forked from keisuke-okb/S2D2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy paths2d2.py
359 lines (322 loc) · 15.8 KB
/
s2d2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
import os
import random
import datetime
import torch
from PIL import Image
import diffusers
from diffusers import (StableDiffusionPipeline,
StableDiffusionImg2ImgPipeline)
from diffusers.utils import numpy_to_pil
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
import torch
import datetime
from PIL import Image
import numpy as np
import re
SCHEDULERS = {
"unipc": diffusers.schedulers.UniPCMultistepScheduler,
"euler_a": diffusers.schedulers.EulerAncestralDiscreteScheduler,
"euler": diffusers.schedulers.EulerDiscreteScheduler,
"ddim": diffusers.schedulers.DDIMScheduler,
"ddpm": diffusers.schedulers.DDPMScheduler,
"deis": diffusers.schedulers.DEISMultistepScheduler,
"dpm2": diffusers.schedulers.KDPM2DiscreteScheduler,
"dpm2_karras": diffusers.schedulers.KDPM2DiscreteScheduler,
"dpm2-a": diffusers.schedulers.KDPM2AncestralDiscreteScheduler,
"dpm2-a_karras": diffusers.schedulers.KDPM2AncestralDiscreteScheduler,
"dpm++_2s": diffusers.schedulers.DPMSolverSinglestepScheduler,
"dpm++_2m": diffusers.schedulers.DPMSolverMultistepScheduler,
"dpm++_2m_karras": diffusers.schedulers.DPMSolverMultistepScheduler,
"dpm++_sde": diffusers.schedulers.DPMSolverSDEScheduler,
"dpm++_sde_karras": diffusers.schedulers.DPMSolverSDEScheduler,
"heun": diffusers.schedulers.HeunDiscreteScheduler,
"heun_karras": diffusers.schedulers.HeunDiscreteScheduler,
"lms": diffusers.schedulers.LMSDiscreteScheduler,
"lms_karras": diffusers.schedulers.LMSDiscreteScheduler,
"pndm": diffusers.schedulers.PNDMScheduler,
}
def calc_pix_8(x):
x = int(x)
return x - x % 8
def token_auto_concat_embeds(pipe, positive, negative):
max_length = pipe.tokenizer.model_max_length
positive_length = pipe.tokenizer(positive, return_tensors="pt").input_ids.shape[-1]
negative_length = pipe.tokenizer(negative, return_tensors="pt").input_ids.shape[-1]
print(f'Token length is model maximum: {max_length}, positive length: {positive_length}, negative length: {negative_length}.')
if max_length < positive_length or max_length < negative_length:
print('Concatenated embedding.')
if positive_length > negative_length:
positive_ids = pipe.tokenizer(positive, return_tensors="pt").input_ids.to("cuda")
negative_ids = pipe.tokenizer(negative, truncation=False, padding="max_length", max_length=positive_ids.shape[-1], return_tensors="pt").input_ids.to("cuda")
else:
negative_ids = pipe.tokenizer(negative, return_tensors="pt").input_ids.to("cuda")
positive_ids = pipe.tokenizer(positive, truncation=False, padding="max_length", max_length=negative_ids.shape[-1], return_tensors="pt").input_ids.to("cuda")
else:
positive_ids = pipe.tokenizer(positive, truncation=False, padding="max_length", max_length=max_length, return_tensors="pt").input_ids.to("cuda")
negative_ids = pipe.tokenizer(negative, truncation=False, padding="max_length", max_length=max_length, return_tensors="pt").input_ids.to("cuda")
positive_concat_embeds = []
negative_concat_embeds = []
for i in range(0, positive_ids.shape[-1], max_length):
positive_concat_embeds.append(pipe.text_encoder(positive_ids[:, i: i + max_length])[0])
negative_concat_embeds.append(pipe.text_encoder(negative_ids[:, i: i + max_length])[0])
positive_prompt_embeds = torch.cat(positive_concat_embeds, dim=1)
negative_prompt_embeds = torch.cat(negative_concat_embeds, dim=1)
return positive_prompt_embeds, negative_prompt_embeds
def get_scheduler(p, name):
return SCHEDULERS[name].from_config(p.scheduler.config, use_karras_sigmas="karras" in name)
class StableDiffusionImageGenerator:
def __init__(
self,
sd_safetensor_path: str,
device: str="cuda",
dtype: torch.dtype=torch.float16,
):
self.device = torch.device(device)
self.pipe = StableDiffusionPipeline.from_single_file(sd_safetensor_path,torch_dtype=dtype,).to(device)
self.pipe_i2i = StableDiffusionImg2ImgPipeline.from_single_file(sd_safetensor_path,torch_dtype=dtype,).to(device)
self.pipe.enable_xformers_memory_efficient_attention()
self.pipe.enable_attention_slicing()
self.pipe_i2i.enable_xformers_memory_efficient_attention()
self.pipe_i2i.enable_attention_slicing()
self.pipe.safety_checker = None
self.pipe_i2i.safety_checker = None
return
def load_loras(self, safetensor_path:list[list[str,float]]):
adap_list=[]
alphas=[]
for k in safetensor_path:
p = os.path.abspath(os.path.join(k[0], ".."))
