forked from tyler-smith/go-bip32
-
Notifications
You must be signed in to change notification settings - Fork 7
/
utils.go
160 lines (128 loc) · 3.41 KB
/
utils.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
package bip32
import (
"bytes"
"crypto/sha256"
"encoding/binary"
"errors"
"fmt"
"github.com/FactomProject/basen"
"github.com/FactomProject/btcutilecc"
"golang.org/x/crypto/ripemd160"
"io"
"math/big"
)
var (
curve = btcutil.Secp256k1()
curveParams = curve.Params()
BitcoinBase58Encoding = basen.NewEncoding("123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz")
)
//
// Hashes
//
func hashSha256(data []byte) []byte {
hasher := sha256.New()
hasher.Write(data)
return hasher.Sum(nil)
}
func hashDoubleSha256(data []byte) []byte {
return hashSha256(hashSha256(data))
}
func hashRipeMD160(data []byte) []byte {
hasher := ripemd160.New()
io.WriteString(hasher, string(data))
return hasher.Sum(nil)
}
func hash160(data []byte) []byte {
return hashRipeMD160(hashSha256(data))
}
//
// Encoding
//
func checksum(data []byte) []byte {
return hashDoubleSha256(data)[:4]
}
func addChecksumToBytes(data []byte) []byte {
checksum := checksum(data)
return append(data, checksum...)
}
func base58Encode(data []byte) []byte {
return []byte(BitcoinBase58Encoding.EncodeToString(data))
}
// Keys
func publicKeyForPrivateKey(key []byte) []byte {
return compressPublicKey(curve.ScalarBaseMult([]byte(key)))
}
func addPublicKeys(key1 []byte, key2 []byte) []byte {
x1, y1 := expandPublicKey(key1)
x2, y2 := expandPublicKey(key2)
return compressPublicKey(curve.Add(x1, y1, x2, y2))
}
func addPrivateKeys(key1 []byte, key2 []byte) []byte {
var key1Int big.Int
var key2Int big.Int
key1Int.SetBytes(key1)
key2Int.SetBytes(key2)
key1Int.Add(&key1Int, &key2Int)
key1Int.Mod(&key1Int, curve.Params().N)
b := key1Int.Bytes()
if len(b) < 32 {
extra := make([]byte, 32-len(b))
b = append(extra, b...)
}
return b
}
func compressPublicKey(x *big.Int, y *big.Int) []byte {
var key bytes.Buffer
// Write header; 0x2 for even y value; 0x3 for odd
key.WriteByte(byte(0x2) + byte(y.Bit(0)))
// Write X coord; Pad the key so x is aligned with the LSB. Pad size is key length - header size (1) - xBytes size
xBytes := x.Bytes()
for i := 0; i < (PublicKeyCompressedLength - 1 - len(xBytes)); i++ {
key.WriteByte(0x0)
}
key.Write(xBytes)
return key.Bytes()
}
// As described at https://bitcointa.lk/threads/compressed-keys-y-from-x.95735/
func expandPublicKey(key []byte) (*big.Int, *big.Int) {
Y := big.NewInt(0)
X := big.NewInt(0)
qPlus1Div4 := big.NewInt(0)
X.SetBytes(key[1:])
// y^2 = x^3 + ax^2 + b
// a = 0
// => y^2 = x^3 + b
ySquared := X.Exp(X, big.NewInt(3), nil)
ySquared.Add(ySquared, curveParams.B)
qPlus1Div4.Add(curveParams.P, big.NewInt(1))
qPlus1Div4.Div(qPlus1Div4, big.NewInt(4))
// sqrt(n) = n^((q+1)/4) if q = 3 mod 4
Y.Exp(ySquared, qPlus1Div4, curveParams.P)
if uint32(key[0])%2 == 0 {
Y.Sub(curveParams.P, Y)
}
return X, Y
}
func validatePrivateKey(key []byte) error {
if fmt.Sprintf("%x", key) == "0000000000000000000000000000000000000000000000000000000000000000" || //if the key is zero
bytes.Compare(key, curveParams.N.Bytes()) >= 0 || //or is outside of the curve
len(key) != 32 { //or is too short
return errors.New("Invalid seed")
}
return nil
}
func validateChildPublicKey(key []byte) error {
x, y := expandPublicKey(key)
if x.Sign() == 0 || y.Sign() == 0 {
return errors.New("Invalid public key")
}
return nil
}
//
// Numerical
//
func uint32Bytes(i uint32) []byte {
bytes := make([]byte, 4)
binary.BigEndian.PutUint32(bytes, i)
return bytes
}