From 3bb3ce971e5dfe65bbebaaacb3a3a5e9770b10c0 Mon Sep 17 00:00:00 2001 From: Lucas Alegre Date: Mon, 13 Feb 2023 11:27:28 +0100 Subject: [PATCH] Automatic generation of tests (#37) * Make tests parameterizable * Add nondeterministic flag to mo-highway * Fix minecart observation bounds * Fix water-reservoir observation dtype --- mo_gymnasium/envs/highway/__init__.py | 4 +- mo_gymnasium/envs/minecart/minecart.py | 2 +- mo_gymnasium/envs/water_reservoir/dam_env.py | 6 +- tests/test_envs.py | 214 +++++++++---------- 4 files changed, 109 insertions(+), 117 deletions(-) diff --git a/mo_gymnasium/envs/highway/__init__.py b/mo_gymnasium/envs/highway/__init__.py index e3020e67..00f66d3e 100644 --- a/mo_gymnasium/envs/highway/__init__.py +++ b/mo_gymnasium/envs/highway/__init__.py @@ -1,6 +1,6 @@ from gymnasium.envs.registration import register -register(id="mo-highway-v0", entry_point="mo_gymnasium.envs.highway.highway:MOHighwayEnv") +register(id="mo-highway-v0", entry_point="mo_gymnasium.envs.highway.highway:MOHighwayEnv", nondeterministic=True) -register(id="mo-highway-fast-v0", entry_point="mo_gymnasium.envs.highway.highway:MOHighwayEnvFast") +register(id="mo-highway-fast-v0", entry_point="mo_gymnasium.envs.highway.highway:MOHighwayEnvFast", nondeterministic=True) diff --git a/mo_gymnasium/envs/minecart/minecart.py b/mo_gymnasium/envs/minecart/minecart.py index 819e56a6..ee653442 100644 --- a/mo_gymnasium/envs/minecart/minecart.py +++ b/mo_gymnasium/envs/minecart/minecart.py @@ -177,7 +177,7 @@ def __init__( dtype=np.uint8, ) else: - self.observation_space = Box(np.zeros(7), np.ones(7), dtype=np.float32) + self.observation_space = Box(-np.ones(7), np.ones(7), dtype=np.float32) self.action_space = Discrete(6) self.reward_space = Box(low=-1, high=self.capacity, shape=(self.ore_cnt + 1,)) diff --git a/mo_gymnasium/envs/water_reservoir/dam_env.py b/mo_gymnasium/envs/water_reservoir/dam_env.py index 7e1e7916..8aa718de 100644 --- a/mo_gymnasium/envs/water_reservoir/dam_env.py +++ b/mo_gymnasium/envs/water_reservoir/dam_env.py @@ -94,9 +94,9 @@ def reset(self, *, seed: Optional[int] = None, options: Optional[dict] = None): if not self.penalize: state = self.np_random.choice(DamEnv.s_init, size=1) else: - state = self.np_random.randint(0, 160, size=1).astype(np.float32) + state = self.np_random.randint(0, 160, size=1) - self.state = np.array(state) + self.state = np.array(state, dtype=np.float32) return self.state, {} def step(self, action): @@ -112,7 +112,7 @@ def step(self, action): action = bounded_action dam_inflow = self.np_random.normal(DamEnv.DAM_INFLOW_MEAN, DamEnv.DAM_INFLOW_STD, len(self.state)) # small chance dam_inflow < 0 - n_state = np.clip(self.state + dam_inflow - action, 0, None) + n_state = np.clip(self.state + dam_inflow - action, 0, None).astype(np.float32) # cost due to excess level wrt a flooding threshold (upstream) r0 = -np.clip(n_state / DamEnv.S - DamEnv.H_FLO_U, 0, None) + penalty diff --git a/tests/test_envs.py b/tests/test_envs.py index 7683f6ab..458bb178 100644 --- a/tests/test_envs.py +++ b/tests/test_envs.py @@ -1,142 +1,134 @@ import pickle import gymnasium as gym +import numpy as np +import pytest +from gymnasium.envs.registration import EnvSpec from gymnasium.utils.env_checker import check_env, data_equivalence import mo_gymnasium as mo_gym -from mo_gymnasium import LinearReward -def _test_pickle_env(env: gym.Env): - pickled_env = pickle.loads(pickle.dumps(env)) - - data_equivalence(env.reset(), pickled_env.reset()) - - action = env.action_space.sample() - data_equivalence(env.step(action), pickled_env.step(action)) - env.close() - pickled_env.close() - - -def test_deep_sea_treasure(): - env = mo_gym.make("deep-sea-treasure-v0") - env = LinearReward(env) - check_env(env, skip_render_check=True) - _test_pickle_env(env) - - -def test_fishwood(): - env = mo_gym.make("fishwood-v0") - env = LinearReward(env) - check_env(env, skip_render_check=True) - _test_pickle_env(env) - - -def test_four_room(): - env = mo_gym.make("four-room-v0") - env = LinearReward(env) - check_env(env, skip_render_check=True) - _test_pickle_env(env) - - -def test_minecart(): - env = mo_gym.make("minecart-v0") - env = LinearReward(env) - check_env(env, skip_render_check=True) - _test_pickle_env(env) - - -def test_mountaincar(): - env = mo_gym.make("mo-mountaincar-v0") - env = LinearReward(env) - check_env(env, skip_render_check=True) - _test_pickle_env(env) - - -def test_continuous_mountaincar(): - env = mo_gym.make("mo-mountaincarcontinuous-v0") - env = LinearReward(env) +all_testing_env_specs = [] +for env_spec in gym.envs.registry.values(): + if type(env_spec.entry_point) is not str: + continue + # collect MO Gymnasium envs + if env_spec.entry_point.split(".")[0] == "mo_gymnasium": + # Ignore highway as they do not deal with the random seed appropriately + if not env_spec.id.startswith("mo-highway"): + all_testing_env_specs.append(env_spec) + + +@pytest.mark.parametrize( + "spec", + all_testing_env_specs, + ids=[spec.id for spec in all_testing_env_specs], +) +def test_all_env_api(spec): + """Check that all environments pass the environment checker.""" + env = mo_gym.make(spec.id) + env = mo_gym.LinearReward(env) check_env(env, skip_render_check=True) _test_pickle_env(env) -def test_resource_gathering(): - env = mo_gym.make("resource-gathering-v0") - env = LinearReward(env) - check_env(env, skip_render_check=True) - _test_pickle_env(env) +@pytest.mark.parametrize("spec", all_testing_env_specs, ids=[spec.id for spec in all_testing_env_specs]) +def test_all_env_passive_env_checker(spec): + env = mo_gym.make(spec.id) + env.reset() + env.step(env.action_space.sample()) + env.close() -def test_fruit_tree(): - env = mo_gym.make("fruit-tree-v0") - env = LinearReward(env) - check_env(env, skip_render_check=True) - _test_pickle_env(env) +# Note that this precludes running this test in multiple threads. +# However, we probably already can't do multithreading due to some environments. +SEED = 0 +NUM_STEPS = 50 -def test_mario(): - env = mo_gym.make("mo-supermario-v0") - env = LinearReward(env) - check_env(env, skip_render_check=True) - _test_pickle_env(env) +@pytest.mark.parametrize( + "env_spec", + all_testing_env_specs, + ids=[env.id for env in all_testing_env_specs], +) +def test_env_determinism_rollout(env_spec: EnvSpec): + """Run a rollout with two environments and assert equality. + This test run a rollout of NUM_STEPS steps with two environments + initialized with the same seed and assert that: + - observation after first reset are the same + - same actions are sampled by the two envs + - observations are contained in the observation space + - obs, rew, done and info are equals between the two envs + """ + # Don't check rollout equality if it's a nondeterministic environment. + if env_spec.nondeterministic is True: + return + env_1 = env_spec.make(disable_env_checker=True) + env_2 = env_spec.make(disable_env_checker=True) + env_1 = mo_gym.LinearReward(env_1) + env_2 = mo_gym.LinearReward(env_2) -def test_reacher_pybullet(): - env = mo_gym.make("mo-reacher-v0") - env = LinearReward(env) - check_env(env, skip_render_check=True) - _test_pickle_env(env) + initial_obs_1, initial_info_1 = env_1.reset(seed=SEED) + initial_obs_2, initial_info_2 = env_2.reset(seed=SEED) + assert_equals(initial_obs_1, initial_obs_2) + env_1.action_space.seed(SEED) -def test_reacher_mujoco(): - env = mo_gym.make("mo-reacher-v4") - env = LinearReward(env) - check_env(env, skip_render_check=True) - _test_pickle_env(env) + for time_step in range(NUM_STEPS): + # We don't evaluate the determinism of actions + action = env_1.action_space.sample() + obs_1, rew_1, terminated_1, truncated_1, info_1 = env_1.step(action) + obs_2, rew_2, terminated_2, truncated_2, info_2 = env_2.step(action) -# TODO: failing because highway_env is not deterministic given a random seed -""" def test_highway(): - env = mo_gym.make('mo-highway-v0') - env = LinearReward(env) - check_env(env) + assert_equals(obs_1, obs_2, f"[{time_step}] ") + assert env_1.observation_space.contains(obs_1) # obs_2 verified by previous assertion -def test_highway_fast(): - env = mo_gym.make('mo-highway-fast-v0') - env = LinearReward(env) - check_env(env) """ - - -def test_halfcheetah(): - env = mo_gym.make("mo-halfcheetah-v4") - env = LinearReward(env) - check_env(env, skip_render_check=True) - _test_pickle_env(env) + assert rew_1 == rew_2, f"[{time_step}] reward 1={rew_1}, reward 2={rew_2}" + assert terminated_1 == terminated_2, f"[{time_step}] done 1={terminated_1}, done 2={terminated_2}" + assert truncated_1 == truncated_2, f"[{time_step}] done 1={truncated_1}, done 2={truncated_2}" + assert_equals(info_1, info_2, f"[{time_step}] ") + if terminated_1 or truncated_1: # terminated_2, truncated_2 verified by previous assertion + env_1.reset(seed=SEED) + env_2.reset(seed=SEED) -def test_hopper(): - env = mo_gym.make("mo-hopper-v4") - env = LinearReward(env) - check_env(env, skip_render_check=True) - _test_pickle_env(env) + env_1.close() + env_2.close() -def test_breakable_bottles(): - env = mo_gym.make("breakable-bottles-v0") - env = LinearReward(env) - check_env(env) - _test_pickle_env(env) +def _test_pickle_env(env: gym.Env): + pickled_env = pickle.loads(pickle.dumps(env)) + data_equivalence(env.reset(), pickled_env.reset()) -def test_water_reservoir(): - env = mo_gym.make("water-reservoir-v0") - env = LinearReward(env) - check_env(env, skip_render_check=True) - _test_pickle_env(env) + action = env.action_space.sample() + data_equivalence(env.step(action), pickled_env.step(action)) + env.close() + pickled_env.close() -def test_lunar_lander(): - env = mo_gym.make("mo-lunar-lander-v2") - env = LinearReward(env) - check_env(env, skip_render_check=True) - _test_pickle_env(env) +def assert_equals(a, b, prefix=None): + """Assert equality of data structures `a` and `b`. + Args: + a: first data structure + b: second data structure + prefix: prefix for failed assertion message for types and dicts + """ + assert type(a) == type(b), f"{prefix}Differing types: {a} and {b}" + if isinstance(a, dict): + assert list(a.keys()) == list(b.keys()), f"{prefix}Key sets differ: {a} and {b}" + + for k in a.keys(): + v_a = a[k] + v_b = b[k] + assert_equals(v_a, v_b) + elif isinstance(a, np.ndarray): + np.testing.assert_array_equal(a, b) + elif isinstance(a, tuple): + for elem_from_a, elem_from_b in zip(a, b): + assert_equals(elem_from_a, elem_from_b) + else: + assert a == b