-
Notifications
You must be signed in to change notification settings - Fork 1
/
cg.f
4289 lines (3933 loc) · 94.3 KB
/
cg.f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
subroutine orth_random ( n, seed, a )
c*********************************************************************72
c
cc ORTH_RANDOM returns the ORTH_RANDOM matrix.
c
c Discussion:
c
c The matrix is a random orthogonal matrix.
c
c Properties:
c
c The inverse of A is equal to A'.
c A is orthogonal: A * A' = A' * A = I.
c Because A is orthogonal, it is normal: A' * A = A * A'.
c Columns and rows of A have unit Euclidean norm.
c Distinct pairs of columns of A are orthogonal.
c Distinct pairs of rows of A are orthogonal.
c The L2 vector norm of A*x = the L2 vector norm of x for any vector x.
c The L2 matrix norm of A*B = the L2 matrix norm of B for any matrix B.
c det ( A ) = +1 or -1.
c A is unimodular.
c All the eigenvalues of A have modulus 1.
c All singular values of A are 1.
c All entries of A are between -1 and 1.
c
c Discussion:
c
c Thanks to Eugene Petrov, B I Stepanov Institute of Physics,
c National Academy of Sciences of Belarus, for convincingly
c pointing out the severe deficiencies of an earlier version of
c this routine.
c
c Essentially, the computation involves saving the Q factor of the
c QR factorization of a matrix whose entries are normally distributed.
c However, it is only necessary to generate this matrix a column at
c a time, since it can be shown that when it comes time to annihilate
c the subdiagonal elements of column K, these (transformed) elements of
c column K are still normally distributed random values. Hence, there
c is no need to generate them at the beginning of the process and
c transform them K-1 times.
c
c For computational efficiency, the individual Householder transformations
c could be saved, as recommended in the reference, instead of being
c accumulated into an explicit matrix format.
c
c Licensing:
c
c This code is distributed under the MIT license.
c
c Modified:
c
c By Sourangshu Ghosh
c
c Author:
c
c Sourangshu Ghosh
c
c Reference:
c
c Pete Stewart,
c Efficient Generation of Random Orthogonal Matrices With an Application
c to Condition Estimators,
c SIAM Journal on Numerical Analysis,
c Volume 17, Number 3, June 1980, pages 403-409.
c
c Parameters:
c
c Input, integer N, the order of the matrix.
c
c Input/output, integer SEED, a seed for the random number
c generator.
c
c Output, double precision A(N,N), the matrix.
c
implicit none
integer n
double precision a(n,n)
integer i
integer j
double precision r8_normal_01
integer seed
double precision v(n)
double precision x(n)
c
c Start with A = the identity matrix.
c
do i = 1, n
do j = 1, n
if ( i .eq. j ) then
a(i,j) = 1.0D+00
else
a(i,j) = 0.0D+00
end if
end do
end do
c
c Now behave as though we were computing the QR factorization of
c some other random matrix. Generate the N elements of the first column,
c compute the Householder matrix H1 that annihilates the subdiagonal elements,
c and set A := A * H1' = A * H.
c
c On the second step, generate the lower N-1 elements of the second column,
c compute the Householder matrix H2 that annihilates them,
c and set A := A * H2' = A * H2 = H1 * H2.
c
c On the N-1 step, generate the lower 2 elements of column N-1,
c compute the Householder matrix HN-1 that annihilates them, and
c and set A := A * H(N-1)' = A * H(N-1) = H1 * H2 * ... * H(N-1).
c This is our random orthogonal matrix.
c
do j = 1, n - 1
c
c Set the vector that represents the J-th column to be annihilated.
c
do i = 1, j - 1
x(i) = 0.0D+00
end do
do i = j, n
x(i) = r8_normal_01 ( seed )
end do
c
c Compute the vector V that defines a Householder transformation matrix
c H(V) that annihilates the subdiagonal elements of X.
c
call r8vec_house_column ( n, x, j, v )
c
c Postmultiply the matrix A by H'(V) = H(V).
