Table of Contents
- 1 FlexibleSUSY configuration block (FlexibleSUSY)
- 1.1 Precision goal (
FlexibleSUSY[0]
) - 1.2 Maximum number of iterations (
FlexibleSUSY[1]
) - 1.3 BVP solver (
FlexibleSUSY[2]
) - 1.4 Calculate pole masses of Standard Model particles (
FlexibleSUSY[3]
) - 1.5 Pole mass loop order (
FlexibleSUSY[4]
) - 1.6 EWSB loop order (
FlexibleSUSY[5]
) - 1.7 beta-function loop order (
FlexibleSUSY[6]
) - 1.8 Threshold correction loop order (
FlexibleSUSY[7]
) - 1.9 2-loop Higgs pole mass contributions (
FlexibleSUSY[8-11]
) - 1.10 Force output (
FlexibleSUSY[12]
) - 1.11 Top pole mass loop order (
FlexibleSUSY[13]
) - 1.12 Beta-function zero threshold (
FlexibleSUSY[14]
) - 1.13 Calculate observables (
FlexibleSUSY[15]
) - 1.14 Force positive Majorana masses (
FlexibleSUSY[16]
) - 1.15 Pole mass scale (
FlexibleSUSY[17]
) - 1.16 EFT pole mass scale (
FlexibleSUSY[18]
) - 1.17 EFT matching scale (
FlexibleSUSY[19]
) - 1.18 EFT upwards matching loop order (
FlexibleSUSY[20]
) - 1.19 EFT downwards matching loop order (
FlexibleSUSY[21]
) - 1.20 EFT index of SM-like Higgs (
FlexibleSUSY[22]
) - 1.21 Calculate pole masses of BSM particles (
FlexibleSUSY[23]
) - 1.22 Individual threshold corrections (
FlexibleSUSY[24]
) - 1.23 3-loop corrections to the Higgs pole mass (
FlexibleSUSY[25-29]
)
- 1.1 Precision goal (
- 2 Additional physical input parameters (FlexibleSUSYInput)
- 3 MODSEL block (MODSEL)
- 4 Output blocks
- 5 References
Block name: FlexibleSUSY
Default values:
Block FlexibleSUSY 0 1.0e-04 # precision goal 1 0 # max. iterations (0 = automatic) 2 0 # algorithm (0 = all, 1 = two_scale, 2 = semi_analytic) 3 0 # calculate SM pole masses 4 4 # pole mass loop order 5 4 # EWSB loop order 6 4 # beta-functions loop order 7 4 # threshold corrections loop order 8 1 # Higgs 2-loop corrections O(alpha_t alpha_s) 9 1 # Higgs 2-loop corrections O(alpha_b alpha_s) 10 1 # Higgs 2-loop corrections O((alpha_t + alpha_b)^2) 11 1 # Higgs 2-loop corrections O(alpha_tau^2) 12 0 # force output 13 3 # Top pole mass QCD corrections (0 = 1L, 1 = 2L, 2 = 3L, 3 = 4L) 14 1.0e-11 # beta-function zero threshold 15 0 # calculate observables (a_muon, effective couplings) 16 0 # force positive majorana masses 17 0 # pole mass scale 18 0 # pole mass scale in the EFT (0 = min(SUSY scale, Mt)) 19 0 # EFT matching scale (0 = SUSY scale) 20 2 # EFT loop order for upwards matching (SM -> BSM) 21 1 # EFT loop order for downwards matching (BSM -> SM) 22 0 # EFT index of SM-like Higgs in the BSM model (0 = lightest Higgs) 23 1 # calculate BSM pole masses 24 124111421 # individual threshold correction loop orders 25 0 # ren. scheme for Higgs 3L corrections (0 = DR', 1 = MDR', 2 = H3m) 26 1 # Higgs 3-loop corrections O(alpha_t alpha_s^2) 27 1 # Higgs 3-loop corrections O(alpha_b alpha_s^2) 28 1 # Higgs 3-loop corrections O(alpha_t^2 alpha_s) 29 1 # Higgs 3-loop corrections O(alpha_t^3) 30 1 # Higgs 4-loop corrections O(alpha_t alpha_s^3)
Description:
The FlexibleSUSY
block contains fields to configure the spectrum
calculation at run-time. For example, in the FlexibleSUSY
block the
renormalization group running precsision, the beta function loop order
or the loop order of the pole mass calculation can be selected.
