-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathgen.py
344 lines (327 loc) · 16.3 KB
/
gen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
# -*- coding: utf-8 -*-
"""Generator for model"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from builtins import range
import argparse
import os
import sys
import random
import pickle
from math import exp
import torch
from torch.autograd import Variable
# Import my own cleaning lib, use jieba for other user
try:
from purewords import clean_sentence as clean
except ImportError:
from jieba import lcut as clean
import model
import utils
from utils import check_cuda_for_var, check_directory
parser = argparse.ArgumentParser(description=\
"Generator for HRNN/Seq2seq")
parser.add_argument('--data', type=str,
help="location of the data corpus(json file)")
parser.add_argument('--type', type=str,
help="generate dialog with hrnn/seq2seq model")
parser.add_argument('--save', type=str, default='model/',
help='path to load the final model\'s directory')
parser.add_argument('--seed', type=int, default=55665566,
help='random seed')
parser.add_argument('--beam', type=int, default=1,
help='beam size for beam search(default 1 will be greedy search)')
parser.add_argument('--eodlong', type=int, default=0,
help='whether force model to gen a longer dialog (1 for on, 0 for off, default = 0)')
parser.add_argument('--nosr', type=int, default=0,
help='whether force model don\'t self repeat (1 for on, 0 for off, default = 0)')
parser.add_argument('--number', type=int, default=0,
help='model number to restore')
parser.add_argument('--sbs', type=int, default=0,
help='Generate sentence by sentence (1 for on, 0 for off, default = 0)')
args = parser.parse_args()
torch.manual_seed(args.seed)
random.seed(args.seed)
DEBUG = False
if args.type != "hrnn" and args.type != "seq2seq":
raise ValueError("args.type should be hrnn or seq2seq, but got %s" % (args.type))
if args.beam <= 0:
raise ValueError("args.beam should be at least 1 or larger number")
if not os.path.isfile('dict.pkl'):
my_lang, _ = utils.build_lang(args.data)
with open('dict.pkl', 'wb') as filename:
pickle.dump(my_lang, filename)
else:
print("Load dict.pkl")
with open('dict.pkl', 'rb') as filename:
my_lang = pickle.load(filename)
if args.type == "hrnn":
# Load last HRNN model
if args.number == 0:
number = torch.load(os.path.join(args.save, 'checkpoint.pt'))
else:
number = args.number
encoder = torch.load(os.path.join(args.save, 'encoder'+str(number)+'.pt'))
context = torch.load(os.path.join(args.save, 'context'+str(number)+'.pt'))
decoder = torch.load(os.path.join(args.save, 'decoder'+str(number)+'.pt'))
if torch.cuda.is_available():
encoder = encoder.cuda()
context = context.cuda()
decoder = decoder.cuda()
def gen(sentence):
encoder.eval()
context.eval()
decoder.eval()
# Inference
gen_sentence = []
talking_history = []
context_hidden = context.init_hidden()
max_dialog_len = 20
max_sentence_len = 15
beam_size = args.beam
for _ in range(max_dialog_len):
decoder_input = Variable(torch.LongTensor([[my_lang.word2index["SOS"]]]))
decoder_input = check_cuda_for_var(decoder_input)
encoder_hidden = encoder.init_hidden()
decoder_hidden = decoder.init_hidden()
if len(gen_sentence) > 0:
for ei in range(len(gen_sentence)):
_, encoder_hidden = encoder(gen_sentence[ei], encoder_hidden)
# Clean generated sentence list
gen_sentence = []
else:
for ei in range(len(sentence)):
_, encoder_hidden = encoder(sentence[ei], encoder_hidden)
context_output, context_hidden = context(encoder_hidden, context_hidden)
# Beam search
index2state = {}
for index in range(beam_size):
index2state[index] = [decoder_input, decoder_hidden, [decoder_input.data[0][0]], 0.0]
# One step to get beam_size candidates
decoder_output, decoder_hidden = decoder(context_hidden,\
decoder_input, decoder_hidden)
scores, topi = decoder_output.data.topk(beam_size)
for index in range(beam_size):
ni = topi[0][index]
index2state[index][0] = check_cuda_for_var(Variable(torch.LongTensor([[ni]])))
index2state[index][1] = decoder_hidden
index2state[index][2].append(ni)
index2state[index][3] = scores[0][index]
for sentence_pointer in range(max_sentence_len):
current_scores = []
current2state = {}
# Init current2state
for index in range(beam_size):
for jndex in range(beam_size):
current2state[index * beam_size + jndex] = [0, 0, 0, 0]
for index in range(beam_size):
output, hidden = decoder(context_hidden, \
index2state[index][0], index2state[index][1])
tops, topi = output.data.topk(beam_size)
for jndex in range(beam_size):
ni = topi[0][jndex]
current_map = current2state[index * beam_size + jndex]
current_map[0] = check_cuda_for_var(Variable(torch.LongTensor([[ni]])))
current_map[1] = hidden
current_map[2] = index2state[index][2][:]
current_map[2].append(ni)
current_map[3] = tops[0][jndex] + index2state[index][3]
