Table of Contents
NUHMSSMNoFVHimalaya (non-universal Higgs MSSM without flavour violation + Himalaya) is an implementation of the MSSM without flavour violation. The Himalaya library [1708.05720] is linked to this model to include 3-loop corrections of O(\alpha_t\alpha_s^2) [0803.0672], [1005.5709] to the light CP-even Higgs pole mass. The setup of NUHMSSMNoFVHimalaya is shown in the following figure.
In order to use the 3-loop contributions to the light CP-even Higgs
mass from the Himalaya library, the NUHMSSMNoFVHimalaya must be
configured with the --enable-himalaya
flag:
./createmodel --name=NUHMSSMNoFVHimalaya ./configure --with-models=NUHMSSMNoFVHimalaya \ --enable-himalaya \ --with-himalaya-incdir=${HIMALAYA_DIR}/source/include \ --with-himalaya-libdir=${HIMALAYA_DIR}/build make
In the above example HIMALAYA_DIR
is the path to the Himalaya
directory.
NUHMSSMNoFVHimalaya takes the following physics parameters as input:
Parameter | Description | SLHA block/field | Mathematica symbol |
---|---|---|---|
Q_{\text{in}} | input scale | EXTPAR[0] |
Qin |
M_1(M_\text{SUSY}) | Bino mass | EXTPAR[1] |
M1 |
M_2(M_\text{SUSY}) | Wino mass | EXTPAR[2] |
M2 |
M_3(M_\text{SUSY}) | Gluino mass | EXTPAR[3] |
M3 |
A_t(M_\text{SUSY}) | trililear stop coupling | EXTPAR[11] |
AtIN |
A_b(M_\text{SUSY}) | trililear sbottom coupling | EXTPAR[12] |
AbIN |
A_\tau(M_\text{SUSY}) | trililear stau coupling | EXTPAR[13] |
AtauIN |
A_c(M_\text{SUSY}) | trililear scharm coupling | EXTPAR[14] |
AcIN |
A_s(M_\text{SUSY}) | trililear sstrange coupling | EXTPAR[15] |
AsIN |
A_\mu(M_\text{SUSY}) | trililear smuon coupling | EXTPAR[16] |
AmuonIN |
A_u(M_\text{SUSY}) | trililear sup coupling | EXTPAR[17] |
AuIN |
A_d(M_\text{SUSY}) | trililear sdown coupling | EXTPAR[18] |
AdIN |
A_e(M_\text{SUSY}) | trililear selectron coupling | EXTPAR[19] |
AeIN |
\mu(M_\text{SUSY}) | \mu-parameter | EXTPAR[23] |
MuIN |
m_A^2(M_\text{SUSY}) | running CP-odd Higgs mass | EXTPAR[24] |
mA2IN |
(m_{\tilde{l}}^2)_{11}(M_\text{SUSY}) | soft-breaking 1st generation left-handed slepton mass parameters | EXTPAR[31] |
ml11IN |
(m_{\tilde{l}}^2)_{22}(M_\text{SUSY}) | soft-breaking 2nd generation left-handed slepton mass parameters | EXTPAR[32] |
ml22IN |
(m_{\tilde{l}}^2)_{33}(M_\text{SUSY}) | soft-breaking 3rd generation left-handed slepton mass parameters | EXTPAR[33] |
ml33IN |
(m_{\tilde{e}}^2)_{11}(M_\text{SUSY}) | soft-breaking 1st generation right-handed slepton mass parameters | EXTPAR[34] |
me11IN |
(m_{\tilde{e}}^2)_{22}(M_\text{SUSY}) | soft-breaking 2nd generation right-handed slepton mass parameters | EXTPAR[35] |
me22IN |
(m_{\tilde{e}}^2)_{33}(M_\text{SUSY}) | soft-breaking 3rd generation right-handed slepton mass parameters | EXTPAR[36] |
me33IN |
(m_{\tilde{q}}^2)_{11}(M_\text{SUSY}) | soft-breaking 1st generation left-handed squark mass parameters | EXTPAR[41] |
mq11IN |
(m_{\tilde{q}}^2)_{22}(M_\text{SUSY}) | soft-breaking 2nd generation left-handed squark mass parameters | EXTPAR[42] |
mq22IN |
(m_{\tilde{q}}^2)_{33}(M_\text{SUSY}) | soft-breaking 3rd generation left-handed squark mass parameters | EXTPAR[43] |
mq33IN |
(m_{\tilde{u}}^2)_{11}(M_\text{SUSY}) | soft-breaking 1st generation right-handed up-type squark mass parameters | EXTPAR[44] |
mu11IN |