c
call r8mat_house_axh ( n, a, v, a )
end do
return
end
subroutine pds_random ( n, seed, a )
c*********************************************************************72
c
cc PDS_RANDOM returns the PDS_RANDOM matrix.
c
c Discussion:
c
c The matrix is a "random" positive definite symmetric matrix.
c
c The matrix returned will have eigenvalues in the range [0,1].
c
c Properties:
c
c A is symmetric: A' = A.
c
c A is positive definite: 0 .lt. x'*A*x for nonzero x.
c
c The eigenvalues of A will be real.
c
c Licensing:
c
c This code is distributed under the MIT license.
c
c Modified:
c
c BY Sourangshu Ghosh
c
c Author:
c
c Sourangshu Ghosh
c
c Parameters:
c
c Input, integer N, the order of the matrix.
c
c Input/output, integer SEED, a seed for the random
c number generator.
c
c Output, double precision A(N,N), the matrix.
c
implicit none
integer n
double precision a(n,n)
integer i
integer j
integer k
double precision lambda(n)
double precision q(n,n)
integer seed
c
c Get a random set of eigenvalues.
c
call r8vec_uniform_01 ( n, seed, lambda )
c
c Get a random orthogonal matrix Q.
c
call orth_random ( n, seed, q )
c
c Set A = Q * Lambda * Q'.
c
do i = 1, n
do j = 1, n
a(i,j) = 0.0D+00
do k = 1, n
a(i,j) = a(i,j) + q(i,k) * lambda(k) * q(j,k)
end do
end do
end do
return
end
function r8_normal_01 ( seed )
c*********************************************************************72
c
cc R8_NORMAL_01 returns a unit pseudonormal R8.
c
c Discussion:
c
c Because this routine uses the Box Muller method, it requires pairs
c of uniform random values to generate a pair of normal random values.
c This means that on every other call, the code can use the second
c value that it calculated.
c
c However, if the user has changed the SEED value between calls,
c the routine automatically resets itself and discards the saved data.
c
c Licensing:
c
c This code is distributed under the GNU LGPL license.
c
c Modified:
c
c Sourangshu Ghosh
c
c Author:
c
c Sourangshu Ghosh
c
c Parameters:
c
c Input/output, integer SEED, a seed for the random number generator.
c
c Output, double precision R8_NORMAL_01, a sample of the standard normal PDF.
c
implicit none
double precision pi
parameter ( pi = 3.141592653589793D+00 )
double precision r1
double precision r2
double precision r8_normal_01
double precision r8_uniform_01
integer seed
integer seed1
integer seed2
integer seed3
integer used
double precision v1
double precision v2
save seed1
save seed2
save seed3
save used
save v2
data seed2 / 0 /
data used / 0 /
data v2 / 0.0D+00 /
c
c If USED is odd, but the input SEED does not match
c the output SEED on the previous call, then the user has changed
c the seed. Wipe out internal memory.
c
if ( mod ( used, 2 ) .eq. 1 ) then
if ( seed .ne. seed2 ) then
used = 0
seed1 = 0
seed2 = 0
seed3 = 0
v2 = 0.0D+00
end if
end if
c
c If USED is even, generate two uniforms, create two normals,
c return the first normal and its corresponding seed.
c
if ( mod ( used, 2 ) .eq. 0 ) then
seed1 = seed
r1 = r8_uniform_01 ( seed )
if ( r1 .eq. 0.0D+00 ) then
write ( *, '(a)' ) ' '
write ( *, '(a)' ) 'R8_NORMAL_01 - Fatal error!'
write ( *, '(a)' ) ' R8_UNIFORM_01 returned a value of 0.'
stop 1
end if
seed2 = seed
r2 = r8_uniform_01 ( seed )
seed3 = seed
v1 = sqrt ( -2.0D+00 * log ( r1 ) ) * cos ( 2.0D+00 * pi * r2 )
v2 = sqrt ( -2.0D+00 * log ( r1 ) ) * sin ( 2.0D+00 * pi * r2 )
r8_normal_01 = v1
seed = seed2
c
c If USED is odd (and the input SEED matched the output value from
c the previous call), return the second normal and its corresponding seed.
