forked from PedroMDuarte/hubbard-lda3
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathqmc.py
executable file
·624 lines (519 loc) · 19.6 KB
/
qmc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
"""
This file provides a way to obtain thermodynamic quantities from an
interpolation of available QMC solutions
"""
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
from matplotlib import rc
rc('font', **{'family':'serif'})
rc('text', usetex=True)
import glob
import os
import ldaconf
basedir = ldaconf.basedir
from scipy.spatial import Delaunay
from scipy.interpolate import CloughTocher2DInterpolator, LinearNDInterpolator
from scipy.interpolate.interpnd import _ndim_coords_from_arrays
import logging
# create logger
logger = logging.getLogger(__name__)
logger.addHandler(logging.NullHandler())
#logger.disabled = True
def get_qty_mu( dat, mu, MUCOL, COL, **kwargs ):
# Control the interpolation between availble
# density points here
#~qtyinterp = 'nearest'
qtyinterp = 'linear'
msg = kwargs.get('msg', None)
DENSCOL = 1
ENTRCOL = 2
SPICOL = 3
CMPRCOL = 4
STHCOL = 7
if COL == SPICOL:
default_minus = 1.0
default_plus = 0.0
elif COL == ENTRCOL:
default_minus = 0.0
default_plus = 0.0
elif COL == DENSCOL:
default_minus = 0.0
default_plus = 2.0
elif COL == CMPRCOL:
default_minus = 0.0
default_plus = 0.0
elif COL == STHCOL:
default_minus = 0.0
default_plus = 0.0
else:
raise ValueError("Column not defined: COL = {:d}".format(COL) )
CAREFUL = kwargs.get('careful', True)
if CAREFUL and (mu < -10. or mu > 60.):
CAREFUL = False
if qtyinterp == 'nearest':
index = np.argmin( np.abs(dat[:, MUCOL] - mu ))
qtyresult = dat[index,COL]
else:
# find the two closest chemical potentials that
# stride the point
mudat = dat[:,MUCOL]
verbose = False
if np.all(mu < mudat):
qtyresult = default_minus
if COL == DENSCOL or COL == ENTRCOL:
if verbose:
print "QTY=", COL,
print "===>>> mu={:0.2f} ".format(mu), msg
if dat[:,DENSCOL].min() < 0.1 :
qtyresult = default_minus
elif CAREFUL:
return 'out-of-bounds'
#print "====>>> BE CAREFUL : Using default density" + \
# " n=%.2f"%default_minus + \
# " at mu={:0.2f} ".format(mu),
#if msg is not None:
# print msg
#raise ValueError('density error')
elif np.all( mu > mudat):
qtyresult = default_plus
if COL == DENSCOL or COL == ENTRCOL:
if verbose:
print "QTY=", COL,
print "====>>> mu={:0.2f} ".format(mu), msg
if dat[:,DENSCOL].max() > 1.9 :
qtyresult = default_plus
elif CAREFUL:
return 'out-of-bounds'
#print "====>>> BE CAREFUL : Using default density" + \
# " n=%.2f"%default_plus + \
# " at mu={:0.2f} ".format(mu),
#if msg is not None:
# print msg
#raise ValueError('density error')
else:
# since the mu's are ordered we can do:
index0 = np.where( mudat <=mu )[0][-1]
index1 = np.where( mudat > mu )[0][0]
qty0 = dat[ index0, COL ]
qty1 = dat[ index1, COL ]
mu0 = dat[ index0, MUCOL ]
mu1 = dat[ index1, MUCOL ]
qtyresult = qty0 + (mu-mu0) * (qty1-qty0) / (mu1-mu0)
return qtyresult
#print
#print " mu = ", mu
#print "index0 = ", index0
#print "index1 = ", index1
#print "Doing linear interpolation for the qty"
#print " mu0 = ", mu0
#print " mu1 = ", mu1
#print "qty0 = ", qty0
#print "qty1 = ", qty1
#print "qtyresult = ", qtyresult
def find_closest_qmc( U=8, T=0.67, mu=4.0, **kwargs):
"""
This function finds the closest values of U and T in the QMC data
that straddle the values U and T given as arguments.