index | description | possible values | default value |
---|---|---|---|
0 | precision goal | any positive double | 1.0e-4 |
1 | max. number of iterations | any positive double | 0 (= automatic) |
2 | BC solver | 0 (all), 1 (two-scale) or 2 (semi-analytic) | 0 (= all) |
3 | calculate SM pole masses | 0 (no) or 1 (yes) | 0 (= no) |
4 | pole mass loop order | 0, 1, 2, 3, 4 | 4 (= 4-loop) |
5 | EWSB loop order | 0, 1, 2, 3, 4 | 4 (= 4-loop) |
6 | beta function loop order | 0, 1, 2, 3, 4, 5 | 4 (= 4-loop) |
7 | threshold corrections loop order | 0, 1, 2, 3, 4 | 4 (= 4-loop) |
8 | higgs 2-loop correction O(at as) | 0, 1 | 1 (= enabled) |
9 | higgs 2-loop correction O(ab as) | 0, 1 | 1 (= enabled) |
10 | higgs 2-loop correction O(at at) | 0, 1 | 1 (= enabled) |
11 | higgs 2-loop correction O(atau atau) | 0, 1 | 1 (= enabled) |
12 | force output | 0 (no) or 1 (yes) | 0 (= no) |
13 | top quark pole QCD corrections | 0 (1L), 1 (2L), 2 (3L), 3 (4L) | 3 (= 4L QCD) |
14 | beta function zero threshold | any positive double | 1.0e-11 |
15 | calculate observables | 0 (no) or 1 (yes) | 0 (= no) |
16 | force positive Majorana masses | 0 (no) or 1 (yes) | 0 (= no) |
17 | pole mass scale | any positive double | 0 (= SUSY scale) |
18 | EFT pole mass scale | any positive double | 0 (= minimum of {Mt, SUSY scale}) |
19 | EFT matching scale | any positive double | 0 (= SUSY scale) |
20 | EFT loop order for upwards matching | 0, 1, 2 | 2 (= 2-loop) |
21 | EFT loop order for downwards matching | 0, 1 | 1 (= 1-loop) |
22 | EFT Higgs index | any integer >= 0 | 0 (= lightest) |
23 | calculate pole masses of BSM particles | 0 (no) or 1 (yes) | 1 (= yes) |
24 | individual threshold corrections | positive integer | 124111421 |
25 | ren. scheme for higgs 3L corrections | 0 (DR'), 1 (MDR'), 2 (H3m) | 0 (= DR') |
26 | higgs 3-loop correction O(at as^2) | 0, 1 | 1 (= enabled) |
27 | higgs 3-loop correction O(ab as^2) | 0, 1 | 1 (= enabled) |
28 | higgs 3-loop correction O(at^2 as) | 0, 1 | 1 (= enabled) |
29 | higgs 3-loop correction O(at^3) | 0, 1 | 1 (= enabled) |
30 | higgs 4-loop correction O(at as^3) | 0, 1 | 1 (= enabled) |
FlexibleSUSY solves the given boundary value problem (BVP) by running
all model parameters to each scale and imposing the corresponding
boundary conditions until a convergent solution has been found or the
maximum number of iterations has been reached. In FlexibleSUSY[0]
,
precision goal of the BVP solver can be specified. The precision goal
determines
- the precision of the numerical solution of the RGEs,
- the precision of the numerical solution of the EWSB equations and
- to test whether the BVP solver has found a convergent solution.
FlexibleSUSY solves the given boundary value problem (BVP) by running
to each scale and imposing the corresponding boundary conditions until
a convergent solution has been found or the maximum number of
iterations, N_{\text{max.it.}}, has been reached. In
FlexibleSUSY[1]
, the maximum number of iterations
N_{\text{max.it.}} used to solve the BVP can be specified. If
N_{\text{max.it.}} is set to 0
, the maximum number of
iterations is set to N_{\text{max.it.}} = -10 \log_{10}(p),
where p is the precision goal specified in
FlexibleSUSY[0]
.
