2gcrHw+A0eAtGLYY2HS09OD5cuXVx/Pzc1h27ZtuPbaa9HRoVdelmXhnnvuwS233IJPfvKTAIAHHngAo6OjeOihh/DFL34xkXuPAwqQONBlNUzBc10mRFxD56QEmfPhV5ZlOi/o8SiFRlLORTvmCCgokp8L0+i5QGs4Y3Fdqxl43X+Y/8HqLaGq57nChMXrcTu8RIlOLOiey+RUmALkpla38nPKokK+V93+lPRnBbmkSm6L64TC3QJEDX+LdVkkAI5ToeY95KF+wtUQzyW3ugXgWptGX/W60+hzxEap0/4CCt1uUaHLb6iiQnzIezPSGgC9qwE4QkM8Jo0yNeX+XqZSKaRSKcPu+ti2bRsymQyuuuoq4549e/ZgYmICF110ketezj//fDzzzDMUIMQDWTSIblimjAikfV6Oh1eJl7rXb5/Xut8x0/OEvUa9e4M+fxTP0+h5UZ3fzoKCpVqNEbeQaLZQicLpiOt/tDBlU6bjOiEgr5v2e+01hcHF536tck2lVX5lVbpMRpdhf6/mGACknMB4ucvJcBQ71VC4qdWt31A/d95jWgmFywFyNe8h1oQAce0t9mM6bw/7myv0OF2psnD+L9dlMkyuhrwmrmFfHbbQOAA7vzEH29k4BOAdOO7HPGIOLVOCtXr1atfybbfdhk2bNkX6VFu2bMHFF19c81wyExP2wJbR0VHX+ujoKN56661I7ydp2k6AbNq0CbfffrtrbXR0tPoiBQnrFItF3Hjjjfj2t7+NmZkZfPSjH8V9992HVatWRXOTqsAQf+qyHyr1io8oBEejYiPoG5g4MyFJZ0GaLSgavYeFVq7WzgIuyWs2gyicjkZcjqjC4vKeMG6Hn9NhEh3y+UEdjaBlVUE6VelcDVWASIFxwOlSZcpviDf8gBMKn9W4F7qwuHBG/FrdAqiuydeQg+IzxX59VyrZvTCVVWVhOxiyAMlCL0wwDcfFkMunRFnVPBQbLc7evXuxZMmS6mMv90P3vlTl5z//uSvnMT4+jsceewzf/e53A92PWqJlWZaxbKtdaDsBAgCnnXYannjiierjzk7nJ2yQsM7111+Pf//3f8d3vvMdDA8P40tf+hJ++7d/Gzt37nRdq268HAqdEDGVVpnKrdTr1zMXpBGxEZXQSKqTVdKipB3fmAPt++a8XZ2VOK6jo9Xa59bzI1Z8f+L6HyuI+NA9t1/5VJCshp/TESREHrTNrXxukLIqv05VqgOSgitYLk8aV2dwyGJDJyB0ToVu2J++1W1fdaif08Gqr6asShYgRaRQLnfWdqXSdZoKGgoXH7IDgmnYwmKmsijnNw6BYqM1WLJkiUuAeHHttdfiU5/6lOeetWvXuh5v3boVw8PDuPTSSz3PE5mRiYkJrFixorp+8ODBGlek3WhLAdLV1eUK8giChHUOHz6MLVu24J/+6Z9w4YUXAgD++Z//GatXr8YTTzyBiy++ONqbVR0QXcZDlwMJ2/0qiOgwrcfdBSuuqehJCgsOuEvu3HYVQlGdL2g14RAVpq8riDBpRIiYzgkrPoKGxb06U+mEQtB1k4Oh2x+0TEoVIDpXQ92bgu1uSM9jddmBcXnKuDxXQ9fqVhYJcqtbeV0NiwPuoX61pVZuASLvnYFdPlVCJ2aK/chlB9xdqXSuBqS1DPSiJAu3AMkDtrhQQ+FyWLwECg6JMlqmBCsMIyMjGBkZCf4UloWtW7fic5/7HLq7uz33Hn/88Vi+fDm2b9+OD37wgwCA2dlZPPnkk/jKV74S/mZbiLYUILt378bKlSuRSqWwfv163HnnnTjhhBMChXV27tyJubk5156VK1fi9NNPxzPPPOMpQIrFIopFp3WdGlKqohMDpnIqVVzoyrfkz8MMIzS9EYojmO513bDXSWKvoN3C6e365rwdXYooXYk4xUSrlWDV+7+K+B5FYEIHJsqweJAZHF6Ohs6l0F1fJx6A2tkZYcuqDLM2ajIclecSJVXlyppcUlWU3Au//Ia6LofFgYpQ0LS0DSJAinDupyo2dF2psqh1NUT5lOpqiHXAPQDQJTSmYIsMERYX6zMg5Mc//jH27NmDjRs3ao+ffPLJ2Lx5My677DJ0dHTg+uuvx5133okTTzwRJ554Iu6880709/fjM5/5TMJ3Hi1tJ0DWr1+Pb33rWzjppJNw4MAB3HHHHdiwYQN+8YtfBArrTExMoKenB8ccc0zNHnG+ic2bN/vW+QGofbPhFUIXj3Vr0Kyra0Ee6+7JtC/IsaiC53GKi3YKp7eju9KOzkoUb9TbsWVu0pi+tiT+t9E9h0lImI6b3A6dkyHvadTpqMfRMOUy5DVVmKiiAtI+tdxK6lQlWuLKJVXyG395VoYpv1FUhIIaIheuiCxA5FKrGfR5uhrivFzR7ko1V+hBtStVFsEnhWfh7kBVUvZVZ23MwAmKy2VVLKWqmxjncLQKW7ZswYYNG3DKKadoj7/66qs4fPhw9fGXv/xlzMzM4Jprrqlmmx9//PG2ngECtKEAueSSS6qfn3HGGTjnnHPw3ve+Fw888ADOPvtsAPWFdYLsufnmm3HDDTdUH09NTXl2LwCgL7kS6yaR4eWY6K6tO5bEVPRmioxWD6e3m7MCtN89N7s8LYp7SPq6URL2fw/5a/I6128WRxCRoVtrNCwe1OlQxUKQdZMD4tXqVr2mPGtDHAswa8O1V1kXXaqEuwHUigoACDLUbwZyS1sn0yELEHWAn73X3f5WFis5DOi7UmVhnhSehTuTIYRGXtmbqTzGHGrLpybhFiCEBOehhx7yPG5ZbhXW0dGBTZs2Rd6Fq9m0nQBRSafTOOOMM7B792584hOfAOAd1lm+fDlmZ2fx7rvvulyQgwcPYsOGDZ7PFbgPtFcJVtAciLwmr3uJkCAzQkzrSQiNoG+qwrwxTPKNb7u9QW+GS9HM/ESzy9Piularovsag/6PUvLYaxIf9QoP+Zph3Y4wToephMoUAJeva3IvdGJFDX8D7pyGKirUa/cqxyr3YPX65zeCDvVTS6LEMTlsLg/w0wXFHQFiixUhNkRXqkK+3y02dKJCl99QhYZYB2D/+l2IClFCxaF+hMRB2wuQYrGIV155Beedd16gsM6ZZ56J7u5ubN++HZdffjkAYP/+/Xj55Zdx1113RX+