"""
msg0 = 'U={:0.2f}, T={:0.2f}, mu={:0.2f}'.format(U,T,mu)
nUs = 4
nTs = 5
ALLPTS = kwargs.get('ALLPTS', False)
# select which quantity will be returned, options are
# spi and entropy
QTY = kwargs.get('QTY', 'spi' )
if QTY == 'spi':
datadir = basedir + 'COMB_Final_Spi/'
elif QTY == 'sth':
datadir = basedir + 'COMB_Final_Sth/'
elif QTY == 'entropy':
datadir = basedir + 'COMB_Final_Entr/'
elif QTY == 'density':
datadir = basedir + 'COMB_Final_Dens/'
elif QTY == 'kappa':
datadir = basedir + 'COMB_Final_Dens/'
else:
raise ValueError('Quantity not defined:' + str(QTY) )
# Truncate temperature for density and Sth calculation
if QTY == 'density' or QTY =='sth' :
if U < 1.:
Tlim = 0.50 - U*0.13
if mu < U/2. and T < Tlim: T=Tlim
elif U < 2.:
Tlim = 0.45 - U*0.15/2.
if mu < U/2. and T < Tlim: T=Tlim
elif U < 4.:
Tlim = 0.3 + (U-2.) * (0.38-0.3) / (4.-2.)
if mu < U/2. and T < Tlim: T=Tlim
elif U < 8.:
Tlim = 0.37 + (U-4.) * (0.38-0.27) / (8.-4.)
if mu < U/2. and T < Tlim: T=Tlim
else:
if mu < U/2. and T < 0.4: T=0.4
# Truncate temperature for entropy calculation
if QTY == 'entropy':
if U < 1.:
Tlim = 0.50 - U*0.13
if mu < U/2. and T < Tlim: T=Tlim
elif U < 2.:
Tlim = 0.45 - U*0.15/2.
if mu < U/2. and T < Tlim: T=Tlim
elif U < 4.:
Tlim = 0.3 + (U-2.) * (0.38-0.3) / (4.-2.)
if mu < U/2. and T < Tlim: T=Tlim
elif U < 8.:
Tlim = 0.37 + (U-4.) * (0.38-0.27) / (8.-4.)
if mu < U/2. and T < Tlim: T=Tlim
else:
if mu < U/2. and T < 0.4: T=0.4
fname = datadir + 'U*'
us = [ float(u.split('/U')[-1]) for u in glob.glob(fname) ]
du = [ np.abs(U-u) for u in us ]
index = np.argsort(du)
if ALLPTS:
Ulist0 = range(len(index))
else:
Ulist0 = range( nUs )
us = [ us[index[i]] for i in Ulist0]
#print us
#print du
#print index
#print "Closest Us = ", us
datfiles = []
for u in us:
# For the Spi and Stheta data
if QTY == 'spi' or QTY == 'kappa':
fname = datadir + 'U{U:02d}/T*dat'.format(U=int(u))
fs = sorted(glob.glob(fname))
Ts = [ float(f.split('T')[1].split('.dat')[0]) for f in fs ]
elif QTY=='density' or QTY == 'kappa':
fname = datadir + 'U{U:02d}/n*dat'.format(U=int(u))
fs = sorted(glob.glob(fname))
Ts = []
for f in fs:
fname = os.path.basename(f)
Ts.append( float(fname.split('n')[1].split('.dat')[0] ))
elif QTY=='entropy':
fname = datadir + 'U{U:02d}/S*dat'.format(U=int(u))
fs = sorted(glob.glob(fname))
Ts = [ float(f.split('S')[1].split('.dat')[0]) for f in fs ]
elif QTY=='sth':
fname = datadir + 'U{U:02d}/H*dat'.format(U=int(u))
fs = sorted(glob.glob(fname))
Ts = [ float(f.split('H')[1].split('.dat')[0]) for f in fs ]
Ts_g = [] ; Ts_l = [];
for t in Ts:
if t > T:
Ts_g.append(t)
else:
Ts_l.append(t)
# debug:
#if np.abs(U-4.20)<0.02 and np.abs(T-0.36)<0.02 and \
# np.abs(mu+2.11)<0.02:
# print
# print msg0
# print "Looking at QTY=",QTY, " for U=",u
# print fs
# print Ts_g
# print Ts_l
# print Ts
order_g = np.argsort( [ np.abs( T -t ) for t in Ts_g ] )
order_l = np.argsort( [ np.abs( T -t ) for t in Ts_l ] )
try:
Tpts = [ Ts_g[ order_g[0]] , Ts_l[ order_l[0]] ]
except:
#print
#print "problem adding U=",u, "T=",Ts
#print "available T data does not stride the point"
#print "T =", T
#print "Ts =", Ts
#print "will add nearest Ts nevertheless"
Tpts = [ ]
#raise ValueError("QMC data not available.")
