Table of Contents
FlexibleSUSY contains several packages with general algorithms needed in Quantum Field Theory calculations and implementations of analytic expressions from the literature.
meta/LoopFunctions.m
contains an implementation of
Passarino-Veltman 1-loop functions A_0, B_0,
B_1, B_{00}, B_{11}, etc.
meta/LoopFunctionsZeroMomentum.m
contains an implementation of the
Passarino-Veltman 1-loop functions A_0, B_0,
\frac{\partial B_0}{\partial p^2}, C_0, D_0,
E_0 and F_0 for zero external momenta.
Example:
Get["meta/LoopFunctionsZeroMomentum.m"]; F0[x,x,x,x,x,x,q] //. loopFunctionsZeroMomentum
yields:
1/(20*x^4)
meta/RGIntegrator.m
contains a routine, which perturbatively
integrates a system of coupled renormalization group equations:
Get["meta/RGIntegrator.m"]; ?RGIntegrate
Example 1: Integrating a single RGE up to 2-loop order:
Get["meta/RGIntegrator.m"]; betas = { {g, h a g^2} }; RGIntegrate[betas, Q1, Q2, loopOrder -> 2]
yields:
{g[Q1] -> g[Q2] + a h g[Q2]^2 Log[Q1/Q2] + a^2 h^2 g[Q2]^3 Log[Q1/Q2]^2}
Example 2: Interation of the following coupled system:
Get["meta/RGIntegrator.m"]; betas = { {g, h a g^2, h^2 b g^2 l^2}, {l, h (c l^2 + d g^2), h^2 (e l^4 + f g^2 l^2)} }; RGIntegrate[betas, Q1, Q2]
yields:
{g[Q1] -> g[Q2] + a*h*g[Q2]^2*Log[Q1/Q2] + h^2*(b*g[Q2]^2*l[Q2]^2*Log[Q1/Q2] + a^2*g[Q2]^3*Log[Q1/Q2]^2), l[Q1] -> l[Q2] + h*(d*g[Q2]^2*Log[Q1/Q2] + c*l[Q2]^2*Log[Q1/Q2]) + h^2*(f*g[Q2]^2*l[Q2]^2*Log[Q1/Q2] + e*l[Q2]^4*Log[Q1/Q2] + a*d*g[Q2]^3*Log[Q1/Q2]^2 + c*d*g[Q2]^2*l[Q2]*Log[Q1/Q2]^2 + c^2*l[Q2]^3*Log[Q1/Q2]^2)}
meta/ThreeLoopSM.m
contains a routine which returns the beta
functions of the Standard Model up to the 5-loop level. The beta
functions are stored in the files meta/SM/beta_*.m
, which have
been obtained at 3-loop level from [1303.4364], [1504.05200] with
some additional 4- and 5-loop corrections from [1508.00912],
[1508.02680], [1604.00853], [1606.08659].
Note
The loop factors 1/(4\pi)^2 have been omitted.
Example: Extracting the 5-loop QCD beta function for g_3:
b = Get["meta/SM/beta_g3.m"]; bg3 = { k^1 b[[1]], k^2 b[[2]], k^3 b[[3]], k^4 b[[4]], k^5 b[[5]] }; bg3 /. { g1 -> 0, g2 -> 0, gb -> 0, gt -> 0 } // Chop
Output:
{ -7*g3^3*k, -26*g3^5*k^2, (65*g3^7*k^3)/2, -2472.2837425797156*g3^9*k^4, 271.4283824198132*g3^11*k^5 }
meta/ThreeLoopMSSM.m
contains a routine which returns the beta
functions of the MSSM up to the 3-loop level. The beta functions are
stored in the files meta/MSSM/beta_*.m
, which have been obtained
from http://www.liv.ac.uk/~dij/betas/allgennb.log [hep-ph:0308231].