c
else
r8_normal_01 = v2
seed = seed3
end if
used = used + 1
return
end
function r8_uniform_01 ( seed )
c*********************************************************************72
c
cc R8_UNIFORM_01 returns a unit pseudorandom R8.
c
c Discussion:
c
c This routine implements the recursion
c
c seed = 16807 * seed mod ( 2^31 - 1 )
c r8_uniform_01 = seed / ( 2^31 - 1 )
c
c The integer arithmetic never requires more than 32 bits,
c including a sign bit.
c
c If the initial seed is 12345, then the first three computations are
c
c Input Output R8_UNIFORM_01
c SEED SEED
c
c 12345 207482415 0.096616
c 207482415 1790989824 0.833995
c 1790989824 2035175616 0.947702
c
c Licensing:
c
c This code is distributed under the GNU LGPL license.
c
c Modified:
c
c By Sourangshu Ghosh
c
c Author:
c
c Sourangshu Ghosh
c
c Reference:
c
c Paul Bratley, Bennett Fox, Linus Schrage,
c A Guide to Simulation,
c Springer Verlag, pages 201-202, 1983.
c
c Pierre L'Ecuyer,
c Random Number Generation,
c in Handbook of Simulation,
c edited by Jerry Banks,
c Wiley Interscience, page 95, 1998.
c
c Bennett Fox,
c Algorithm 647:
c Implementation and Relative Efficiency of Quasirandom
c Sequence Generators,
c ACM Transactions on Mathematical Software,
c Volume 12, Number 4, pages 362-376, 1986.
c
c Peter Lewis, Allen Goodman, James Miller,
c A Pseudo-Random Number Generator for the System/360,
c IBM Systems Journal,
c Volume 8, pages 136-143, 1969.
c
c Parameters:
c
c Input/output, integer SEED, the "seed" value, which should NOT be 0.
c On output, SEED has been updated.
c
c Output, double precision R8_UNIFORM_01, a new pseudorandom variate,
c strictly between 0 and 1.
c
implicit none
double precision r8_uniform_01
integer k
integer seed
if ( seed .eq. 0 ) then
write ( *, '(a)' ) ' '
write ( *, '(a)' ) 'R8_UNIFORM_01 - Fatal error!'
write ( *, '(a)' ) ' Input value of SEED = 0.'
stop 1
end if
k = seed / 127773
seed = 16807 * ( seed - k * 127773 ) - k * 2836
if ( seed .lt. 0 ) then
seed = seed + 2147483647
end if
c
c Although SEED can be represented exactly as a 32 bit integer,
c it generally cannot be represented exactly as a 32 bit real number!
c
r8_uniform_01 = dble ( seed ) * 4.656612875D-10
return
end
subroutine r83_cg ( n, a, b, x )
c*********************************************************************72
c
cc R83_CG uses the conjugate gradient method on an R83 system.
c
c Discussion:
c
c The R83 storage format is used for a tridiagonal matrix.
c The superdiagonal is stored in entries (1,2:N), the diagonal in
c entries (2,1:N), and the subdiagonal in (3,1:N-1). Thus, the
c original matrix is "collapsed" vertically into the array.
c
c The matrix A must be a positive definite symmetric band matrix.
c
c The method is designed to reach the solution after N computational
c steps. However, roundoff may introduce unacceptably large errors for
c some problems. In such a case, calling the routine again, using
c the computed solution as the new starting estimate, should improve
c the results.
c
c Example:
c
c Here is how an R83 matrix of order 5 would be stored:
c
c * A12 A23 A34 A45
c A11 A22 A33 A44 A55
c A21 A32 A43 A54 *
c
c Licensing:
c
c This code is distributed under the GNU LGPL license.
c
c Modified:
c
c By Sourangshu Ghosh
c
c Author:
c
c Sourangshu Ghosh
c
c Reference:
c
c Frank Beckman,
c The Solution of Linear Equations by the Conjugate Gradient Method,
c in Mathematical Methods for Digital Computers,
c edited by John Ralston, Herbert Wilf,
c Wiley, 1967,
c ISBN: 0471706892,
c LC: QA76.5.R3.
c
c Parameters:
c
c Input, integer N, the order of the matrix.
c N must be positive.
c
c Input, double precision A(3,N), the matrix.
c
c Input, double precision B(N), the right hand side vector.
c
c Input/output, double precision X(N).
c On input, an estimate for the solution, which may be 0.
c On output, the approximate solution vector.
c
implicit none
integer n
double precision a(3,n)
double precision alpha
double precision ap(n)
double precision b(n)
double precision beta
integer i
integer it
double precision p(n)
double precision pap
double precision pr
double precision r(n)
double precision r8vec_dot_product
double precision rap
double precision x(n)
c
c Initialize
c AP = A * x,
c R = b - A * x,
c P = b - A * x.
c
call r83_mv ( n, n, a, x, ap )
do i = 1, n
r(i) = b(i) - ap(i)
end do
do i = 1, n
p(i) = b(i) - ap(i)
end do
c
c Do the N steps of the conjugate gradient method.
c
do it = 1, n
c
c Compute the matrix*vector product AP=A*P.
c
call r83_mv ( n, n, a, p, ap )
c
c Compute the dot products
c PAP = P*AP,
c PR = P*R
c Set
c ALPHA = PR / PAP.
c
pap = r8vec_dot_product ( n, p, ap )
pr = r8vec_dot_product ( n, p, r )
if ( pap .eq. 0.0D+00 ) then
return
end if
alpha = pr / pap
c
c Set
c X = X + ALPHA * P
c R = R - ALPHA * AP.
c
do i = 1, n
x(i) = x(i) + alpha * p(i)
end do
do i = 1, n
r(i) = r(i) - alpha * ap(i)
end do
c
c Compute the vector dot product
c RAP = R*AP
c Set
c BETA = - RAP / PAP.
c
rap = r8vec_dot_product ( n, r, ap )
beta = - rap / pap
c
c Update the perturbation vector
c P = R + BETA * P.
c
do i = 1, n
p(i) = r(i) + beta * p(i)
end do
end do
return
end
subroutine r83_dif2 ( m, n, a )
c*********************************************************************72
c
cc R83_DIF2 returns the DIF2 matrix in R83 format.
c
c Example:
c
c N = 5
c
c 2 -1 . . .
c -1 2 -1 . .
c . -1 2 -1 .
c . . -1 2 -1
c . . . -1 2
c
c Properties:
c
c A is banded, with bandwidth 3.
c
c A is tridiagonal.
c
c Because A is tridiagonal, it has property A (bipartite).
c
c A is a special case of the TRIS or tridiagonal scalar matrix.
c
c A is integral, therefore det ( A ) is integral, and
c det ( A ) * inverse ( A ) is integral.
c
c A is Toeplitz: constant along diagonals.
c
c A is symmetric: A' = A.
c
c Because A is symmetric, it is normal.
c
c Because A is normal, it is diagonalizable.
c
c A is persymmetric: A(I,J) = A(N+1-J,N+1-I).
c
c A is positive definite.
c
c A is an M matrix.
c
c A is weakly diagonally dominant, but not strictly diagonally dominant.
c
c A has an LU factorization A = L * U, without pivoting.
c
c The matrix L is lower bidiagonal with subdiagonal elements:
c
c L(I+1,I) = -I/(I+1)
c
c The matrix U is upper bidiagonal, with diagonal elements
c
c U(I,I) = (I+1)/I
c
c and superdiagonal elements which are all -1.
c
c A has a Cholesky factorization A = L * L', with L lower bidiagonal.