dT = [ np.abs( T - t) for t in Ts ]
index = np.argsort(dT)
if ALLPTS:
Tlist0 = range(len(Ts))
else:
Tlist0 = range( min(nTs , len(Ts)))
for i in Tlist0:
Tnew = Ts[index[i]]
if Tnew not in Tpts:
Tpts.append(Tnew)
for Tpt in Tpts:
index = Ts.index( Tpt )
try:
datfiles.append( [ fs[ index ], u, Ts[index] ] )
except:
print "problem adding U=",u, "T=",Ts
raise
# Need to make sure that selected T values stride both
# sides of the point
#print
#print u
#print Ts
#print dT
#print index
#print fs
# for i in range(min(3, len(Ts))):
# try:
# datfiles.append( [ fs[index[i]], u, Ts[index[i]] ] )
# except:
# print "problem adding U=",u, "T=",Ts
# raise
#
#datfiles.append( [ fs[index[1]], u, Ts[index[1]] ] )
#print datfiles
MUCOL = 0
DENSCOL = 1
ENTRCOL = 2
SPICOL = 3
CMPRCOL = 4
CMPRBCOL = 5
STHCOL = 7
if QTY == 'spi':
COL = SPICOL
elif QTY == 'sth':
COL = STHCOL
elif QTY == 'entropy':
COL = ENTRCOL
elif QTY == 'density':
COL = DENSCOL
elif QTY == 'kappa':
COL = CMPRCOL
logger.debug("number of nearby points = " + str(len(datfiles)))
basedat = []
basedaterr = []
datserr = []
for mm, f in enumerate(datfiles):
# f[0] is the datafile name
# f[1] is U
# f[2] is T
radius = kwargs.get('radius', np.nan )
msg = 'U={:0.2f}, T={:0.2f}'.format(U,T) + \
' mu={:0.2f}, r={:0.2f}, Upt={:0.3f}, Tpt={:0.3f}'.\
format(mu, radius, f[1], f[2])
try:
dat = np.loadtxt(f[0])
spival = get_qty_mu( dat, mu, MUCOL, COL, msg=msg )
# Toggle the false here to plot all of the out of bounds
if spival == 'out-of-bounds':
#spival_symmetry =
logger.info('qty is out of bounds')
basedaterr.append( [f[1], f[2], np.nan] )
datserr.append( dat )
if False:
fig = plt.figure( figsize=(3.5,3.5))
gs = matplotlib.gridspec.GridSpec( 1,1 ,\
left=0.15, right=0.96, bottom=0.12, top=0.88)
ax = fig.add_subplot( gs[0] )
ax.grid(alpha=0.5)
ax.plot( dat[:,MUCOL], dat[:,COL], '.-')
ax.axvline( mu )
ax.text( 0.5, 1.05, msg, ha='center', va='bottom', \
transform=ax.transAxes, fontsize=6.)
