-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtim_sort.py
124 lines (94 loc) · 2.59 KB
/
tim_sort.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
# Python3 program to perform timSort
# see https://en.wikipedia.org/wiki/Timsort
# for an excellent break down of the
# algoritm and its running time
MIN_MERGE = 32
def calcMinRun(n):
"""Returns the minimum length of a
run from 23 - 64 so that
the len(array)/minrun is less than or
equal to a power of 2.
e.g. 1=>1, ..., 63=>63, 64=>32, 65=>33,
..., 127=>64, 128=>32, ...
"""
r = 0
while n >= MIN_MERGE:
r |= n & 1
n >>= 1
return n + r
# This function sorts array from left index to
# to right index which is of size at most RUN
def insertionSort(arr, left, right):
for i in range(left + 1, right + 1):
j = i
while j > left and arr[j] < arr[j - 1]:
arr[j], arr[j - 1] = arr[j - 1], arr[j]
j -= 1
# Merge function merges the sorted runs
def merge(arr, l, m, r):
# original array is broken in two parts
# left and right array
len1, len2 = m - l + 1, r - m
left, right = [], []
for i in range(0, len1):
left.append(arr[l + i])
for i in range(0, len2):
right.append(arr[m + 1 + i])
i, j, k = 0, 0, l
# after comparing, we merge those two array
# in larger sub array
while i < len1 and j < len2:
if left[i] <= right[j]:
arr[k] = left[i]
i += 1
else:
arr[k] = right[j]
j += 1
k += 1
# Copy remaining elements of left, if any
while i < len1:
arr[k] = left[i]
k += 1
i += 1
# Copy remaining element of right, if any
while j < len2:
arr[k] = right[j]
k += 1
j += 1
# Iterative Timsort function to sort the
# array[0...n-1] (similar to merge sort)
def timSort(arr):
n = len(arr)
minRun = calcMinRun(n)
# Sort individual subarrays of size RUN
for start in range(0, n, minRun):
end = min(start + minRun - 1, n - 1)
insertionSort(arr, start, end)
# Start merging from size RUN (or 32). It will merge
# to form size 64, then 128, 256 and so on ....
size = minRun
while size < n:
# Pick starting point of left sub array. We
# are going to merge arr[left..left+size-1]
# and arr[left+size, left+2*size-1]
# After every merge, we increase left by 2*size
for left in range(0, n, 2 * size):
# Find ending point of left sub array
# mid+1 is starting point of right sub array
mid = min(n - 1, left + size - 1)
right = min((left + 2 * size - 1), (n - 1))
# Merge sub array arr[left.....mid] &
# arr[mid+1....right]
if mid < right:
merge(arr, left, mid, right)
size = 2 * size
# Driver program to test above function
if __name__ == "__main__":
arr = [-2, 7, 15, -14, 0, 15, 0,
7, -7, -4, -13, 5, 8, -14, 12]
print("Given Array is")
print(arr)
# Function Call
timSort(arr)
print("After Sorting Array is")
print(arr)