c
c L(I,I) = sqrt ( (I+1) / I )
c L(I,I-1) = -sqrt ( (I-1) / I )
c
c The eigenvalues are
c
c LAMBDA(I) = 2 + 2 * COS(I*PI/(N+1))
c = 4 SIN^2(I*PI/(2*N+2))
c
c The corresponding eigenvector X(I) has entries
c
c X(I)(J) = sqrt(2/(N+1)) * sin ( I*J*PI/(N+1) ).
c
c Simple linear systems:
c
c x = (1,1,1,...,1,1), A*x=(1,0,0,...,0,1)
c
c x = (1,2,3,...,n-1,n), A*x=(0,0,0,...,0,n+1)
c
c det ( A ) = N + 1.
c
c The value of the determinant can be seen by induction,
c and expanding the determinant across the first row:
c
c det ( A(N) ) = 2 * det ( A(N-1) ) - (-1) * (-1) * det ( A(N-2) )
c = 2 * N - (N-1)
c = N + 1
c
c Licensing:
c
c This code is distributed under the GNU LGPL license.
c
c Modified:
c
c Sourangshu Ghosh
c
c Author:
c
c Sourangshu Ghosh
c
c Reference:
c
c Robert Gregory, David Karney,
c A Collection of Matrices for Testing Computational Algorithms,
c Wiley, 1969,
c ISBN: 0882756494,
c LC: QA263.68
c
c Morris Newman, John Todd,
c Example A8,
c The evaluation of matrix inversion programs,
c Journal of the Society for Industrial and Applied Mathematics,
c Volume 6, Number 4, pages 466-476, 1958.
c
c John Todd,
c Basic Numerical Mathematics,
c Volume 2: Numerical Algebra,
c Birkhauser, 1980,
c ISBN: 0817608117,
c LC: QA297.T58.
c
c Joan Westlake,
c A Handbook of Numerical Matrix Inversion and Solution of
c Linear Equations,
c John Wiley, 1968,
c ISBN13: 978-0471936756,
c LC: QA263.W47.
c
c Parameters:
c
c Input, integer M, N, the order of the matrix.
c
c Output, double precision A(3,N), the matrix.
c
implicit none
integer m
integer n
double precision a(3,n)
integer i
integer j
integer mn
do j = 1, n
do i = 1, 3
a(i,j) = 0.0D+00
end do
end do
mn = min ( m, n )
do j = 1, mn
a(2,j) = +2.0D+00
end do
do j = 2, mn
a(1,j) = -1.0D+00
end do
if ( m .le. n ) then
do j = 1, mn - 1
a(3,j) = -1.0D+00
end do
else if ( n .lt. m ) then
do j = 1, mn
a(3,j) = -1.0D+00
end do
end if
return
end
subroutine r83_mv ( m, n, a, x, b )
c*********************************************************************72
c
cc R83_MV multiplies an R83 matrix times an R8VEC.
c
c Discussion:
c
c The R83 storage format is used for a tridiagonal matrix.
c The superdiagonal is stored in entries (1,2:N), the diagonal in
c entries (2,1:N), and the subdiagonal in (3,1:N-1). Thus, the
c original matrix is "collapsed" vertically into the array.
c
c Example:
c
c Here is how an R83 matrix of order 5 would be stored:
c
c * A12 A23 A34 A45
c A11 A22 A33 A44 A55
c A21 A32 A43 A54 *
c
c Licensing:
c
c This code is distributed under the GNU LGPL license.
c
c Modified:
c
c 02 June 2014
c
c Author:
c
c John Burkardt
c
c Parameters:
c
c Input, integer M, N, the number of rows and columns.
c
c Input, double precision A(3,N), the R83 matrix.
c
c Input, double precision X(N), the vector to be multiplied by A.
c
c Output, double precision B(M), the product A * x.