safe = os.path.basename(k[0])
name = os.path.splitext(safe)[0].replace(".","_")
alphas.append(k[1])
adap_list.append(name)
self.pipe.load_lora_weights(p, weight_name=safe, adapter_name=name)
self.pipe_i2i.load_lora_weights(p, weight_name=safe, adapter_name=name)
self.pipe.set_adapters(adap_list, adapter_weights=alphas)
self.pipe_i2i.set_adapters(adap_list, adapter_weights=alphas)
def load_embeddings(self, embeddings:list[list[str,str]]):
for k in embeddings:
self.pipe.load_textual_inversion(pretrained_model_name_or_path=k[0], token=k[1], local_files_only=True)
self.pipe_i2i.load_textual_inversion(pretrained_model_name_or_path=k[0], token=k[1], local_files_only=True)
def decode_latents_to_PIL_image(self, latents, decode_factor=0.18215):
with torch.no_grad():
latents = 1 / decode_factor * latents
image = self.pipe.vae.decode(latents).sample
image = (image / 2 + 0.5).clamp(0, 1)
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
image = numpy_to_pil(image)
image = StableDiffusionPipelineOutput(images=image, nsfw_content_detected=None).images[0]
return image
def diffusion_from_noise(
self,
prompt,
negative_prompt,
scheduler_name="dpm++_2m_karras",
steps=20,
guidance_scale=9.5,
width=512,
height=512,
output_type="pil",
clip_skip=1,
decode_factor=0.18215,
num_images_per_prompt=1,
seed=1234,
save_path=None
):
self.pipe.scheduler = get_scheduler(self.pipe, scheduler_name)
self.pipe.scheduler.set_timesteps(steps, self.device)
clip_layers = self.pipe.text_encoder.text_model.encoder.layers
if clip_skip > 1:
sk = clip_skip-1
self.pipe.text_encoder.text_model.encoder.layers = clip_layers[:-sk]
seed = random.randint(1, 1000000000) if seed == -1 else seed
embeds, negative_embeds = token_auto_concat_embeds(self.pipe, prompt, negative_prompt)
with torch.no_grad():
latents = self.pipe(
prompt_embeds=embeds,
num_inference_steps=steps,
generator=torch.manual_seed(seed),
guidance_scale=guidance_scale,
negative_prompt_embeds=negative_embeds,
width=width,
height=height,
num_images_per_prompt=num_images_per_prompt,
output_type="latent"
).images # 1x4x(W/8)x(H/8)
if save_path is not None:
i = 0
while i < num_images_per_prompt:
pil_image = self.decode_latents_to_PIL_image(latents[i], decode_factor)
os.makedirs(os.path.dirname(save_path[i]), exist_ok=True)
pil_image.save(save_path[i])
i += 1
if output_type == "latent":
return latents
elif output_type == "pil":
return self.decode_latents_to_PIL_image(latents, decode_factor)
else:
raise NotImplementedError()
def diffusion_from_image(
self,
prompt,
negative_prompt,
image,
scheduler_name="dpm++_2m_karras",
steps=20,
denoising_strength=0.58,
guidance_scale=10,
clip_skip=1,
output_type="pil",
decode_factor=0.18215,
seed=1234,
save_path=None
):
self.pipe_i2i.scheduler = get_scheduler(self.pipe_i2i, scheduler_name)
self.pipe_i2i.scheduler.set_timesteps(steps, self.device)
seed = random.randint(1, 1000000000) if seed == -1 else seed
clip_layers = self.pipe_i2i.text_encoder.text_model.encoder.layers
if clip_skip > 1:
sk = clip_skip-1
self.pipe_i2i.text_encoder.text_model.encoder.layers = clip_layers[:-sk]
embeds, negative_embeds = token_auto_concat_embeds(self.pipe_i2i, prompt, negative_prompt)
with torch.no_grad():
latents = self.pipe_i2i(
prompt_embeds=embeds,
image=image,
num_inference_steps=steps,
strength=denoising_strength,
generator=torch.manual_seed(seed),
guidance_scale=guidance_scale,
negative_prompt_embeds=negative_embeds,
output_type="latent"
).images # 1x4x(W/8)x(H/8)
if save_path is not None:
pil_image = self.decode_latents_to_PIL_image(latents, decode_factor)
