forked from SinghJasmeet585/Software-Defect-Prediction
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpreprocessingfile.py
51 lines (35 loc) · 1.87 KB
/
preprocessingfile.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
# -*- coding: utf-8 -*-
"""
Created on Fri Dec 14 00:19:45 2018
@author: Rituraj
"""
#Software Defect Prediction
import numpy as np
import pandas as pd
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import recall_score
from imblearn.over_sampling import SMOTE
#add dataset normalization and feature selection function
def my_sdp_preprocessor(datafilename_as_csv_inquotes):
original_data = pd.read_csv(datafilename_as_csv_inquotes)
original_data.isnull().values.any() #Gives false ie:No null value in dataset
original_data = original_data.fillna(value=False)
original_X = pd.DataFrame(original_data.drop(['defects'],axis=1))
original_Y = original_data['defects']
original_Y = pd.DataFrame(original_Y)
x_train1, x_test, y_train1, y_test= train_test_split(original_X, original_Y, test_size = .1,
random_state=12)
#now we resample, and from that we take training and validation sets
sm = SMOTE(random_state=12, ratio = 1.0)
x, y = sm.fit_sample(x_train1, y_train1)
y_train2 = pd.DataFrame(y, columns=['defects'])
x_train2 = pd.DataFrame(x, columns=original_X.columns)
x_train, x_val, y_train, y_val= train_test_split(x_train2, y_train2, test_size = .1,
random_state=12)
combined_training_data = x_train.copy()
combined_training_data['defects'] = y_train
import seaborn as sns
corr = combined_training_data.corr()
sns.heatmap(corr, xticklabels=corr.columns,yticklabels=corr.columns)
return original_data, original_X, original_Y,combined_training_data,x_train1,x_train2,x_train,x_test,x_val,y_train1,y_train2,y_train,y_test,y_val