(m_{\tilde{u}}^2)_{22}(M_\text{SUSY}) | soft-breaking 2nd generation right-handed up-type squark mass parameters | EXTPAR[45] |
mu22IN |
(m_{\tilde{u}}^2)_{33}(M_\text{SUSY}) | soft-breaking 3rd generation right-handed up-type squark mass parameters | EXTPAR[46] |
mu33IN |
(m_{\tilde{d}}^2)_{11}(M_\text{SUSY}) | soft-breaking 1st generation right-handed down-type squark mass parameters | EXTPAR[47] |
md11IN |
(m_{\tilde{d}}^2)_{22}(M_\text{SUSY}) | soft-breaking 2nd generation right-handed down-type squark mass parameters | EXTPAR[48] |
md22IN |
(m_{\tilde{d}}^2)_{33}(M_\text{SUSY}) | soft-breaking 3rd generation right-handed down-type squark mass parameters | EXTPAR[49] |
md33IN |
M_\text{low} | scale where the SM(5) is matched to the MSSM | EXTPAR[100] |
Mlow |
\tan\beta(M_Z) | \tan\beta(M_Z)=v_u(M_Z)/v_d(M_Z) | MINPAR[3] |
TanBeta |
All MSSM parameters, except for \tan\beta, are defined in the \overline{\text{DR}} scheme at the scale M_{\text{SUSY}}. \tan\beta is defined in the \overline{\text{DR}} scheme at the scale M_Z.
We recommend to run NUHMSSMNoFVHimalaya with the following configuration flags: In an SLHA input file we recommend to use:
Block FlexibleSUSY 0 1.0e-05 # precision goal 1 0 # max. iterations (0 = automatic) 2 0 # algorithm (0 = all, 1 = two_scale, 2 = semi_analytic) 3 0 # calculate SM pole masses 4 3 # pole mass loop order 5 3 # EWSB loop order 6 3 # beta-functions loop order 7 2 # threshold corrections loop order 8 1 # Higgs 2-loop corrections O(alpha_t alpha_s) 9 1 # Higgs 2-loop corrections O(alpha_b alpha_s) 10 1 # Higgs 2-loop corrections O(alpha_t^2 + alpha_t alpha_b + alpha_b^2) 11 1 # Higgs 2-loop corrections O(alpha_tau^2) 12 0 # force output 13 1 # Top pole mass QCD corrections (0 = 1L, 1 = 2L, 2 = 3L) 14 1.0e-11 # beta-function zero threshold 15 0 # calculate observables (a_muon, ...) 16 0 # force positive majorana masses 17 0 # pole mass renormalization scale (0 = SUSY scale) 18 0 # pole mass renormalization scale in the EFT (0 = min(SUSY scale, Mt)) 19 0 # EFT matching scale (0 = SUSY scale) 20 2 # EFT loop order for upwards matching 21 1 # EFT loop order for downwards matching 22 0 # EFT index of SM-like Higgs in the BSM model 23 1 # calculate BSM pole masses 24 122111221 # individual threshold correction loop orders 25 0 # ren. scheme for Higgs 3L corrections (0 = DR, 1 = MDR) 26 1 # Higgs 3-loop corrections O(alpha_t alpha_s^2) 27 1 # Higgs 3-loop corrections O(alpha_b alpha_s^2) 28 1 # Higgs 3-loop corrections O(alpha_t^2 alpha_s) 29 1 # Higgs 3-loop corrections O(alpha_t^3) 30 1 # Higgs 4-loop corrections O(alpha_t alpha_s^3)
In the Mathematica interface we recommend to use:
handle = FSNUHMSSMNoFVHimalayaOpenHandle[ fsSettings -> { precisionGoal -> 1.*^-5, (* FlexibleSUSY[0] *) maxIterations -> 0, (* FlexibleSUSY[1] *) solver -> 0, (* FlexibleSUSY[2] *) calculateStandardModelMasses -> 0, (* FlexibleSUSY[3] *) poleMassLoopOrder -> 3, (* FlexibleSUSY[4] *) ewsbLoopOrder -> 3, (* FlexibleSUSY[5] *) betaFunctionLoopOrder -> 3, (* FlexibleSUSY[6] *) thresholdCorrectionsLoopOrder -> 2,(* FlexibleSUSY[7] *) higgs2loopCorrectionAtAs -> 1, (* FlexibleSUSY[8] *) higgs2loopCorrectionAbAs -> 1, (* FlexibleSUSY[9] *) higgs2loopCorrectionAtAt -> 1, (* FlexibleSUSY[10] *) higgs2loopCorrectionAtauAtau -> 1, (* FlexibleSUSY[11] *) forceOutput -> 0, (* FlexibleSUSY[12] *) topPoleQCDCorrections -> 1, (* FlexibleSUSY[13] *) betaZeroThreshold -> 1.