os.makedirs(os.path.dirname(save_path), exist_ok=True)
pil_image.save(save_path)
if output_type == "latent":
return latents
elif output_type == "pil":
return self.decode_latents_to_PIL_image(latents, decode_factor)
else:
raise NotImplementedError()
def diffusion_enhance(
self,
prompt,
negative_prompt,
scheduler_name="dpm++_2m_karras",
steps=20,
steps_enhance=20,
guidance_scale=10,
width=512,
height=512,
seed=1234,
clip_skip=1,
save_nonhires=False,
num_images_per_prompt=1,
hires_prompt=None,
hires_negative_prompt=None,
hires_seed=None,
hires_scheduler_name=None,
upscale_target="latent", # "latent" or "pil"
interpolate_mode="nearest",
antialias = True,
upscale_by=1.8,
enhance_steps=2, # 2=Hires.fix
denoising_strength=0.58,
output_type="pil",
decode_factor=0.15,
decode_factor_final=0.18215,
save_dir="output"
):
with torch.no_grad():
w_init = calc_pix_8(width)
h_init = calc_pix_8(height)
w_final = calc_pix_8(w_init * upscale_by)
h_final = calc_pix_8(h_init * upscale_by)
resolution_pairs = [(calc_pix_8(x), calc_pix_8(y)) for x, y
in zip(np.linspace(w_init, w_final, enhance_steps),
np.linspace(h_init, h_final, enhance_steps))
]
image = None
now_str = datetime.datetime.now().strftime('%Y%m%d_%H%M%S')
if enhance_steps == 1: # Single generation
image = self.diffusion_from_noise(
prompt,
negative_prompt,
scheduler_name=scheduler_name,
steps=steps,
guidance_scale=guidance_scale,
width=w_final,
height=h_final,
clip_skip=clip_skip,
num_images_per_prompt=num_images_per_prompt,
output_type=output_type,
decode_factor=decode_factor_final,
seed=seed,
save_path=[os.path.join(save_dir, f"{now_str}[{i}].png") for i in list(range(num_images_per_prompt))]
)
for i, (w, h) in enumerate(resolution_pairs):
if image is None: # Step 1: Generate low-quality image
image = self.diffusion_from_noise(
prompt,
negative_prompt,
scheduler_name=scheduler_name,
steps=steps,
guidance_scale=guidance_scale,
width=w,
height=h,
clip_skip=clip_skip,
num_images_per_prompt=num_images_per_prompt,
output_type=upscale_target,
decode_factor=decode_factor,
seed=seed,
save_path=[os.path.join(save_dir, f"{now_str}_{i}[{j}].png") for j in list(range(num_images_per_prompt))] if save_nonhires else None
)
continue
j = 0
while j < num_images_per_prompt:
img = image[j]
# Step 2: Interpolate latent or image -> PIL image
if upscale_target == "latent":
img = torch.nn.functional.interpolate(
img,
(h // 8, w // 8),
mode=interpolate_mode,
antialias=True if antialias and interpolate_mode != "nearest" else False,
)
img = self.decode_latents_to_PIL_image(img, decode_factor)
else:
img = img.resize((w, h), Image.Resampling.LANCZOS)
# Step 3: Generate image (i2i)
if i < len(resolution_pairs) - 1:
img = self.diffusion_from_image(
hires_prompt,
hires_negative_prompt,
img,
scheduler_name=hires_scheduler_name,
steps=int(steps_enhance / denoising_strength) + 1,
clip_skip=clip_skip,
denoising_strength=denoising_strength,
guidance_scale=guidance_scale,
output_type=upscale_target,
decode_factor=decode_factor,
seed=hires_seed,
save_path=os.path.join(save_dir, f"{now_str}_{i}.jpg") if save_nonhires else None
)
else: # Final enhance
img = self.diffusion_from_image(
hires_prompt,
hires_negative_prompt,
img,
scheduler_name=hires_scheduler_name,
steps=int(steps_enhance / denoising_strength) + 1,
denoising_strength=denoising_strength,
clip_skip=clip_skip,
guidance_scale=guidance_scale,
output_type=output_type,
decode_factor=decode_factor_final,
seed=hires_seed,
save_path=os.path.join(save_dir, f"{now_str}_{i}.jpg")
)
j += 1