DOvGhOhc6d0QnSEwipJ4uWPUKjkZzIkGev95rht0b9j4afa56z5FpNxHUbi5S1NdQacdgeZhMhvieRf0/S1jxEdTt8Cqx8nI6TKVV8rnqXpOg8Jq14SVKVEfFz9WQryHN4ACcKeNOcNvd6lb8CeiH+slCRZRQ2Xs7q6VTOgGSw4Br2rhwOXIYwGzZvsZsoQf57IAjNmShkUWtAMnCLUDU/EZW+h5XO1DJszZEfoND/QiJk7YTIDfeeCM+/vGP47jjjsPBgwdxxx13YGpqCldeeWWgsM7g4CA2btyIL33pSxgeHsbSpUtx44034owzzqh2xWoYU/lUWVnXCQqd+DCVWoXtghU2fN6IEPF7znqulZRrwXKteM5txyC6SjMFRNivIaqf7rqv2U+U1CtE6pnFEaR8Sn5cr9Ph5Wj4tblV9+pEiU5U+LkaYm+v9Kd83V545jeE0JDb1/oN9XMyGU65lVpq5XY1+l1uB4Dq+TkMuLpVzRzps1vgZtP68im5rMrL1ZDLqlA5hikA47BdDFE+NQl7qB/D4YQkTdsJkPHxcXz6059GJpPBsccei7PPPhs//elPsWbNGgDBwjp/8zd/g66uLlx++eXVQYT3339/NDNAAO+ZHjohItbVxzrhEaYLVlLT0E3PFeb8eva28hyRdnNWkv4a633OKM4VRCkmWrHkKk7B4pfTqOe5woTD1ceNhMXDOh2mtXrKqvxcDdOsDfGnfI2Ue020xPXKb6hD/Wa1robTmcre6wz6U3MdtqDoM7oacn4jf2TAdjYKKacFruxqBA2Fy+viHEzC7WrkKo/n6QRxQtqQDktNu5DATE1NYXBwEIcPH3YPrPmxFGYXPxSnABwGcERaLwEoolaUqGVbgqBdsIJkQeoRIrprhzk37L64BcZ8LtdaaC5Fm3ansiJ6vo4kSp5U/ASI6Romx8LrPJ0gUM8NUmJlEiQmUVJPaZWprEp1RnSiQtfBSr4/NSguXWsuZbsb5a6KIOisdS9kV2PaJR7cQ/10U8F1U8XVCeI5DNR0pZpGH/JH7K5U1Ra4hQ6zq6G6F2r5lNibBVCyoA+FvwOGw/0oAvir2vcvTUC8l7LfJDX3Xuw3a5r3dSRy2s4BaQtMGQ81CyK354VyTL6OqdTKVI6lHvNa81qvd15I0H2tMqAwyZa9C0lUNON+G31uA1EJhbgIen+BhUojWQ6/kilBmK5UfmVWYZwOv9Iqr7VGy6p0OQ2vtrjqeqWkSs5vlLuckqpiRTzI5U9q+1tdWFxeEyVRAFzdp2YVV0OIDbUrVf7IAIqFFMqlTltw5Lv1roYQFFnU5jdEWRXgiBLMoTYULsQGw+GEtBsUIHHg5VCYSqt0f4aZhh5UcEQtNpohMuIWGHELnkbPbbfMSAt0p0pKQJQSyIh0NVD6JL4PkTsmgrDiI2iZVb1hcfW5TI6GV6mVWhZlciqgnKNzNUyzNnROR2W/GPgH1OY3RGBcHfan6zQFAKYBfnKrW7kES5yfw4C2K1X+yABKpU6US12Yy/cB2W59KDyL2gniQmhkpTWxF9OoDYWPV/4UAoQQ0s5QgMSN6nrIrobOHQHc4iNsDsR0jkwcYsPvjVfU5VlBnrORa9ezv5Hz2qm8C2hqqVaUYiIJwRA1XvccVJw0LETqCYt7lVqZPq/X6dBdT+eCmMqq5Ba18j7drA0vV0Ne7/VYl0UIavMbtaVStWFxNXshl1rJokJudaueP62sC/GRwwBmixUBUuhBITvgiA251a1cPqXmN2QBIvbmAVtgiCnhh+CUTx0Cp4cTMn+hAIkDtTRKCIqysqZzNWRRol4vSCmW11o7DidslXa9811UNEFQRCUk4hYRc00sv+oO+RNa/V74CRKrVIcI8RMfpnIpv326sif5mCnvYcp5mMqogpRV6Yb96WZqqK6GUiqlLcESpVWVNTF/Q7TCBQB5qJ8aFpcniIs12cGQxcpMRUB4daWSXRFXWVW5E9P5PkdsqKJCfKiiQggL1elwTRCfgiM05AnibH1LyEKBAiQO1DdE6sBBrxIsk8jwC6A3IjjClmV5nRNmTytkQJLMKbSDqGiyOxGVmGimaIgS09cRVpiY8BQfXu6Fetxvv8mRUPebjnmtB3FATGVVpvC3br8pw6GbtaHmN6RSLREWB4ByV6cxLC7nNGSnQg1/e7ka0+hDXjNro+pqVETMdLkfuewA5rIDQL4jXPmUHAoX6yXAPdRPiA1RVnUIdDZILWLqfLPvgSQBBUjcmPIfavmVLohuKrXycj/qDaM3IjaSFhrtnBdp9LyERUUrCIq4xESphURKV8ifxPL3xEuMlMpmF0QrPnRrYcLiJuGhEyD1OB3qXpMD4tXqVr2e7lgdszZqzvfIb8hhcbmtbblyEXmon+xqyN2n5La47nVbVIhz1bD4NPqRnRyyMxv5bvvm8nDP1AjiakzAyW9U7s4WGu/A6Uol8ht8U0cIcUMBEgc60WESH4C/+FCFh5/o0O0Jco5uX5jjUQwdjEtctLKwaCNR0YigiFJItJJ4iALd1xNUlMyVzCIkUvERpMxK54qogkPe5+do6MqldPu9yqpMrobafUojIGpEjLrukd+YTve6hv2prW4BQB4AKA/ks4WC29VQW93KzohwNGryG+UB29nI9wGlLqDUET4Urq4DcIb6iYnhwtV4B4QQEgQKkDjQvflXxYduXT3Xq1QLMJdr6R6r+/32eq0nOQsk6L5WC6Qn2doXzREVjQqKuEREq5Zfhc5zlMI7I0HwFR9Bw+JegsJUQiXv9yqVkteClFXJosIkQIK4GuJ81dUw5DfQBRTSTn5DbkkrTwQHoO0+pc7UUF0NUSYld6USQmMafZW9tijJlQcwne/DbCGFo6VOIN8bbFK46nRkK/uqQ/0OwBYbclcqtr4lcSC/KWrmPZAkoACJG3XquZoB0XXB0q0B3mVZ6ufqc5v2+K03MgskKrcjriB6PfsTFBb1iop2FhStKh6iQPe1+YmSICIkjPvRob6JlwlSPiXv013Lr4RKXjet1VNWpRMVJvdCPb9Xs64b+JdyD/sTgkMOiwMwdp9SBYhwNXSzNkRXKq2rIYmNcqkLc4UeINsbPhQur+cBlOZgCw2Rz5DzG8xrEEKihQIkDlRnQic8dO6HlzOiHpfxEh66N3RRi40ohEYzcyJh76GB56hHVLSroIhaTLRLy9wwczrE96jeULl6nq/oAMKVT8nH5TU/pyNIaZWurEp1HQC3KJCvbepKZXI1ZPdCFR+qoEm7h/2Jdriqe6HmNHSiQnVF1HVbVCyuOiBiWGC1rKrcj9lCD0qlThTy/bbYEOIB8J4UnoE7qyEcEEzBFhdTlQOHYIsPllARQpKBAiQO/EqwZMERRHx4zQSRj/vdg0zUYsPvvGYKjJiFRZJORb1v6hsRE1EIiWaLhyAR2O6Inkv+WhsZGgiY3Q+dYFGfy1N4+OUx5D2qSNAJBPFn0DWdowHoy6RM+6Vhfa7req0b8htWRZiUOm2HYzoluxfuTlPuWRvuAX4AXJ2q5HUxY0OIDbFXOB050a1KbX+bhSMevFwNITTEuvgck7DFRgm2kyGEBkuoSKvBLlgLCQqQODC9+S/BLTDEWhm1okMtt9I5IkBwV0Te63e/prUgx6IIogfdE/T5wl6zQlJuRT1v8JspKKIUE630oz7svQQRLFGKkerzergedbkdJkEhPtcJFy9Hw6+sylQ+pa7p2tqq+3TuhSm/kUZNWHw6XTtZXITCRbcqANUSq5zS0rZYWVOFiSidymFxjdMh9ovSrNzhxbbYyHQHa3U7gdryqQyAgoXaUPgYWEJFCGlFKEDiRhYIunkgXpPQWyEDErZcK8i5fsfqea6Q1wwrLsK+6U7aqWhEVETSKrfxSyT+PI06HuJeGr2OMcOhWRd7A7sdfrkO0xA/8dirVW6Qsqognap0roa83qusy3tVsaGuVc6Rh/0VO52gtxMWd8/akAf12XvdroZcaiXExkwlFF4UoXClrGoa/bbYyBzjzNoIEgrPoFaAlITAkEPhY2DLW0JIu0ABEgemtrqq+NC5GiZHRL5uXBmQesVGo0IjKtekQhhx0crCou7naqRVbv2nJnK9KPG7t6DCYi7E3prn0JVSdfkcN4kPk1MB5XMvp8MvQK5zK9TzTQJEvo4a8BZ7dRPE5dKpXs1eeQhgZa2QBspdTljc5GoI4aAO6tN1pTK2uq2IDTlAnsOAPWsjOwAUOhxRkUVtq1tZaMgCRDgdmIYzKfwAHFdDCBBC5gvqb2ObdQ8kCShA4sBLEJimoqt5D/U6YXMgfiKlHrERZ1mW3zUk4hIYYd/wt4OoiOLtSRJvceL+kV/PDzr5627U5VBFQ00ZlYfboV4jkNuhEw/yMS/3QrcWpqyqV9mrczXUSeHyXlWciHW1DCsFbVh8urN2gvi0lMdQBYgsHlRXQ+RAqq1uMeASLNPoR7Y85J61Uehwz8+Qu1IJUZGFPr9RrYEXMzXGYIsO0ZWKEELmBxQgcaPLf6giQpf3aDQDolsLIzrqERsROBmtIC7CCoskRUWjYiAqMdFuvyMy3W/QH4D1uhx+wgOoFR++ZVbqNfy6T6nrqhjQramuhLomBIC8rnM15EC4WmqlczrkwX5iryEsPrPYERti2J9wLdRBfUKAyOJBlF+ZXQ17Bofa/jaXHbBb35Y67UniOvciC0dsqOVTE5U1WLBFhZgePganK9UUCFl4lNB8V6/d/ndrXyhA4kAnMFThYXJCxDkmxyNMBkT37yjO2SB+50kEERpB3qC3mrBIWlQ0+qM6zh+1zfhvJKxIkL/+en8Y6p5TFziXxYdJdKjna+d2eOUy5McmF8TLvVAFiFdXKl1bXN0MDt26IavhCotXzp9L2WKj2CnP2nCmisstbdUBfvZeW5A4YXF7fUYSGrIAyWEAWQwhVxxAsdBjz9rI99kdqXQtbYWDoeY3hNioMgm3qyGEBp0NQsjCgwIkDnRCo6x87uWINJoB8SrN0u03rZnO9zungp/ICPpmPagQCCMwQpdbhc2KhNve8HlRCYlm/+6pUUz3H6hjFcL/QPQTH36lVp5uh19pFaTjavmULo+h7g0SCheiwCRAguY35HIrWZQoAmQu7YgNoHbWhiwqRFBcdS+E2JhVnI4shqrBcnmq+LsYwkyxH+VSJ4qFlJ3byHToQ+FCgIhJ4Vk4QiMrvskWHKHxDhxX4wAIIYTYUIDEgfpm1ZQB0Tkd9WRA/JyOoIKjztkgXkIjKpERVFzEKSzaTVTEJSZawaAO+4OrkaA4DOfKa0EzHqGdjqDrfmVVOgGhK6mSxYcsQLxcDXktjVoB0iutS881l3ZPFRcBcSE2AFRFhdyVSp4qbrsX8lA/W1TkK64GYLsl+YrQyGEAs+UUyqVOTOf7MZdZUpvJyELf6nYCtWVVmIYjNGRXgzM2CAkP54AsJChA4ibuDIhOuOj2mdZC5j9MYsPrjXzUDkaQ6yXhWIQ9pxUERSuIhyjQfR2N/DAznasKD/Wxl/DQdbPSzuwwOR2mkivdMVkMyHtMszZU8SALkDCuhtJ9StsWN+20wQXcU8VnpJa2clcqWTzIAXDZAREzNfIYgJipMY0+u3xKmrUxW04hmxnC0UxaGs6H2knhwtWQy6eEACkAdgnVGJy5GjNwAuKEEELCQAESB0EyILLAMGVAdGJDXfNyOhoUHGHFRiBh4LMnsFiJ0blISlg0u9xKphV/51NPnqOeH2i6c/wcD8ARE0HcDpfToT6hX6mUfKNhy6pUV0Me1qfbqwuLC1GhW5PX08661QXXVHERCgfE/I1UtaOUEA9mV8M9wA+Aq/2tXG41Xe53iw0hHoSoMIXCM3CcjgJgTwsfA5CD7XKIrlSEEEKigAIkDnQZEDX7oeZA5HNNGZAgbkc9+Q/oxUa9rkYQJyMqFyPMG+cwe9tNVLSigGiUKNvgmvATH0HKrHS5DmNplVerXFNZlbo3hVoBomtpG8TVUNfkORvi/MVwixy5rKqyLqaKT6ec1rVlydUQbgeAmu5TwtWYdoXCHQEi1rIYql57Bv3IFQdwODMEZHrNoXDZ1RiHu6wqA6AkSqjEAD8x1I8lVIQkj+63rM24B5IEFCBx4JUBUXMfugyISXyY3I4wrgjCiY1GhIZvriNoPiTYtlgFRjuWWwla9cdpmB8+jU4d14bFPY4HcTtUp6OmvErnUshPrAuBy3t1AkQVFH45DfGn/Dy6WRtqWBzS2mK4BIuVtsVGMdVTdTXk7IbalUoICJHfkEWFXFYlBIgdFnfa6OYwgOyRIeQzQ3bb2yCh8HE4DojYW+1CJTpPHQLwOuanfCeEkNaGAiRuVMdDV26lEyLqLwIaHESoig7dm3+TYGhEaETlYgR9ixDmzXaSooL5jVrUr6fRH0ZBSqnUPSbhoXM7vDIdWqcjSPmUbl0VIGr2Qx7sJ9a9XA31WnJYXJwvWt/K5Va9ttgopoDptG2NiJyF3JVKlFDlsLhmXc5vCGEiixKxDqD6eHJyxG57W+j2D4ULV0N2OvIWbFfjEGyhkYPT+pYQQkgrQAESBzqRoJZbhREl6nVkDK15g7ocOvHgJTiMIsWrXMt8KPS+oG/CW7XcKmoR0Q6/uw3qWvhlOEzX8RMVXnvCOh3GELlXANxrXRUgqqgI0n1KzW/oXA01LC7yGuIaaUdszPba3xU5KC63upUD4HKuQxYV8lRxEQoX1yiiB1kcg2x5yM5rFHqAUheQ73C3tBVlVROoXc/DFh+YqnwiQuHvgK4GIe1KCc3/tzvfftXXulCAxIEpA6ITHzD8WccgwnpdDp3giENotIPAaIaoSOrHbb332egPiSiyHEFEhbovSImVbmaHKUSuLasST6RzL3SlVmp+Q81pqF2t1BkcsqshP1ca7mvLboYsZCrZDStth8TLXUC5ywmKy4P61O5TTqeqPmndmbVRHeAnh8IrAiRbHEIuO4CjpU6gkLLnbKiuRhbu8inhalRnbIzDdjXm4JRP0dUghJB2hAIkDnQiwZT70JVehRxEKAsPWSDEJTa83jBHITJYbtVav4MJci9Bf5DUM48jbH7DdEwXKPcqraqrrErNauimjfdK15BzGianQz1XDYvL08PlvYuddVNXKnn6t8hg6JwOe90nFI4BZDCM/JEBFAv2rI2j2bS7pa0sKtRWtyIoXpqG0942V1l8HWx3Swgh8wcKkDgwlUnJ09DlvbI74jWIsPLYz+mQBUVQwRFWbPi9yU5SZLRquVUjzxeUKN2TRjpNia+zkR8oYRwN9Zh8XCc6TKVVngFyv7Iqv5IqOfwN1LoX4phuXZ2rIfbKWQ21U5XUFtfqdbpS2dkLp9WtEBsieyE6Vanhb89QOIZcE8Sn8/1261u51a3Ib4zDHRYX+Y0JwA6Gi1D4QdhZjTEQQhYiavi1WfdAkoACJG50GRBZbJjyHoYMiM7t8HM61ONRio1GhMZCLLeq93mTwOu+omqD6xcKD7Kn22e9G8FC5C6XQ1dCJR5DWtO5Gmr4W7euczUAt8jQOR1pzV7F7RBdqUQLXKC21a1wNbxa3TrlU46rIYSGmCA+W+hBPjsATPS63QshKsbhLqsSa3kLTqvbQ7BFxuuwxQchhJCFBgVIHJgcDi/xoct6aPIdJrdDdTr8XI6oxYbpvKhExnwutzIR1+9h6vlH32iOI0wwPOgxXZC8q9M/QF4THvcqq1LzFzq3Q81pyGJDl99Qw+JpuNwLOatRFSDS+UcG7Ra4zqC+vqrYKFZcCnmon1xWVc1kYMgVChcCJItjqsJk5kgf8hMjwESHflK4yGrIofAxwB7cl4P9t+YdALthiw1CCPFiDs3/FV2zn3/hQAESB6YQujr53BRCN5RblcoaN6PyOEhZle6fVVjhUI/QiDrTEXfJVaM/flrdwDXdX6M/DEznB81oeB0zlVepIXLTbI6asipd+ZRY1w3v062LNXVddTXkALi63+BqIAVYg05XqlKnOwA+i1R1rsaMFAoXa7NKKLxYLavqwyRGXAJkGv3ITg5hbmKJORQul1XJa5iCOxT+CuhqEEII8YMCJA50gwh14kPnflQe6xwPndsxpwgUmaCCQ/eGtB4nJMkAepBr1XvdRp4nCEn8fqUel6KE+n8gNJLf0IkOdU3XLreusipTSZUqKtR1v5yG+hyLNdcRrW/T0jUqQXHRArfctQjlrk5Md/ZXy6REq1vb0bBD4TMV8VCqlk8dU53DIbpVCacji6GqAMmVB3BoYtguocrCcS9EAFxudZuF7WiMAyjNwc5piEnhr4BZDUIIIfVCARIH6jtWvzIs8Xllryo+VOHhlemQ39w2KjbqERpRhMZbOcfRLuas6T4bzXKEHewXxtHwczl0AXLPblWqAJE7RwHuVrcCtSuVzsGQ10QAXM1+pOEOkIt9Sgvc2d5u5DrDh8LlsirRfSqLoaoAmUG/PT18YsRueStcDVloZFBbPpUF7BKqGdidqISrwQ5UhLQ7lrWp+vnU1BQGB/+qeTejhSH0hQQFSBzoBIj4U/33pbggsvhQu1nNKcJEoL7ZlB8HFRxRllx5nRf0/KDXqeea9V6/GdfzI6pwOBC8hEq3N8j8DXVddw1TWZVxJofsaIg/1fC3WkIlr/eiVrToXA15QhnZrQAAJLFJREFUqJ/qaqSl/ag8rogNIUDmUsDMYkdsiLC4LhReWz7VU51ALnIaWQy58hsHD4zaXaiycIsKUSqVh5PfGIPkasih8FdguxuEkHZGFhqEtCoUIHGjzvwo6dd0WQ9dqZXO7fASFHG5IF7nBDk3yPlBr1PvdeM6P0nChsPDzuGoJ78RxOnwCpAby6pMJVWyqFCFhi6/oQoIdS2lrMtr8gwOsSbERuX55tJAbrC3OtRPFhWiK5XaaUoOixcrAwAnMewSJjkMIFsewqHxZUC22x0KF2IjC6d8SrgaGcB+5Wcqi6+AczUIaS8oKsh8gwIkDkwtdVXxUfmwSrVZD9nxAKRyLOnSXk6H+iba77huj9feIOcFOTfINeq9Zr37TSRtzIb9xxlEXJiOB3U05GO6da81VXToOlZpcxxeJVWmrlRyRynZwVBFhex2APruU7LTIZdbpdxio1QpiZpxuRr9AIBp9CGPgWpLWyFKRKmVEBtCgGQxhMkjw3YJVb7DLSqEqyHP1BirrBcAQLS83Q26GoS0BhQQQSih+b8CZAlWUlCAxIGpxEotxaqICl3WY04RJYC+QZ3J6Wik9CpqNySOcqt69su0w48Y9R4b/cdab34jqNPhFyBXp497dqrSlVTpXI1eZc0rLB5gpkZ1nyirEtdJA4VBYDrdK4XCne5TtaHwoeq67HSIuRryUL8MhjE5OYK5zBKnfEp0mpJD4cLpGKusA7D/FYwB+B/Q1SAkOSgoCGkMCpA4UAWI7kMqvdKFzE2Oh5eTUa/LEZUbEkUAPeieep8/CEn+/