Choses the boundary value problem (BVP) solver: 0 = all that are enabled (starting with the two-scale solver, if present), 1 = two-scale solver (if present), 2 = semi-analytic solver (if present).
Calculate pole masses of Standard Model particles: 0 = do not calculate Standard Model pole masses, 1 = calculate the Standard Model pole masses.
Maximum pole mass loop order. 0 = tree-level, 1 = 1-loop, 2 = 2-loop (if available), 3 = 3-loop (if available).
Maximum loop order of the electroweak symmetry breaking (EWSB) equations. 0 = tree-level, 1 = 1-loop, 2 = 2-loop (if available), 3 = 3-loop (if available).
Important
The EWSB loop order should always be set to the same value as the pole mass loop order!
Loop order of the renormalization group running. 0 = no running, 1 = 1-loop running, 2 = 2-loop running, 3 = 3-loop running (if available), etc.
Using the flag FlexibleSUSY[7]
the "global" loop order of the
threshold corrections of the SM to the full BSM model can be selected.
The threshold corrections affect the determination of the running BSM
model parameters \alpha_{\text{em}}, \alpha_s,
\sin(\theta_W), y_e, y_\mu, y_\tau,
y_b, y_t, v at the low-energy scale
Q_{\text{low}} in the \overline{\text{MS}} or
\overline{\text{DR}} scheme.
Note
The individual loop orders of the threshold corrections can
be specified using FlexibleSUSY[24]
.
\alpha_{\text{em}}(Q_{\text{low}}): If the threshold correction loop order is set to
0
, \alpha_{\text{em}}(Q_{\text{low}}) is set to \alpha_{\text{em}}^{\text{SM}(5)}(Q_{\text{low}}) in the Standard Model with 5 active quark flavours. If the threshold correction loop order is set to1
, \alpha_{\text{em}}(Q_{\text{low}}) is calculated from \alpha_{\text{em}}^{\text{SM}(5)}(Q_{\text{low}}) using the full 1-loop threshold correction.\alpha_s(Q_{\text{low}}): If the threshold correction loop order is set to
0
, \alpha_s(Q_{\text{low}}) is set to \alpha_s^{\text{SM}(5)}(Q_{\text{low}}) in the Standard Model with 5 active quark flavours. If the threshold correction loop order is set to1
, \alpha_s(Q_{\text{low}}) is calculated from \alpha_s^{\text{SM}(5)}(Q_{\text{low}}) using the full 1-loop threshold correction.\sin(\theta_W)(Q_{\text{low}}): If the threshold correction loop order is set to
0
, the weak mixing angle is calculated from either (i) \{G_F,M_Z\} or (ii) \{M_W,M_Z\} (depending on the choice of the weak mixing angle calculation in the FlexibleSUSY model file, see FlexibleSUSY model file) using the corresponding tree-level relation.If the threshold correction loop order is set to
1
, the the weak mixing angle is calculated at the 1-loop level, taking into account- (i): complete 1-loop corrections to the W and Z self-energies \Pi_{ZZ}^T, \Pi_{ZZ}^T as well as 1-loop corrections to \Delta r, which includes vertex and box contributions \delta_{\text{VG}} from neutralinos, charginos, selectrons and smuons.
- (ii): complete 1-loop corrections to the W and Z self-energies \Pi_{ZZ}^T, \Pi_{ZZ}^T.
