-
Notifications
You must be signed in to change notification settings - Fork 1
/
MI3.1.py
113 lines (99 loc) · 3.64 KB
/
MI3.1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
# -*- coding: utf-8 -*-
"""
Created on Mon Dec 04 20:27:37 2017
@author: xsjxi
"""
#coding:utf-8
import networkx as nx
import math
#from scipy.special import comb#��Ϸ���
import matplotlib.pyplot as plt
#import warnings
#MI����
def MI(graph_file):
G = nx.read_edgelist(graph_file)
node_num = nx.number_of_nodes(G)
edge_num = nx.number_of_edges(G)
print (node_num)
print (edge_num)
sim_dict = {} # �洢���ƶȵ��ֵ�
I_pConnect_dict = {}
pDisConnect = 1
edges = nx.edges(G)
ebunch = nx.non_edges(G)
# 需要经常获取顶点的度,因此,可以事先存储下来
# degree_list = [nx.degree(G, v) for v in range(G.number_of_nodes())]
# 下面的两个循环计算$P(L^1_{xy})$,其实我们只需要计算不同度的值$P(L^1_{kxky})$
for u, v in edges:
uDegree = nx.degree(G, u)
vDegree = nx.degree(G, v)
for i in range(1,vDegree + 1):
pDisConnect = pDisConnect * (((edge_num - uDegree) - i + 1) / (edge_num - i + 1))
pConnect = 1 - pDisConnect
if pConnect == 0:
I_pConnect = -math.log2(0.0001)
else:
I_pConnect = -math.log2(pConnect)
I_pConnect_dict[(u, v)] = I_pConnect
I_pConnect_dict[(v, u)] = I_pConnect
pDisConnect = 1
for m, n in ebunch:
mDegree = nx.degree(G, m)
nDegree = nx.degree(G, n)
for i in range(1,nDegree + 1):
pDisConnect = pDisConnect * (((edge_num - mDegree) - i + 1) / (edge_num - i + 1))
pConnect = 1 - pDisConnect
if pConnect == 0:
I_pConnect = -math.log2(0.0001)
else:
I_pConnect = -math.log2(pConnect)
I_pConnect_dict[(m, n)] = I_pConnect
I_pConnect_dict[(n, m)] = I_pConnect
pDisConnect = 1
ebunchs = nx.non_edges(G)
i = 0
# $I(L^1_{xy};z) = I(L^1;z)$,与x, y没有关系,可以先计算出来
for u, v in ebunchs:
pMutual_Information = 0
I_pConnect = I_pConnect_dict[(u, v)]
for z in nx.common_neighbors(G, u, v):
neighbor_num = len(list(nx.neighbors(G,z)))
neighbor_list = nx.neighbors(G,z)
for m in range(len(neighbor_list)):
for n in range(m+1,len(neighbor_list)):
if m!=n:
I_ppConnect = I_pConnect_dict[(neighbor_list[m], neighbor_list[n])]
if nx.clustering(G,z) == 0:
pMutual_Information = pMutual_Information + (2 / (neighbor_num * (neighbor_num - 1))) * ((I_ppConnect) - (-math.log2(0.0001)))
else:
pMutual_Information = pMutual_Information + ( 2/ (neighbor_num * (neighbor_num - 1))) * ((I_ppConnect)-(-math.log2(nx.clustering(G,z))))
sim_dict[(u, v)] = -(I_pConnect - pMutual_Information)
i = i + 1
print(i)
print(str(u) + "," + str(v))
print (sim_dict[(u, v)])
return sim_dict
#MI('J:\\Python\\LinkPrediction\\Networks\\PB\\polblogs.edgelist')
#MI('J:\\Python\\LinkPrediction\\Networks\\CE\\celegansneural.edgelist')
MI('J:\\Python\\LinkPrediction\\Networks\\jazz\\jazz.edgelist')
#MI('J:\\Python\\LinkPrediction\\Networks\\Hamster\\Hamster.edgelist')
# G.add_edge(1,2)
# G.add_edge(2,5)
# G.add_edge(2,3)
# G.add_edge(3,5)
# G.add_edge(3,4)
# G.add_edge(3,6)
# G.add_edge(4,6)
# =============================================================================
# G = nx.Graph()
# G.add_edge(1,2)
# G.add_edge(1,3)
# G.add_edge(1,4)
# G.add_edge(2,4)
# G.add_edge(2,5)
# G.add_edge(5,6)
# G.add_edge(5,7)
# G.add_edge(6,7)
# G.add_edge(6,8)
# G.add_edge(7,8)
# MI(G)