iVMOVQJ3v9gddcKk98Isq6u6USIV1mVEB3dqkgAanMX4qJyMBzSebLYANztb8O4GrIwqTwuDOrb34oWuF6hcCEyspLbMYM+vIshTJZH7C5UhRRQ6HB3mtKFwsdQcTUAOxS+G8BLlc8JIUlAsUFI9FCAxIEuhK7mPuAuvVLFhy7f4ed2ROmCmPZ67fc6p9599YqKZpu4QRH3GXV3Kt2aKb/h5XSYRIiurCp0SZUsKAC9eyE7HWo5luxeAMFdDUhrg0AhbYsNANX2t0FD4WKmhpggXi2fwjAyh4dRyA4ApS67jEqUT4kJ4nIo/PXK5/ZdwOk+9QoIIdFDUdGKsAvWQoICJA50c0DEn8rcDzXvoRMfqsAI6oI0KjYaFRpRttsN+pxBSOLHSxz5Dd011XOCllkFcTW8Huu6VfX1utc6ZAEQJL8hZzLEmnA6VPdCbnWruhqDqBUgg85gP8BpfysP8AOAfOWxGNRXRA9mpVC4OsBvEsM4UB5FNjOEo4UeoNDt7jSVhbt86vXKnyXAzmq8A9vR4AA/QuKAQoOQ1oQCJA50DogSOgdssaHmPWTxoYqJoE5HEm14/Y75Xbeea9V77WYQNr/hJT78shq6NVOJlLxmcjXkx6bguJrhCJTfUDMZaltcdYK4lL+o6Uqllk/JQmXQPWtjOt2LHAaQd4XC7aF+YoCfnMnIYggZjCCHxa72t5MYsYPh2QH74tludyZDdKWSy6ey4js6CcfRYCickEagqJiv6JKuzbgHkgQUIHHgIUDksqs5SXzoXA+/8qsggiQKsZFUu90g1wpCUj8+ospvBO1Mpe7161QVRoSogqO6pslwaOdwyEP9ZLejV/lT7DXN2kgr63J+QxYmwumorFtdtruRSy+uTgQvKqJCLquyRcUx2la3B7EMGYwgOzmEcqkTR/P9wESH3tUYg+NqALD/9omcBsunCGkECg1C5i8UIHGjZD9k8VGSxIcqLHQOCAxr6rp6LMhx05rXNcKcG+QajV47aaLIb/iFxIOWWNXjaphKqqrORhfQl/LIb8jrcgmV6mrI7oUcHlfXF8MRG7IAWQL3rI2UndvIpger2QsA1Za2cii8qJRPiXVRPpXBCCaLw5jO99tiI5N2hMYE3O1vX4d9LC++owdgi4znwfIpspChUCCEhIUCJA7UOSBS9kNttSvEh67cKokAetigeZS5jiiERRxlWHH8o/BzM/zKrIJ0n1KvpXNBxF5TSVVNS1xdKNyr1a3qaqQ16ym4J4XLAkSIDRFQTwNHBhchl9KHwuWWto6oGK52q5pFj919CiM4gGXIHxlAqdRph8PHu53yqSzsv0wTsIXG65Ba3YpQ+POwTyBkYUKhQeKFIfSFBAVIHBja8FqK+Kh2wKpsVcuvdK6FyckIIjiiEhtx5Tpa5Z992PyGiSChcZPbESQsLtZ0AiRISZUrw2EKhavraqtbwJ2/0OU3hNiQBcigdKxyXWsQyA3a4XC505TIacgD/EROww6Fi/KpxVWhMVkewWyhB8VCCnMTS2pb3crlU2OQBviNwS6feh6ELAQoKgghzYACJA7kd7DSEEI1dC7cD123q6CZD6+8R9D8R72zPeJupdvo88o02uY2zHW9hIfJ6fBqgSuf51VWpa73eeU3dJPC1SC5GgqHtGaaqSHvl1rdulrppoG5Je4J4qLTlCihEgJEBMVFVkN0pZrEMA5g1F4vDqBc6rTD4WO97qngIhT+S9hiIyu+Q5NwhAbLp8j8h0KDENJKUIDEgVqCVSnDUkPnstBQxYdX5sPkgtRbhmXa63dO0PPrvWaU6J4v6tkbXtkNXemUeGxyOUyuhm6fmuFw5TdMoXBxAeFUyEHxLmktDbcASaM2LK6EwuX8RmHQDoeLQX2y0JBb2tquhp3VEMIkiyEcxKg9Lbw8gnKpE9P5fsyNL3F3mlLLp8YB29HIwQ6FPw92nyLzDYoKMr9Qi8+bdQ8kCShA4kAtwZJmf8gdr+RSK6/yK51DAs1x3dNH1XLX67ww12gXgpRP6faFcTpMgXD5mHydPtTmNwB7/kbNwD/ZhfALhctiQ+00JWc4IK0NosbpsIbtEqpiZ6oSAO+pCI1jkMVQdS2PATv8XXE15PzGPqxEBsOYKdqh8PzECDDW4W51m4X9WLgamAMwA1t1PC8WCZlXUGwQQuYTFCBxoMmAWJWuV3LJlSw+vMqv1MdhO1xFWXbld24914uSKP5Ch8lu+K37hcWDZjiEwyHEBqCUU5nKqnqVdV0o3KvVrRwKF9cctkuoZhZ3o9RZWz6lDuoTrsYsUlVRsh8rcQCjyJUHMFvowXS+H0fH0o57kYUtNiZgC41fAigIoSF3nyKkPaGgIIQsZChA4kB9xy3Krkr+Ha90QgTQiw+TI6K7hTD7vPbraCXDsoRgf6nDtr/1czpqwt6GvWoZVZj8RrfO1ZDb2ppC4WJdzm/oWt0Owl2ilQaw1C6hmu21xcZMpVTqXQwhjwGUYK/lMFDNZAgBYq8tw36sxLsYwkyxH8VCDwrjS50AeAaOq/E6gJcBZCwAh2CLjdcB/KzyOSGtDUUFIY3ALlgLCQqQOCjrH5fKtWJD54AA7n3qurqmrqvHZMK6IaZzghBVOVZUAfIwJVTqMa+uVEGG+ulcDTm/0Zdy9vb1Kp2pxGa/ULjqdIgP2RGRsxqy07HUXi+kgXLXIhRTTvlUDgOYQR9KFVExWSmfymKoKkAyGHa5GuVSJw5nhuxQuHA18pWPMUjlU5OwxcU7AP4HzGmQZkHxQAghyUEBEgcaB0Q380N+rIqJOc0aYC6virvjVdBrxIF4viBCJGx2I0hplamsypThMLoaYt0vLC4G+omuUWpXqkZC4RWhYQ0CpU6g3GUHxIWg0JVPTWKk2uo2i6Gqq5HBCMrlTuSyA3YoXATARatbUT71MoDSJOxuU4dgl08xp0Hih6KCkHZCfefTrHsgSUABEgfKO3k5/6GWWJlC5+oaPNYMT1tz3OMWtbTSP0M/8eHlZHgd1617lVUFdTVkdwOwRYZ2srgsNtQ12aUIEgqXy6oGnQ8rbW+dTi9CNjVUM6hPLp+SXY0DGMU+rMBBjGK63I/ZQo8dCn+9w3E11PKp7FTlwAycmRqExA/FBiGEtA8UIHGglGCJ/Ieu25X