if matplotlib.get_backend() == 'agg':
fig.savefig('err_mu_%02d.png'%mm, dpi=200)
plt.close(fig)
else:
plt.show()
plt.close(fig)
continue
else:
basedat.append( [f[1], f[2], spival] )
except Exception as e :
print "Failed to get data from file = ", f
# toggle plotting, not implemented yet:
if True:
fig = plt.figure( figsize=(3.5,3.5))
gs = matplotlib.gridspec.GridSpec( 1,1 ,\
left=0.15, right=0.96, bottom=0.12, top=0.88)
ax = fig.add_subplot( gs[0] )
ax.grid(alpha=0.5)
ax.plot( dat[:,MUCOL], dat[:,COL], '.-')
ax.axvline( mu )
ax.text( 0.5, 1.05, msg, ha='center', va='bottom', \
transform=ax.transAxes)
if matplotlib.get_backend() == 'agg':
fig.savefig('err_mu_%02d.png'%mm, dpi=200)
else:
plt.show()
raise e
logger.debug("number of nearby valid points = " + str(len(basedat)))
error = False
points = None
# MAKE THE TRIANGULATION
basedat = np.array(basedat)
try :
Us = np.unique(basedat[:,0] )
Ts = np.unique(basedat[:,1] )
except:
print "==============================="
print " error summary "
print kwargs.get('title_text', 'no-title')
print msg0
print "basedat = ", basedat
print "datfiles = ", datfiles
print "us = ", us
raise
validTriang = not ( len(Us) ==1 or len(Ts) == 1 )
#print "#Us={:d}, #Ts={:d}".format( len(Us), len(Ts) )
#print msg
if validTriang:
points = _ndim_coords_from_arrays(( basedat[:,0] , basedat[:,1]))
#print "Closest dat = ", basedat
#finterp = CloughTocher2DInterpolator(points, basedat[:,2])
finterp = LinearNDInterpolator( points, basedat[:,2] )
else:
logerr = 'not enough finterp points, QTY=%s'%QTY + '\n' + msg + '\n' \
+ "number of basedat pts = " + str(len(basedat))
print basedat
print "len Us = ", len(Us)
print "len Ts = ", len(Ts)
print "len 'out-of-bounds' = ", len( basedaterr )
if len( basedaterr ) > 0:
for bb, bdaterr in enumerate(basedaterr):
msgbb = 'U={:0.2f}, T={:0.2f}'.format(U,T) +\
' mu={:0.2f}, r={:0.2f}, Upt={:0.3f}, Tpt={:0.3f}'.\
format(mu, radius, basedaterr[bb][0], basedaterr[bb][1] )
daterr = datserr[bb]
fig = plt.figure( figsize=(3.5,3.5))
gs = matplotlib.gridspec.GridSpec( 1,1 ,\
left=0.15, right=0.96, bottom=0.12, top=0.88)
ax = fig.add_subplot( gs[0] )
ax.grid(alpha=0.5)
ax.plot( daterr[:,MUCOL], daterr[:,COL], '.-')
ax.axvline( mu )
ax.text( 0.5, 1.05, msgbb, ha='center', va='bottom', \
transform=ax.transAxes, fontsize=6.)
if matplotlib.get_backend() == 'agg':
fig.savefig('err_mu_%02d.png'%bb, dpi=200)
plt.close(fig)
else:
plt.show()
plt.close(fig)
logger.exception(logerr)
raise ValueError('finterp')
if points == None:
logger.warning( "points object is None" )
if error == False:
try:
result = finterp( U,T )
if np.isnan(result):
if U >= 30.0 and U <=32.5:
result = finterp( 29.99, T )
logger.warning(" qmc: U={:0.1f} replaced to U=29.99 ".\
format(U) )
if np.isnan(result):
raise Exception("\n!!!! qmc: Invalid result, QTY:%s!!!!\n"%QTY \
+ msg0)
except Exception as e:
if kwargs.get('error_nan', False):
return np.nan
else:
error = True
logger.exception("Invalid QTY result!")
if error == False:
if result >= 8. and QTY == 'spi' :
print " Obtained Spi > 8. : U={:0.2f}, T={:0.2f}, mu={:0.2f}".\
format( U, T, mu ),
print " ==> Spi={:0.2f}".format(float(result))
error = True
elif result >=4. and QTY == 'entropy':
print " Obtained Ent > 4. : U={:0.2f}, T={:0.2f}, mu={:0.2f}".\
format( U, T, mu ),
print " ==> Result={:0.2f}".format(float(result))
error = True
logger.debug("error status = " + str(error))
if error or kwargs.get('showinterp',False):
logger.debug("Inside error if statement...")