Example: Extracting the 3-loop QCD beta function for g_3 in the MSSM:
trace[args__] := Tr[Dot[args]]; Adj = ConjugateTranspose; Yt = Yb = Ye = Array[0&, {3,3}]; b = Get["meta/MSSM/beta_g3.m"]; bg3 = { k^1 b[[1]], k^2 b[[2]], k^3 b[[3]] }; bg3 /. { g1 -> 0, g2 -> 0 }
Output:
{-3*g3^3*k, 14*g3^5*k^2, (347*g3^7*k^3)/3}
meta/SM/Mh2_effpot.m
contains the QCD contributions to the 4-loop
effective Higgs potential in the Standard Model from [1508.00912]
Example:
Get["meta/SM/Mh2_effpot.m"]; k = 1/(4 Pi)^2; yt = 0.9; g3 = 1.166; v = 247.5; \[Lambda] = 0.25; mu2 = -8.55 10^3; mt = yt v / Sqrt[2]; Q = 173.34; Sqrt[DMh2]
Output:
124.926
meta/ThreeLoopQCD.m
contains a routine, which returns the ratio of
the \overline{\text{MS}} top mass over the top pole mass in
the SM up to 3-loop level in QCD from [hep-ph:9912391], Eq. (10).
The expression contains the full renormalization scale dependence,
which has been taken from [hep-ph:9911434].
Example:
Get["meta/ThreeLoopQCD.m"]; Start["SM"]; FlexibleSUSY`M[Fu] = mt; h = k (4 Pi)^2; MfOvermf = GetMTopPoleOverMTopMSbar[{1,h,h^2,h^3}] /. { Log[Q^2/mt^2] -> -Lbar[t], Log[mt^2/Q^2] -> Lbar[t] }; Mt = mt N[Collect[MfOvermf, {k, g3, Lbar[__]}, Simplify]]
Output:
mt*(1 + g3^2*k*(5.333333333333333 - 4*Lbar[t]) + g3^4*k^2*(131.78498721717762 - 80.66666666666667*Lbar[t] + 22*Lbar[t]^2) + g3^6*k^3*(4712.740192659316 - 2031.1382275647934*Lbar[t] + 710*Lbar[t]^2 - 132*Lbar[t]^3))
meta/TwoLoopQCD.m
contains routines, which return the ratio of the
top pole mass over the running top mass up to the 2-loop level in the
\overline{\text{MS}} and \overline{\text{DR}} schemes
[hep-ph:0210258], [hep-ph:9803493].
meta/TwoLoopMSSM.m
contains routines, which return the
analytic 2-loop corrections to the Higgs masses in the CP-conserving
MSSM [hep-ph:0105096].
meta/SM/mf_3loop_qcd.m
contains the 3-loop relation between a quark pole
mass and the corresponding running \overline{\text{MS}} mass
from [hep-ph:9912391], [hep-ph:9911434].
Example:
Get["meta/SM/mf_3loop_qcd.m"]; L = Lbar[t]; NL = 5; (* number of light quark masses *) NH = 1; (* number of heavy quark masses *) Mt = mt N[Collect[MfOvermf, {k, g3, Lbar[__]}, Simplify]]
Output:
mt*(1 + g3^2*k*(5.333333333333333 - 4*Lbar[t]) + g3^4*k^2*(131.78498721717762 - 80.66666666666667*Lbar[t] + 22*Lbar[t]^2) + g3^6*k^3*(4712.740192659316 - 2031.1382275647934*Lbar[t] + 710*Lbar[t]^2 - 132*Lbar[t]^3))
meta/SM/mt_4loop_qcd.m
contains the 4-loop QCD relation between
the top quark pole mass and the corresponding running
\overline{\text{MS}} mass from [1604.01134].