6ORBuDoi8DsNx3R6//SairI4M+pfPJD4aDYubyqpCzdpQrqWGxauTxUXplFw+Ja+lpZsxhcJFIHwJ3KJkELazUREscykgO7i4JhRul0/Z8zPkAX6i+9Q+rES2PGQLDTFTQ56fIWZqvAxgQkwHn4IdCqfQINFCQUEIIfMXCpA4UN6ly7M/xGG59EoNmNc7B8TjFjz3+p3TTOoNi3uVUIk1U0mVul+s9ynX64ehM5UsLMQJYk24GuoAv8WonRSutrodBDDsrFtdtquRSdnOhexqvFuZn3EAo8hhcWWo3wD2YYWd1SiPYjrfh9lCCkfH006nqXG4y6fGp2GLiwOwxQZLp0j9UFQQQsywBGshQQESA5bmnbyu5Mor/xEkbF5v+ZVpf5KY/uI1MlnctOZXUmXKb8jXE2JD5DaqczfqCYXLXalE6dQg3KJkGFpXQ81qiE5TByuuRhEpTKMPBzHquBqTQyiXOnF0QhIaY7BdjTxsTTFmAfhJ5YFodUtI/VBsEEIIMUEBEjOlsnv+h0l8eM0BUY9Ds647ZtpnohHdH6ZTVdxBcVNJlbq/D3oBIosNQMpuqDM1hKMhh79TsN0M00wN0eoWcJdPSW7HkUHb1ZjEiDSorw+TGME+rKy2up2tzNTYi9V4G6sxOTmCuUIPkO21BcbLsMWGGOA3joqB8TPYMzQOgb/tIUGhoCCEEBIVFCAxUJIyIHMlJ/8hOyCAvguW3xyQJOd7REmYvIZ63K+ESn7sl9+QrylPFpfdjarYEC1wdTM1OuGUTsluhxoKl4XKcOWjkveYW+J2NYqV8im705TtYOSwuDrobx9WYi9WY9/hFShkB4BCty0qfgngRdiiIw/b2fglAOwE8CzoZhCAAoIQ0upwDshCggIkBuakv78lJf+hCgtTyVUYF0Q+VnMvwW65IbzcD6/uVEE6U5lKqNQuU6rIUF2NPmmvmLvhmrcB1A7wE+6FqdWtyGnI+1VXo3L+kWHH1RDh7xwWV0ulhKtRRA8OYhR7sRp7i6txeGLYFhoZOELjl7Afi/Ip7ALwJCg0Fh4UFYQQQtoRCpAYKElqQJ5+rrodfnNA5MeQzoHhmEzcwiNoZ6ooulLpAuNq9yl5rU/aWyM25KyGEBTCvVC7T6mlUqILlVhbAicUXnE7rDSQWboYB7EMOQygiBRm0IcMRqotbe11p3xqrHw8Do2tBPIdzqC+F+G4GqJ8CrsB/BB26RSZj1BQEEIIWQhQgMSAywEp64WGl8vh1QFLXdcdj5O4u1Kpx0yuRp9mvR9usQFIuQ15poZwOoSgEAJE7j4lux1yKFxyNaZGu3Ggc7QaChczNUSp1CSGqwJkH1ZiD9Zi4o3jgUyHu6Xtc3BcjQJAoTG/oKgghJAgqL9+bdY9kCSgAIkBVwYEtUJDdUSg2eNVgiXTDKcjSOmUWDd1qQoSFpfb38rropxKiA1AKqUKUj4l9glXQ0wcF67GKFyh8MJS4ED6WExiBFkMubpP7cNK7MfKqqsxiRGMYS3G33gfMNbhzmT8FLarkbVgd5p6BcATlc/JfIBigxBCCPGHAiQGVFGga8GrHvPLegTtdtUoYQSHfCxI+RSkx145DdXp6Ot0hEZ3F9DtNylcDYXrXI1BAMvghMK77FD45OAgDmAZJjGCWfSgiBQmMWxnMrAaGQxXQ+FVofHLDqfT1OuwHY2nAdviOAQ7m/ETzXeWtDoUFIQQkhQMoS8kKEBiQJfT8Boy6CU+ggwdbJSwLXD92t+qDoZfKFx2OrRiw+RqiJa2aihcdjVETmMZquVTVhp4d2lvdVCf7GrsxWqMYW1lgN8AZtGDvViN8VdPtMulxuCUTz1X+cDOyoFc5U/SylBUEEIIIc2FAiQGdPpZnXpuKsEC4hUfYTIcQbIagNvp8CufEuJDHexXbX2bhiMo5K5Swu3olNYk9wIp2BmNUbgG+B0ZXIR9qZUuV2Ma/dWcxhjWVlrg2uVTb73xfuC5DnenqRcBvGjBLpd6HiyZaj0oKgghhJD2gQIkZmTR4TXLQ6VREzBslyqvrAaUx2pXKlVsyOuy2ABsd6MvBXSoLW1FKFysC1EhWtrK6yKnIVyNTqAwCEyml2IfbLFhuxd2+dQerMUYjsc+rMAM+pHDAMbfWgs81207GGNwyqdetgA8AuAlw3eQRA3FAyGEEPtdUrPfljY7BL9waPYrPS/xK8ESe0yZEBPdyh6/6eNxiw0oj6sZjoqz0dcrlVDJ3afkrIZcUqW0tEUatvhYWTmWAuZSdk5jH1ZiH1ZgEiMoo7Pa0vZ1vE9yNVL43zdW247G07BLqLKwnY3xKQD3A3jH57tI6oGighBCCCEmKEBipt7OVV2GcwH/CeLyHpPYUB+rOQ1TVkMWGrLYGEhXXA251e1i6F0NTUvbavnUSjujUeq0p4TvwwrsxWocxCim0Y9p9GE/VuJ1vA+v4iTsP7ISxUIKcxNLbDdjB+xuU+Owy6ewG8CDhu8kCQNFBSGEEEKigAIkBkzCIUhZVTccgRLkxQnTAter/a2pfEqUUAG22FiyWHE1AHdOQ3Y7ZKEh1gdhOxrLgMIyYLa3G8XOVFVo2PMzbFcjg2G8hvdjF061u01lO2wH42XYcYwdAPIHYHeZ2gE7n0HCQFFBCCGkNWAXrIUEBUjMyEMIBUJkyN989biJoGVVXq6GvN6HWlcDsB0NV1YDcHefEu6FaGmruhpp2BmN44AjyxYhlxqoiooxHI8xrMU+rMQ0+pDDAN7A+/BS8Qwcfm65k8n4JWxd8dwUgH8F8BaAKY/vDqGgIIQQQkirQwESM92wxYU8rqIEt9PhJTh0XankdZOrYZypAXdZlRjm1y23upXLp4R7ATg5DTE/Q+yvCI1Dq3uRxVB1TsZerMareL+r09QYjsdLB87A0afTdnepDOwZGjsAZJ8G8Pce342FCUUFIYQQQuYTFCBNQBULur4PpvkbYcun5KxGXy/Qrw7qWwwn7C2HwsWgvlHYQkSUT1WExn6sxDT6UazMyXgN78ereD/2YjVm0YMDGMVbvzjZLpV6GnaHqTyA1+cAfB32gL6FC0UFIYQQIqOOZW7WPZAkoACJAfWbKsSDyFKIv95hguJq+VTVwYDe1aiGwkWrW9F9SpRJifXFsIXGysqxXtgCZCXwv8cvrnaamkUPMhjBLpyKl3AG3sB78S6GkD8ygPxzxwI/gv3xImD/AHkewKYg366WhkKBEEIIIY2yY8cOXHDBBdpjzz77LD70oQ9pj1111VV44IEHXGvr16/HT3/608jvMUkoQGJAdS9KcNrW+qETGUBAoSFcDbmlrXAveuEIjWVwXJBR4H9XL8YbeG8lk9GPHBbjDbwPz2EdXiqfgUO/fI+Tyfj/AHwHsGumfgY7AN4+UFAQQgghrcj8DqFv2LAB+/fvd63deuuteOKJJ7Bu3TrPc3/jN34DW7durT7u6emJ5R6ThAIkBpZIn4vyKvHRV1kzda8SAqMPQF9leF91pobc0haobWkrXI1hAKvhmp+BQeCtZcfitUomI1NxNfZgLZ7Ferzyi1+z29dmYIfAfwBgYhuAbzb8/YgbigpCCCGEtDI9PT1Yvnx59fHc3By2bduGa6+9Fh0dHZ7nplIp17nzAQqQGBhIux+XSsBcCSiVna5Y6hyNrsorUe08lYZdHiUmhYuJ4KOVY6L71HGwxcZxwJHBRSimerAfK7ELp2IXTsVerMY0+rEPK/HM5AbMfWeJLS5ehi02So8A2Fb5aB0oKgghhBDSDKam3B03U6kUUqmUYXd9bNu2DZlMBldddZXv3h07dmDZsmUYGhrC+eefj7/8y7/EsmXLIr2fpKEAiYF+098J2dkTYe/FlT/F32vR0nZZ5XPR+vY4ACfauYyDWIYiUjiIZfgfnIEX8UHswqk4gGXIHh5C4QdLgTsAvP4IgJcqF34btsURPxQPhBBCCAnHHOzfrjb7HoDVq1e7Vm+77TZs2rQp0mfasmULLr744prnUrnkkkvw+7//+1izZg327NmDW2+9FR/5yEewc+fOyEVRkix4AXLffffhq1/9Kvbv34/TTjsN99xzD84777zGLnqK8liEwEWLW7XTlGh12wtgJTB3MvDa4AnYg7XIYQBZDGEn1uEJXIi3/v+T7YnfGdgda/ObYIuLtxu7Zx8oKgghhBCyENi7dy+WLHEK6r3e6G/atAm333675/V+/vOfu3Ie4+PjeOyxx/Dd737X916uuOKK6uenn3461q1bhzVr1uA//uM/8MlPftL3/FZlQQuQhx9+GNdffz3uu+8+nHvuufiHf/gHXHLJJdi1axeOO+64+i98qfR5J2xxMQrXoL7CUmBvehVexUkYw/GYxDByGMBjuBgv/+2HgOsBdxepDCrp78igqCCEEEIIcbNkyRKXAPHi2muvxac+9SnPPWvXrnU93rp1K4aHh3HppZfqT/BgxYoVWLNmDXbv3h363FZiQQuQu+++Gxs3bsQXvvAFAMA999yDxx57DF//+texefPmuq/7f7+4sfq5mP69F6uxF6sxiRFMow+7b/4A8FeblDNLAP6j8uENxQMhhBBC5g/t2QVrZGQEIyMjgfdbloWtW7fic5/7HLq7vUZR65mcnMTevXuxYsWK0Oe2EgtWgMzOzmLnzp246aabXOsXXXQRnnnmmYau/X86VmlWD0C0rLWsTcBmAJs3NfQ8hBBCCCGkffjxj3+MPXv2YOPGjdrjJ598MjZv3ozLLrsM+XwemzZtwu/+7u9ixYoVGBsbw5/+6Z9iZGQEl112WcJ3Hi0LVoBkMhmUy2WMjo661kdHRzExMaE9p1gsolgsVh8fPnwYQG23hMOHb/B8bnU/IYQQQkhSiPchlmU1+U5kiv5bYif+e9iyZQs2bNiAU05RA8M2r776avX9ZWdnJ1566SV861vfQjabxYoVK3DBBRfg4YcfxsDAQOz3GicLVoAI1N7LlmUZ+zFv3rxZGzTy62BACCGEENJqTE5OYnBwsKn3IOZjTEz8TVPvQ7B8+fJYB/099NBDnsdlUdjX14fHHnsstntpJgtWgIyMjKCzs7PG7Th48GCNKyK4+eabccMNjruRzWaxZs0avP32203/B0zCMzU1hdWrV9d0uyDtAV+/9oavX3vD16+9OXz4MI477jgsXbq02beC3t5e7NmzB7Ozs82+FQC2IOrt7fXfSBpiwQqQnp4enHnmmdi+fburjm779u34nd/5He05pkE0g4OD/AHcxoTpdkFaD75+7Q1fv/aGr197s2jRombfAgBbhPBN/8JiwQoQALjhhhvw2c9+FuvWrcM555yDb3zjG3j77bdx9dVXN/vWCCGEEEIImZcsaAFyxRVXYHJyEn/xF3+B/fv34/TTT8ejjz6KNWvWNPvWCCGEEEIImZcsaAECANdccw2uueaaus5NpVK47bbbPCdkktaFr197w9evveHr197w9Wtv+PqRZtNhtVYPNkIIIYQQQsg8pjXSR4QQQgghhJAFAQUIIYQQQgghJDEoQAghhBBCCCGJQQHiw3333Yfjjz8evb29OPPMM/HUU0957n/yySdx5plnore3FyeccAL+/u//PqE7JTrCvH7/+q//io997GM49thjsWTJEpxzzjnzdgJpuxD235/gJz/5Cbq6uvCrv/qr8d4g8STs61csFnHLLbdgzZo1SKVSeO9734t//Md/TOhuiUrY1+/BBx/EBz7wAfT392PFihX4/Oc/j8nJyYTulsj813/9Fz7+8Y9j5cqV6OjowA9+8APfc/j+hSSKRYx85zvfsbq7u61vfvOb1q5du6zrrrvOSqfT1ltvvaXd/+abb1r9/f3WddddZ+3atcv65je/aXV3d1vf+973Er5zYlnhX7/rrrvO+spXvmI9++yz1muvvWbdfPPNVnd3t/X8888nfOfEssK/foJsNmudcMIJ1kUXXWR94AMfSOZmSQ31vH6XXnqptX79emv79u3Wnj17rJ/97GfWT37ykwTvmgjCvn5PPfWUtWjRIutv//ZvrTfffNN66qmnrNNOO836xCc+kfCdE8uyrEcffdS65ZZbrEceecQCYH3/+9/33M/3LyRpKEA8OOuss6yrr77atXbyySdbN910k3b/l7/8Zevkk092rX3xi1+0zj777NjukZgJ+/rpOPXUU63bb7896lsjAaj39bviiiusP/uzP7Nuu+02CpAmEvb1++EPf2gNDg5ak5OTSdwe8SHs6/fVr37VOuGEE1xrX/va16xVq1bFdo8kGEEECN+/kKRhCZaB2dlZ7Ny5ExdddJFr/aKLLsIzzzyjPee///u/a/ZffPHFeO655zA3NxfbvZJa6nn9VI4ePYpcLoelS5fGcYvEg3pfv61bt+KNN97AbbfdFvctEg/qef22bduGdevW4a677sJ73vMenHTSSbjxxhsxMzOTxC0TiXpevw0bNmB8fByPPvooLMvCgQMH8L3vfQ+/9Vu/lcQtkwbh+xeSNAt+EKGJTCaDcrmM0dFR1/ro6CgmJia050xMTGj3l0olZDIZrFixIrb7JW7qef1U/vqv/xpHjhzB5ZdfHsctEg/qef12796Nm266CU899RS6uvijrZnU8/q9+eabePrpp9Hb24vvf//7yGQyuOaaa3Do0CHmQBKmntdvw4YNePDBB3HFFVegUCigVCrh0ksvxd/93d8lccukQfj+hSQNHRAfOjo6XI8ty6pZ89uvWyfJEPb1E3z729/Gpk2b8PDDD2PZsmVx3R7xIejrVy6X8ZnPfAa33347TjrppKRuj/gQ5t/f0aNH0dHRgQcffBBnnXUWfvM3fxN333037r//frogTSLM67dr1y780R/9Ef78z/8cO3fuxI9+9CPs2bMHV199dRK3SiKA719IkvDXhAZGRkbQ2dlZ89uegwcP1vyWQLB8+XLt/q6uLgwPD8d2r6SWel4/wcMPP4yNGzfiX/7lX3DhhRfGeZvEQNjXL5fL4bnnnsMLL7yAa6+9FoD9htayLHR1deHxxx/HRz7ykUTundT372/FihV4z3veg8HBweraKaecAsuyMD4+jhNPPDHWeyYO9bx+mzdvxrnnnos/+ZM/AQD8yq/8CtLpNM477zzccccd/A16i8P3LyRp6IAY6OnpwZlnnont27e71rdv344NGzZozznnnHNq9j/++ONYt24duru7Y7tXUks9rx9gOx9XXXUVHnroIdYuN5Gwr9+SJUvw0ksv4cUXX6x+XH311Xj/+9+PF198EevXr0/q1gnq+/d37rnnYt++fcjn89W11157DYsWLcKqVativV/ipp7Xb3p6GosWud9SdHZ2AnB+k05aF75/IYnTpPB7WyDaEG7ZssXatWuXdf3111vpdNoaGxuzLMuybrrpJuuzn/1sdb9oY/fHf/zH1q5du6wtW7awjV0TCfv6PfTQQ1ZXV5d17733Wvv3769+ZLPZZn0JC5qwr58Ku2A1l7CvXy6Xs1atWmX93u/9nvWLX/zCevLJJ60TTzzR+sIXvtCsL2FBE/b127p1q9XV1WXdd9991htvvGE9/fTT1rp166yzzjqrWV/CgiaXy1kvvPCC9cILL1gArLvvvtt64YUXqm2U+f6FNBsKEB/uvfdea82aNVZPT4/1a7/2a9aTTz5ZPXbllVda559/vmv/jh07rA9+8INWT0+PtXbtWuvrX/96wndMZMK8fueff74FoObjyiuvTP7GiWVZ4f/9yVCANJ+wr98rr7xiXXjhhVZfX5+1atUq64YbbrCmp6cTvmsiCPv6fe1rX7NOPfVUq6+vz1qxYoX1B3/wB9b4+HjCd00sy7L+8z//0/P/M75/Ic2mw7LojRJCCCGEEEKSgRkQQgghhBBCSGJQgBBCCCGEEEISgwKEEEIIIYQQkhgUIIQQQgghhJDEoAAhhBBCCCGEJAYFCCGEEEIIISQxKEAIIYQQQgghiUEBQgghhBBCCEkMChBCCCGEEEJIYlCAEEIIIYQQQhKDAoQQQgghhBCSGBQghBDSQoyNjaGjo6Pm48Mf/nCzb40QQgiJhK5m3wAhhBCH1atXY//+/dXHExMTuPDCC/Hrv/7rTbwrQgghJDo6LMuymn0ThBBCaikUCvjwhz+MY489Fv/2b/+GRYtoWhNCCGl/6IAQQkiLsnHjRuRyOWzfvp3igxBCyLyBAoQQQlqQO+64Az/60Y/w7LPPYmBgoNm3QwghhEQGS7AIIaTFeOSRR/DpT38aP/zhD/HRj3602bdDCCGERAoFCCGEtBAvv/wy1q9fjxtuuAF/+Id/WF3v6enB0qVLm3hnhBBCSDRQgBBCSAtx//334/Of/3zN+vnnn48dO3Ykf0OEEEJIxFCAEEIIIYQQQhKDbVUIIYQQQgghiUEBQgghhBBCCEkMChBCCCGEEEJIYlCAEEIIIYQQQhKDAoQQQgghhBCSGBQghBBCCCGEkMSgACGEEEIIIYQkBgUIIYQQQgghJDEoQAghhBBCCCGJQQFCCCGEEEIISQwKEEIIIYQQQkhiUIAQQgghhBBCEoMChBBCCCGEEJIYFCCEEEIIIYSQxKAAIYQQQgghhCQGBQghhBBCCCEkMShACCGEEEIIIYnx/wB9xOa3SfVJogAAAABJRU5ErkJggg==", + "text/html": [ + "\n", + "
\n", + "
\n", + " Figure\n", + "
\n", + " \n", + "
\n", + " " + ], + "text/plain": [ + "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "# Assuming you have these arrays defined:\n", "# z_array = ...\n", @@ -243,10 +277,30 @@ "zvals.size" ] }, + { + "cell_type": "markdown", + "id": "377674eb-e277-4e68-835d-c42b6e9629f9", + "metadata": {}, + "source": [ + "# Save" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "id": "f78aacb8-60b8-45ca-86cc-b1e8c6792dad", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "np.savez('CHIME_pdz', z=zvals, DM=DM_array, pzdm=all_singles)" + ] + }, { "cell_type": "code", "execution_count": null, - "id": "5ddfa68f-a491-42bf-864c-1e8e3fe32cf4", + "id": "b282d05a-1354-4bcf-a2bd-bb8c5c3d7a6d", "metadata": {}, "outputs": [], "source": []