If the threshold correction loop order is set to
2
, the weak mixing angle is calculated at the 1-loop level, as above, and the following 2-loop correction is taken into account:- (i): 2-loop corrections to \Delta r of the order O(\alpha_{\text{em}} \alpha_s + y_t^4) from [hep-ph:9606211] Eqs. (C.5)-(C.6).
y_e(Q_{\text{low}}), y_\mu(Q_{\text{low}}), y_\tau(Q_{\text{low}}): If the threshold correction loop order is set to
0
, the lepton Yukawa couplings y_e(Q_{\text{low}}), y_\mu(Q_{\text{low}}), y_\tau(Q_{\text{low}}) are calculated from the lepton pole masses in the Standard Model with 5 active quark flavours using the tree-level relation.If the threshold correction loop order is set to
1
, y_e(Q_{\text{low}}), y_\mu(Q_{\text{low}}), y_\tau(Q_{\text{low}}) are calculated at the scale Q_{\text{low}} at the 1-loop level from the running lepton masses in Standard Model with 5 active quark flavours.y_b(Q_{\text{low}}): If the threshold correction loop order is set to
0
, the bottom Yukawa couplings y_b(Q_{\text{low}}) is calculated from the running bottom mass in the Standard Model with 5 active quark flavours, m_b^{(5)}(Q_{\text{low}}), using the tree-level relation.If the threshold correction loop order is set to
1
, y_b(Q_{\text{low}}) is calculated at the scale Q_{\text{low}} from m_b^{(5)}(Q_{\text{low}}) taking the complete 1-loop correction into account.y_t(Q_{\text{low}}): If the threshold correction loop order is set to
0
, the running top Yukawa coupling y_t(Q_{\text{low}}) is calculated from the top pole mass, M_t, using the tree-level relation.If the threshold correction loop order is set to
1
, the running y_t(Q_{\text{low}}) is calculated at the scale Q_{\text{low}} from M_t taking the complete 1-loop correction into account.m_t(Q) &= M_t + \text{Re\;}\Sigma_{t}^{S}(M_t) + M_t \left[ \text{Re\;}\Sigma_{t}^{L}(M_t) + \text{Re\;}\Sigma_{t}^{R}(M_t) + \Delta m_t^{(1),\text{QCD}} \right] ,
where \Sigma_{t}^{S}(p), \Sigma_{t}^{L}(p), \Sigma_{t}^{R}(p) denote the scalar, left- and right-handed parts of the top self-energy without the gluon contribution. The 1-loop SM-QCD contribution m_t^{(1),\text{QCD}} reads in the \overline{\text{DR}} scheme
\Delta m_t^{(1),\text{QCD}} &= -\frac{g_3^2}{12 \pi^2} \left[5-3 \log\left(\frac{m_t^2}{Q^2}\right)\right],
and in the \overline{\text{MS}} scheme
\Delta m_t^{(1),\text{QCD}} &= -\frac{g_3^2}{12 \pi^2} \left[4-3 \log\left(\frac{m_t^2}{Q^2}\right)\right].
If the threshold correction loop order is set to
2
, 2-loop SM-QCD corrections are taken into count asm_t(Q) &= M_t + \text{Re\;}\Sigma_{t}^{S}(M_t) + M_t \left[ \text{Re\;}\Sigma_{t}^{L}(M_t) + \text{Re\;}\Sigma_{t}^{R}(M_t) + \Delta m_t^{(1),\text{QCD}} + \Delta m_t^{(2),\text{QCD}} \right] ,
where \Delta m_t^{(2),\text{QCD}} reads in the \overline{\text{DR}} scheme [hep-ph:0210258]
\Delta m_t^{(2),\text{QCD}} &= \left(\Delta m_t^{(1),\text{QCD}}\right)^2 - \frac{g_3^4}{4608 \pi^4} \Bigg[396 \log^2\left(\frac{m_t^2}{Q^2}\right)-1476 \log\left(\frac{m_t^2}{Q^2}\right) -48 \zeta(3)+2011+16 \pi^2 (1+\log 4)\Bigg] \,,
and in the \overline{\text{MS}} scheme [hep-ph:9803493]
\Delta m_t^{(2),\text{QCD}} &= \left(\Delta m_t^{(1),\text{QCD}}\right)^2 - \frac{g_3^4}{4608 \pi^4} \Bigg[396 \log^2\left(\frac{m_t^2}{Q^2}\right) - 2028 \log\left(\frac{m_t^2}{Q^2}\right) - 48 \zeta(3) + 2821 + 16 \pi^2 (1+\log 4)\Bigg] \,.