Example:
Get["meta/SM/mt_4loop_qcd.m"]; L = Lbar[t]; Mt = mt N[Collect[MtOvermt, {k, g3, Lbar[__]}, Simplify]]
Output:
mt*(1 + g3^2*k*(5.333333333333333 - 4*Lbar[t]) + g3^4*k^2*(131.78498721717762 - 80.66666666666667*Lbar[t] + 22*Lbar[t]^2) + g3^6*k^3*(4712.740192659316 - 2031.1382275647934*Lbar[t] + 710*Lbar[t]^2 - 132*Lbar[t]^3) + g3^8*k^4*(211681.74421123447 - 104673.38261571848*Lbar[t] + 22162.91142653778*Lbar[t]^2 - 5638*Lbar[t]^3 + 825*Lbar[t]^4))
meta/SM/mt_2loop_gaugeless.m
contains the 2-loop relation between
the top quark pole mass and the corresponding running
\overline{\text{MS}} mass from [1604.01134] in the gaugeless
limit. Contributions of O(\alpha_s^2, \alpha_s\alpha_t,
\alpha_t^2, \alpha_t\lambda^n) are included. The relation is
gauge-independent.
meta/SM/as_4loop_qcd.m
contains the 4-loop QCD relation between
the strong coupling \alpha_s^{n_f} with n_f flavours
and \alpha_s^{n_l} with n_l = n_f - 1 flavours in the
\overline{\text{MS}} scheme [hep-ph:0512060].
Example:
nl = 5; L = Log[Q^2/mf[Q]^2]; alphaS = Get["meta/SM/as_4loop_qcd.m"];
meta/THDM/Thresholds_1L_full.m
contains the implementation of the
complete analytic 1-loop threshold corrections of the THDM and the
THDM + Higgsinos + gauginos to the MSSM [0901.2065].
Example:
Get["meta/THDM/Thresholds_1L_full.m"]; tc = (4 Pi)^2 GetTHDMThresholds1L[]; $Assumptions = { Element[ht, Reals], Element[Mu, Reals], Element[At, Reals] }; Yu[i_, k_] := DiagonalMatrix[{0,0,ht}][[i,k]]; Tu[i_, k_] := DiagonalMatrix[{0,0,ht At}][[i,k]]; Yd[__] := 0; Ye[__] := 0; Td[__] := 0; Te[__] := 0; g2 = gY = 0; {l1, l2, l3, l4, l5, l6, l7} = Collect[tc, ht, Simplify]
Output:
{ -3*ht^4*Mu^4*D0[msq[3], msq[3], msu[3], msu[3]], -3*ht^4*(B0[msq[3], msq[3], Q] + B0[msu[3], msu[3], Q] + At^2*(2*C0[msq[3], msq[3], msu[3]] + 2*C0[msq[3], msu[3], msu[3]] + At^2*D0[msq[3], msq[3], msu[3], msu[3]])), -3*ht^4*Mu^2*(C0[msq[3], msu[3], msu[3]] + At^2*D0[msq[3], msq[3], msu[3], msu[3]]), -3*ht^4*Mu^2*(C0[msq[3], msq[3], msu[3]] + At^2*D0[msq[3], msq[3], msu[3], msu[3]]), -3*At^2*ht^4*Mu^2*D0[msq[3], msq[3], msu[3], msu[3]], 3*At*ht^4*Mu^3*D0[msq[3], msq[3], msq[3], msq[3]], 3*At*ht^4*Mu*(C0[msq[3], msq[3], msu[3]] + C0[msq[3], msu[3], msu[3]] + At^2*D0[msq[3], msq[3], msq[3], msq[3]]) }
meta/MSSM/tquark_2loop_strong.m
contains the analytic
expression for the 2-loop relation O(\alpha_s^2) between the top
quark pole mass and the \overline{\text{DR}} top mass in the
MSSM [hep-ph:0210258], [hep-ph:0507139].
meta/MSSM/bquark_2loop_sqcd_decoupling.m
contains the analytic
expression for the 2-loop relation O(\alpha_s^2) between the
\overline{\text{MS}} bottom quark mass in the Standard Model
(without the top quark) and the \overline{\text{DR}} bottom
mass in the MSSM [0707.0650].
meta/MSSM/dmtauas2.m
contains the analytic expression for the
2-loop relation between the tau lepton pole mass and the
\overline{\text{DR}} tau mass in the MSSM.
meta/MSSM/das2.m
contains the analytic expression for the 2-loop
relation between the \overline{\text{MS}} \alpha_s in
the Standard Model (without the top quark) and the
\overline{\text{DR}} value in the MSSM [hep-ph:0509048],
[0810.5101], [1009.5455].
meta/TextFormatting.m
contains routines for text formatting of
long expressions in C/C++ form, see WrapText[]
and
IndentText[]
.