c
implicit none
integer m
integer n
double precision a(3,n)
double precision b(m)
integer i
integer j
integer mn
double precision x(n)
do i = 1, m
b(i) = 0.0D+00
end do
mn = min ( m, n )
if ( n .eq. 1 ) then
b(1) = a(2,1) * x(1)
if ( 1 .lt. m ) then
b(2) = a(3,1) * x(1)
end if
return
end if
b(1) = a(2,1) * x(1)
& + a(1,2) * x(2)
do j = 2, mn - 1
b(j) = a(3,j-1) * x(j-1)
& + a(2,j) * x(j)
& + a(1,j+1) * x(j+1)
end do
b(mn) = a(3,mn-1) * x(mn-1)
& + a(2,mn) * x(mn)
if ( n .lt. m ) then
b(mn+1) = b(mn+1) + a(3,mn) * x(mn)
end if
if ( m .lt. n ) then
b(mn) = b(mn) + a(1,mn+1) * x(mn+1)
end if
return
end
subroutine r83_resid ( m, n, a, x, b, r )
c*********************************************************************72
c
cc R83_RESID computes the residual R = B-A*X for R83 matrices.
c
c Licensing:
c
c This code is distributed under the MIT license.
c
c Modified:
c
c 02 June 2014
c
c Author:
c
c John Burkardt
c
c Parameters:
c
c Input, integer M, the number of rows of the matrix.
c M must be positive.
c
c Input, integer N, the number of columns of the matrix.
c N must be positive.
c
c Input, double precision A(3,N), the matrix.
c
c Input, double precision X(N), the vector to be multiplied by A.
c
c Input, double precision B(M), the desired result A * x.
c
c Output, double precision R(M), the residual R = B - A * X.
c
implicit none
integer m
integer n
double precision a(3,n)
double precision b(m)
integer i
double precision r(m)
double precision x(n)
call r83_mv ( m, n, a, x, r )
do i = 1, m
r(i) = b(i) - r(i)
end do
return
end
subroutine r83s_cg ( n, a, b, x )
c*********************************************************************72
c
cc R83S_CG uses the conjugate gradient method on an R83S system.
c
c Discussion:
c
c The R83S storage format is used for a tridiagonal scalar matrix.
c The vector A(3) contains the subdiagonal, diagonal, and superdiagonal
c values that occur on every row.
c
c The matrix A must be a positive definite symmetric band matrix.
c
c The method is designed to reach the solution after N computational
c steps. However, roundoff may introduce unacceptably large errors for
c some problems. In such a case, calling the routine again, using
c the computed solution as the new starting estimate, should improve
c the results.
c
c Example:
c
c Here is how an R83S matrix of order 5, stored as (A1,A2,A3), would
c be interpreted:
c
c A2 A3 0 0 0
c A1 A2 A3 0 0
c 0 A1 A2 A3 0
c 0 0 A1 A2 A3
c 0 0 0 A1 A2
c
c Licensing:
c
c This code is distributed under the GNU LGPL license.
c
c Modified:
c
c 09 July 2014
c
c Author:
c
c John Burkardt
c
c Reference:
c
c Frank Beckman,
c The Solution of Linear Equations by the Conjugate Gradient Method,
c in Mathematical Methods for Digital Computers,
c edited by John Ralston, Herbert Wilf,
c Wiley, 1967,
c ISBN: 0471706892,
c LC: QA76.5.R3.
c
c Parameters:
c
c Input, integer N, the order of the matrix.
c N must be positive.
c
c Input, double precision A(3), the matrix.
c
c Input, double precision B(N), the right hand side vector.
c
c Input/output, double precision X(N).
c On input, an estimate for the solution, which may be 0.
c On output, the approximate solution vector.
c
implicit none
integer n
double precision a(3)
double precision alpha
double precision ap(n)
double precision b(n)
double precision beta
integer i
integer it
double precision p(n)
double precision pap
double precision pr
double precision r(n)
double precision r8vec_dot_product
double precision rap
double precision x(n)
c
c Initialize
c AP = A * x,
c R = b - A * x,
c P = b - A * x.
c
call r83s_mv ( n, n, a, x, ap )
do i = 1, n
r(i) = b(i) - ap(i)
end do
do i = 1, n
p(i) = b(i) - ap(i)
end do
c
c Do the N steps of the conjugate gradient method.
c
do it = 1, n
c
c Compute the matrix*vector product AP=A*P.
c