If the threshold correction loop order is set to
3
in non-SUSY models, the 3-loop SM-QCD corrections from Refs. [hep-ph:9912391], [hep-ph:9911434] are taken into count asm_t(Q) &= M_t + \text{Re\;}\Sigma_{t}^{S}(M_t) + M_t \left[ \text{Re\;}\Sigma_{t}^{L}(M_t) + \text{Re\;}\Sigma_{t}^{R}(M_t) + \Delta m_t^{(1),\text{QCD}} + \Delta m_t^{(2),\text{QCD}} + \Delta m_t^{(3),\text{QCD}} \right] ,
where \Delta m_t^{(3),\text{QCD}} reads in the \overline{\text{MS}} scheme
\Delta m_t^{(3),\text{QCD}} = -\frac{g_3^6 \left\{2700 \left[-312 \zeta (3)+1645+8 \pi ^2 (1+\log (4))\right] \log \left(\frac{Q^2}{m^2}\right)+48600 \log ^3\left(\frac{Q^2}{m^2}\right)+714420 \log ^2\left(\frac{Q^2}{m^2}\right)-15 \left[69120 \text{Li}_4\left(\frac{1}{2}\right)+116496 \zeta(3)-94800 \zeta (5)-531197+2880 \log^4(2)\right] - 4 \pi^2 [129510 \zeta (3)-393101+240 \log(2) (697+24 \log(2))] + 10500 \pi ^4\right\}}{9953280 \pi^6}
Note
The 1-, 2-, and 3-loop QCD corrections can be found in
Mathematica form in meta/TwoLoopQCD.m
and
meta/ThreeLoopQCD.m
.
Selects (on/off = 1/0) the individual 2-loop Higgs pole mass contributions (if available).
If set to 1, an output is always printed, even if a problem has occurred during the calculation.
Warning
Be careful with this option! Check the problems and warnings that have occurred!
Loop order of contributions to the top pole mass. 0 = full 1-loop, 1 = 2-loop QCD, 2 = 3-loop QCD.
Note
The top pole mass is only calculated if FlexibleSUSY[3] = 1
.
Below this threshold, beta-functions are treated as being exactly zero. Setting this threshold to a non-zero value can avoid numerical problems / non-convergence problems in models with complex parameters.
Enable/disable (1/0) the calculation of the observables specified in the FlexibleSUSY model file. See the section on observables in FlexibleSUSY model file for further details about how to select the calculation of observables in FlexibleSUSY.
If set to 1, the masses of Majorana fermions will always be positive. In this case, the corresponding mixing matrices may be complex.
Warning
Setting FlexibleSUSY[6] = 1
violates the SLHA standard.
Using FlexibleSUSY[17]
, the renormalization scale at which the
pole mass spectrum is calculated can be overwritten. By default the
renormalization scale is the SUSY scale (SUSYScale
variable in the
model file). If FlexibleSUSY[17]
is set to 0
, the value given
by the SUSYScale
variable is used. If FlexibleSUSY[17]
is set
to a non-zero value, then this value is used as renormalization scale.
Note
Only used if FlexibleEFTHiggs == True
Using FlexibleSUSY[18]
, the renormalization scale at which the
Standard Model pole mass spectrum is calculated in the EFT can be
overwritten. If unspecified or set to 0
, the minimum of the top
pole mass and the SUSYScale
is used.
Note
Only used if FlexibleEFTHiggs == True
Using FlexibleSUSY[19]
, the renormalization scale at which the full
model is matched to the Standard Model can be overwritten. If
unspecified or set to 0
, the SUSYScale
is used.
Note
Only used if FlexibleEFTHiggs == True
Using FlexibleSUSY[20]
, the loop order for the matching of the
Standard Model to the full BSM model can be selected ("upwards
matching"). If unspecified, the loop order is set to 2
.
Note
Only used if FlexibleEFTHiggs == True
Using FlexibleSUSY[21]
, the loop order for the matching of the BSM
model to the Standard Model can be selected ("downwards matching").