*^-11, (* FlexibleSUSY[14] *) forcePositiveMasses -> 0, (* FlexibleSUSY[16] *) poleMassScale -> 0, (* FlexibleSUSY[17] *) eftPoleMassScale -> 0, (* FlexibleSUSY[18] *) eftMatchingScale -> 0, (* FlexibleSUSY[19] *) eftMatchingLoopOrderUp -> 2, (* FlexibleSUSY[20] *) eftMatchingLoopOrderDown -> 1, (* FlexibleSUSY[21] *) eftHiggsIndex -> 0, (* FlexibleSUSY[22] *) calculateBSMMasses -> 1, (* FlexibleSUSY[23] *) thresholdCorrections -> 122111221, (* FlexibleSUSY[24] *) higgs3loopCorrectionRenScheme -> 0,(* FlexibleSUSY[25] *) higgs3loopCorrectionAtAsAs -> 1, (* FlexibleSUSY[26] *) higgs3loopCorrectionAbAsAs -> 1, (* FlexibleSUSY[27] *) higgs3loopCorrectionAtAtAs -> 1, (* FlexibleSUSY[28] *) higgs3loopCorrectionAtAtAt -> 1, (* FlexibleSUSY[29] *) higgs4loopCorrectionAtAsAsAs -> 1, (* FlexibleSUSY[30] *) parameterOutputScale -> 0 (* MODSEL[12] *) }, ... ];
In the file
model_files/NUHMSSMNoFVHimalaya/NUHMSSMNoFVHimalaya_uncertainty_estimate.m
FlexibleSUSY provides the Mathematica function
CalcNUHMSSMNoFVHimalayaDMh[]
, which calculates the Higgs pole mass
at the 3-loop level with NUHMSSMNoFVHimalaya and performs an
uncertainty estimate of missing higher order corrections. Three
sources of the theory uncertainty are taken into account:
missing higher order contributions to the Higgs mass: The Higgs pole mass is calculated at the SUSY scale, M_\text{SUSY}, as a function of the running MSSM \overline{\text{DR}} parameters at full 1-loop level plus 2-loop corrections of O((\alpha_t + \alpha_b)\alpha_s + (\alpha_t + \alpha_b)^2 + \alpha_\tau^2) plus 3-loop corrections of O((\alpha_t + \alpha_b)\alpha_s^2). The missing contributions are estimated by varying the scale within the interval [M_{\text{SUSY}}/2, 2 M_{\text{SUSY}}].
missing higher order contributions to the strong gauge coupling: The running MSSM \overline{\text{DR}} strong gauge coupling g_3(M_Z) is calculated at the full 1-loop level plus 2-loop contributions of O(\alpha_s^2 + (\alpha_t + \alpha_b)\alpha_s).
If the Higgs mass is calculated at the 3-loop level, then missing 4-loop strong corrections to M_h are estimated by switching on/off the 2-loop contributions to g_3(M_Z).
missing higher order contributions to the top Yukawa coupling: The running MSSM \overline{\text{DR}} Yukawa coupling, y_t(M_Z), is calculated at the full 1-loop level plus 2-loop contributions of O(\alpha_s^2).
If the Higgs mass is calculated at the 2-loop level, then missing 3-loop top Yukawa-type corrections to M_h are estimated by switching on/off the 2-loop contributions to y_t(M_Z).
If the Higgs mass is calculated at the 3-loop level, then missing 4-loop top Yukawa-type corrections can currently not be estimated by switching on/off potential 3-loop contributions to y_t(M_Z), because the latter are currently unknown.
The following code snippet illustrates the calculation of the Higgs pole mass at the 3-loop level with NUHMSSMNoFVHimalaya as a function of the SUSY scale (red solid line), together with the estimated uncertainty (grey band).
When this script is executed, the following figure is produced:
[0803.0672] | Phys.Rev.Lett. 100 (2008) 191602, Phys.Rev.Lett. 101 (2008) 039901 [arXiv:0803.0672] |
[1005.5709] | JHEP 1008 (2010) 104 [arXiv:1005.5709] |
[1708.05720] | Eur.Phys.J. C77 (2017) no.12, 814 [arXiv:1708.05720] |