if kwargs.get('error_nan', False):
pass
#return np.nan
#print "Interp points:"
#print basedat
if len(basedat) == 0 and len(basedaterr) > 0 :
basedaterr = np.array(basedaterr)
Userr = np.unique(basedaterr[:,0] )
Tserr = np.unique(basedaterr[:,1] )
validTriangerr = not ( len(Userr) ==1 or len(Tserr) == 1 )
points = _ndim_coords_from_arrays(( basedaterr[:,0] , basedaterr[:,1]))
tri = Delaunay(points)
else:
tri = Delaunay(points)
fig = plt.figure( figsize=(3.5,3.5))
gs = matplotlib.gridspec.GridSpec( 1,1 ,\
left=0.15, right=0.96, bottom=0.12, top=0.88)
ax = fig.add_subplot( gs[0] )
ax.grid(alpha=0.5)
ax.triplot(points[:,0], points[:,1], tri.simplices.copy())
ax.plot(points[:,0], points[:,1], 'o')
ax.plot( U, T, 'o', ms=6., color='red')
xlim = ax.get_xlim()
dx = (xlim[1]-xlim[0])/10.
ax.set_xlim( xlim[0]-dx, xlim[1]+dx )
ylim = ax.get_ylim()
dy = (ylim[1]-ylim[0])/10.
ax.set_ylim( ylim[0]-dy, ylim[1]+dy )
ax.set_xlabel('$U/t$')
ax.set_ylabel('$T/t$',rotation=0,labelpad=8)
tt = kwargs.get('title_text','')
ax.set_title( tt + '$U/t={:.2f}$'.format(U) + \
',\ \ ' + '$T/t={:.2f}$'.format(T) + \
',\ \ ' + r'$\mu={:.2f}$'.format(mu) + \
',\ \ ' + QTY , \
ha='center', va='bottom', fontsize=10)
save_err = kwargs.get('save_err',None)
if save_err is not None:
print "Saving png."
fig.savefig( save_err, dpi=300)
if matplotlib.get_backend() == 'agg':
fig.savefig('err.png', dpi=200)
print "Saved error to err.png"
else:
plt.show()
if not kwargs.get('single', False):
raise ValueError("Could not interpolate using QMC data.")
if ALLPTS:
if 'savepath' in kwargs.keys():
fig.savefig( kwargs.get('savepath',None) , dpi=300)
if error:
raise
return result
def qmc_dens( T, t, mu, U, ignoreLowT=False, verbose=True):
U_ = U/t
T_ = T/t
mu_ = mu/t
result = np.empty_like(mu)
for i in range( len(mu_)):
result[i] = find_closest_qmc( U=U_[i], T=T_[i], mu=mu_[i], \
QTY='density' )
return result
def qmc_entr( T, t, mu, U, ignoreLowT=False, verbose=True):
U_ = U/t
T_ = T/t
mu_ = mu/t
result = np.empty_like(mu)
for i in range( len(mu_)):
result[i] = find_closest_qmc( U=U_[i], T=T_[i], mu=mu_[i], \
QTY='entropy' )
return result
def qmc_spi( T, t, mu, U, ignoreLowT=False, verbose=True):
U_ = U/t
T_ = T/t
mu_ = mu/t
result = np.empty_like(mu)
for i in range( len(mu_)):
result[i] = find_closest_qmc( U=U_[i], T=T_[i], mu=mu_[i], \
QTY='spi' )
return result
def qmc_cmpr( T, t, mu, U, ignoreLowT=False, verbose=True):
U_ = U/t
T_ = T/t
mu_ = mu/t
result = np.empty_like(mu)
for i in range( len(mu_)):
result[i] = find_closest_qmc( U=U_[i], T=T_[i], mu=mu_[i], \
QTY='kappa' )
return result