If unspecified, the loop order is set to 1
.
Note
Only used if FlexibleEFTHiggs == True
Using FlexibleSUSY[22]
, the user can specify which Higgs in the BSM
model should be interpreted to be the SM-like one. If unspecified,
the index is set to 0
, i.e. the lightest Higgs eigenstate in the BSM
model is interpreted as the SM-like Higgs.
Enable/disable (1/0) the calculation of the pole masses of non-Standard Model particles.
The entry FlexibleSUSY[24]
can be used for a fine-grained control to
specify the loop orders of the low-energy threshold corrections of the
SM(5) parameters to the parameters of the BSM model. The given number
is composed of several digits, each one specifying a threshold
correction loop order of a parameter. The following table shows which
digit is associated with which parameter.
digit position n | default value (prefactor of 10^n) | parameter |
---|---|---|
0 | 1 (1-loop) | \alpha_{\text{em}} |
1 | 2 (2-loop) | \sin\theta_W |
2 | 4 (4-loop) | \alpha_{s} |
3 | 1 (1-loop) | m_Z |
4 | 1 (1-loop) | m_W |
5 | 1 (1-loop) | m_h |
6 | 4 (4-loop) | m_t |
7 | 2 (2-loop) | m_b |
8 | 1 (1-loop) | m_{\tau} |
Note, that the threshold correction loop order of a parameter is not
higher than the "global" threshold correction loop order, specified by
FlexibleSUSY[7]
.
In the MSSM, the 3-loop corrections to the Higgs pole mass of the
order O(\alpha_t \alpha_s^2 + \alpha_b \alpha_s^2)
[1005.5709] can be taken into account. To include them, the variable
UseHiggs3LoopMSSM
must be set to True
in the model file:
UseHiggs3LoopMSSM = True;
Important
It is strongly recommended to also set UseMSSMYukawa2Loop = True;
and UseMSSM3LoopRGEs = True;
for consistency.
To enable the 3-loop corrections at run-time in general, set both
FlexibleSUSY[4]
and FlexibleSUSY[5]
to 3
. To enable the
specific O(\alpha_t \alpha_s^2) correction at run-time, set the
flag FlexibleSUSY[26]
to 1
. To enable the 3-loop correction
O(\alpha_b \alpha_s^2) at run-time, set the flag
FlexibleSUSY[27]
to 1
.
The 3-loop corrections from [1005.5709] can be calculated in the
\overline{DR}', \overline{MDR}' or H3m scheme. To use
the \overline{DR}' scheme, set FlexibleSUSY[25]
to 0
.
To use the \overline{MDR}' scheme, set FlexibleSUSY[25]
to
1
. To use the H3m scheme, set FlexibleSUSY[25]
to 2
.
We recommend to set the following model file options to enable the 3-loop Higgs pole mass corrections in the MSSM:
UseHiggs2LoopMSSM = True; (* enable 2-loop corrections *) EffectiveMu = \[Mu]; (* sign convention for MSSM mu parameter *) UseMSSM3LoopRGEs = True; (* enable 3-loop RGEs *) UseHiggs3LoopMSSM = True; (* enable 3-loop corrections *) UseMSSMYukawa2Loop = True; (* enable 2-loop SQCD corrections to yt and yb *) UseMSSMAlphaS2Loop = True; (* enable 2-loop SQCD corrections to alpha_s *)
To run FlexibleSUSY with the 3-loop corrections, we recommend the settings in the SLHA input:
Block FlexibleSUSY 4 3 # pole mass loop order 5 3 # EWSB loop order 6 3 # beta-functions loop order 7 2 # threshold corrections loop order 8 1 # Higgs 2-loop corrections O(alpha_t alpha_s) 9 1 # Higgs 2-loop corrections O(alpha_b alpha_s) 10 1 # Higgs 2-loop corrections O((alpha_t + alpha_b)^2) 11 1 # Higgs 2-loop corrections O(alpha_tau^2) 24 123111221 # individual threshold correction loop orders 25 0 # ren. scheme for Higgs 3L corrections (0 = DR', 1 = MDR', 2 = H3m) 26 1 # Higgs 3-loop corrections O(alpha_t alpha_s^2) 27 1 # Higgs 3-loop corrections O(alpha_b alpha_s^2) 28 1 # Higgs 3-loop corrections O(alpha_t^2 alpha_s) 29 1 # Higgs 3-loop corrections O(alpha_t^3) 30 1 # Higgs 4-loop corrections O(alpha_t alpha_s^3)
In FlexibleSUSY's Mathematica interface, the following settings should be used:
fsSettings -> { poleMassLoopOrder -> 3, (* FlexibleSUSY[4] *) ewsbLoopOrder -> 3, (* FlexibleSUSY[5] *) betaFunctionLoopOrder -> 3, (* FlexibleSUSY[6] *) thresholdCorrectionsLoopOrder -> 2,(* FlexibleSUSY[7] *) higgs2loopCorrectionAtAs -> 1, (* FlexibleSUSY[8] *) higgs2loopCorrectionAbAs -> 1, (* FlexibleSUSY[9] *) higgs2loopCorrectionAtAt -> 1, (* FlexibleSUSY[10] *) higgs2loopCorrectionAtauAtau -> 1, (* FlexibleSUSY[11] *) thresholdCorrections -> 123111221, (* FlexibleSUSY[24] *) higgs3loopCorrectionRenScheme -> 0,(* FlexibleSUSY[25] *) higgs3loopCorrectionAtAsAs -> 1, (* FlexibleSUSY[26] *) higgs3loopCorrectionAbAsAs -> 1, (* FlexibleSUSY[27] *) }
Note
In [1708.05720] the individual threshold corrections
(FlexibleSUSY[24]
, thresholdCorrections
) were set to
123111121
, i.e. the 2-loop SQCD threshold corrections to
\alpha_s(M_Z) have not been taken into account for
clarity, because they would correspond to a partial 4-loop
contribution to the light CP-even Higgs pole mass.
Block name: FlexibleSUSYInput
Default values:
Block FlexibleSUSYInput 0 0.00729735 # alpha_em(0) 1 125.09 # Mh pole
Description:
The FlexibleSUSYInput
block contains fields for additional known
physical input parameters, which are not contained in a SLHA-compliant
SMINPUTS
block.
index | description | possible values | default value |
---|---|---|---|
0 | alpha_em(0) in the Thompson limit | any positive double | 1./137.035999074 |
1 | SM Higgs pole mass | any positive double | 125.09 |
Block name: MODSEL
Default values:
Block MODSEL 6 0 # Quark/Lepton flavour violation 12 0 # running parameter output scale (GeV)
Description:
FlexibleSUSYInput supports the following fields of the MODSEL
block, as defined in SLHA-2:
index | description | possible values | default value |
---|---|---|---|
6 | Quark/Lepton flavour violation | 0 (no), 1 (quark), 2 (lepton), 3 (both) | 0 (= no flavour violation) |
12 | Output scale for running parameters | any positive, non-zero double | 0 (= SUSYScale) |
In FlexibleSUSY the user can define additional SLHA output blocks. Please refer to the section on output blocks in FlexibleSUSY model file section for more information.
[1708.05720] | Eur.Phys.J. C77 (2017) no.12, 814 [arxiv:1708.05720] |
[1005.5709] | (1, 2) JHEP 1008 (2010) 104 [arxiv:1005.5709] |
[hep-ph:9606211] | Nucl.Phys. B491 (1997) 3-67 [arxiv:hep-ph/9606211] |
[hep-ph:9803493] | Nucl.Phys. B539 (1999) 671-690 [arxiv:hep-ph/9803493] |
[hep-ph:9911434] | Nucl.Phys. B573 (2000) 617-651 [arxiv:hep-ph/9911434] |
[hep-ph:9912391] | Phys.Lett. B482 (2000) 99-108 [arxiv:hep-ph/9912391] |
[hep-ph:0210258] | Eur.Phys.J. C29 (2003) 87-101 [arxiv:hep-ph/0210258] |