Example: Formatting long expression:
Get["meta/TextFormatting.m"]; (* long expression *) dmt = Get["meta/MSSM/tquark_2loop_strong.m"]; maxWidth = 70; indent = 3; "dmt = " <> WrapText[ToString[dmt, CForm], maxWidth, indent]
Output:
dmt = (Power(GS,4)*((-11*colorCA*colorCF*MGl*mmst1*s2t)/(-mmgl + mmst1) + (6 *Power(colorCF,2)*MGl*mmst1*s2t)/(-mmgl + mmst1) - (6*Power(colorCF ,2)*MGl*mmst2*s2t)/(-mmgl + mmst1) + (6*Power(colorCF,2)*MGl*mmst1* mmst2*s2t)/((-mmgl + mmst1)*(mmst1 - mmst2)) - (6*Power(colorCF,2)* MGl*Power(mmst2,2)*s2t)/((-mmgl + mmst1)*(mmst1 - mmst2)) + (11* colorCA*colorCF*MGl*mmst2*s2t)/(-mmgl + mmst2) - (6*Power(colorCF,2 )*MGl*mmst2*s2t)/(-mmgl + mmst2) - (Power(colorCF,2)*MGl*mmst1* Power(s2t,3))/(-mmgl + mmst1) + (7*Power(colorCF,2)*MGl*mmst2*Power (s2t,3))/(-mmgl + mmst1) - (6*Power(colorCF,2)*MGl*mmst1*mmst2*[...]
[hep-ph:9803493] | Nucl.Phys. B539 (1999) 671-690 [arXiv:hep-ph/9803493] |
[hep-ph:9911434] | (1, 2) Nucl.Phys. B573 (2000) 617-651 [arXiv:hep-ph/9911434] |
[hep-ph:9912391] | (1, 2) Phys.Lett. B482 (2000) 99-108 [arXiv:hep-ph/9912391] |
[hep-ph:0105096] | Nucl.Phys. B611 (2001) 403-422 [arXiv:hep-ph/0105096] |
[hep-ph:0210258] | (1, 2) Eur.Phys.J. C29 (2003) 87-101 [arXiv:hep-ph/0210258] |
[hep-ph:0308231] | Phys.Lett. B579 (2004) 180-188 [arXiv:hep-ph/0308231] |
[hep-ph:0507139] | Phys.Atom.Nucl. 71 (2008) 343-350 [arXiv:hep-ph/0507139] |
[hep-ph:0509048] | Phys.Rev. D72 (2005) 095009 [arXiv:hep-ph/0509048] |
[hep-ph:0512060] | Nucl.Phys. B744 (2006) 121-135 [arXiv:hep-ph/0512060] |
[0707.0650] | Int.J.Mod.Phys. A22 (2007) 5245-5277 [arXiv:0707.0650] |
[0810.5101] | JHEP 0902 (2009) 037 [arXiv:0810.5101] |
[0901.2065] | Phys.Rev. D84 (2011) 034030 [arXiv:0901.2065] |
[1009.5455] | C10-06-06.1 [arXiv:1009.5455] |
[1303.4364] | Nucl.Phys. B875 (2013) 552-565 [arXiv:1303.4364] |
[1504.05200] | JHEP 1507 (2015) 159 [arXiv:1504.05200] |
[1508.00912] | (1, 2) Phys.Rev. D92 (2015) no.5, 054029 [arXiv:1508.00912] |
[1508.02680] | Phys.Lett. B762 (2016) 151-156 [arXiv:1508.02680] |
[1604.00853] | JHEP 1606 (2016) 175 [arXiv:1604.00853] |
[1604.01134] | (1, 2) Phys.Rev. D93 (2016) no.9, 094017 [arXiv:1604.01134] |
[1606.08659] | Phys.Rev.Lett. 118 (2017) no.8, 082002 [arXiv:1606.08659] |