if args.eodlong == 1 and my_lang.word2index["EOD"] in current_map[2]:
current_map[3] *= exp(max_sentence_len - 12 - sentence_pointer)
current_scores.append(current_map[3])
_, top_of_beamsize2 = torch.FloatTensor(current_scores).topk(beam_size)
# Top beam's output is eos, break and output the top beam
if current2state[top_of_beamsize2[0]][2][-1] == my_lang.word2index["EOS"]:
if args.nosr == 1 and current2state[top_of_beamsize2[0]][2] in talking_history:
# Don't repeat itself
# Soft verion
current2state[top_of_beamsize2[0]][3] *= 2
# Hard version
#current2state[top_of_beamsize2[0][3]] *= 100000.0
else:
first_eos = current2state[top_of_beamsize2[0]][2].index(my_lang.word2index["EOS"])
gen_sentence = current2state[top_of_beamsize2[0]][2][:first_eos+1]
break
after_beam_dict = {}
for index, candidate in enumerate(top_of_beamsize2):
after_beam_dict[index] = current2state[candidate]
index2state = after_beam_dict
# Beam Search a good sentence and assign to gen_sentence
talking_history.append(gen_sentence)
gen_sentence = Variable(torch.LongTensor(gen_sentence))
gen_sentence = check_cuda_for_var(gen_sentence)
try:
string = ' '.join([my_lang.index2word[word.data[0]] for word in gen_sentence])
print(string)
if "EOD" in string:
break
except RuntimeError:
break
return talking_history
def genSbyS():
try:
encoder.eval()
context.eval()
decoder.eval()
context_hidden = context.init_hidden()
max_sentence_len = 15
beam_size = args.beam
talking_history = []
while True:
start = input("[%s] >>> " % (args.type.upper()))
if start == 'reset':
context_hidden = context.init_hidden()
talking_history = []
continue
clean_sentence = clean(start)
clean_sentence_idx = my_lang.sentence2index(clean_sentence)
if len(clean_sentence_idx) == 0:
continue
clean_sentence_idx = Variable(torch.LongTensor(clean_sentence_idx))
clean_sentence_idx = check_cuda_for_var(clean_sentence_idx)
sentence = clean_sentence_idx
decoder_input = Variable(torch.LongTensor([[my_lang.word2index["SOS"]]]))
decoder_input = check_cuda_for_var(decoder_input)
encoder_hidden = encoder.init_hidden()
decoder_hidden = decoder.init_hidden()
for ei in range(len(sentence)):
_, encoder_hidden = encoder(sentence[ei], encoder_hidden)
context_output, context_hidden = context(encoder_hidden, context_hidden)
# Beam search
index2state = {}
for index in range(beam_size):
index2state[index] = [decoder_input, decoder_hidden, [decoder_input.data[0][0]], 0.0]
# One step to get beam_size candidates
decoder_output, decoder_hidden = decoder(context_hidden,\
decoder_input, decoder_hidden)
scores, topi = decoder_output.data.topk(beam_size)
for index in range(beam_size):
ni = topi[0][index]
index2state[index][0] = check_cuda_for_var(Variable(torch.LongTensor([[ni]])))
index2state[index][1] = decoder_hidden
index2state[index][2].append(ni)
index2state[index][3] = scores[0][index]
for sentence_pointer in range(max_sentence_len):
current_scores = []
current2state = {}
# Init current2state
for index in range(beam_size):
for jndex in range(beam_size):
current2state[index * beam_size + jndex] = [0, 0, 0, 0]
for index in range(beam_size):
output, hidden = decoder(context_hidden, \
index2state[index][0], index2state[index][1])
tops, topi = output.data.topk(beam_size)
for jndex in range(beam_size):
ni = topi[0][jndex]
current_map = current2state[index * beam_size + jndex]
current_map[0] = check_cuda_for_var(Variable(torch.LongTensor([[ni]])))
current_map[1] = hidden
current_map[2] = index2state[index][2][:]
current_map[2].append(ni)
current_map[3] = tops[0][jndex] + index2state[index][3]
if args.eodlong == 1 and my_lang.word2index["EOD"] in current_map[2]:
current_map[3] *= exp(max_sentence_len - 12 - sentence_pointer)
current_scores.append(current_map[3])
_, top_of_beamsize2 = torch.FloatTensor(current_scores).topk(beam_size)
# Top beam's output is eos, break and output the top beam
if current2state[top_of_beamsize2[0]][2][-1] == my_lang.word2index["EOS"]:
if args.nosr == 1 and current2state[top_of_beamsize2[0]][2] in talking_history:
# Don't repeat itself
# Soft verion
current2state[top_of_beamsize2[0]][3] *= 2
# Hard version
#current2state[top_of_beamsize2[0][3]] *= 100000.0
else:
first_eos = current2state[top_of_beamsize2[0]][2].index(my_lang.word2index["EOS"])
gen_sentence = current2state[top_of_beamsize2[0]][2][:first_eos+1]
break
after_beam_dict = {}
for index, candidate in enumerate(top_of_beamsize2):
after_beam_dict[index] = current2state[candidate]
index2state = after_beam_dict
# Beam Search a good sentence and assign to gen_sentence
talking_history.append(gen_sentence)
gen_sentence = Variable(torch.LongTensor(gen_sentence))
gen_sentence = check_cuda_for_var(gen_sentence)
string = ' '.join([my_lang.index2word[word.data[0]] for word in gen_sentence])
print(string)
if "EOD" in string:
break
decoder_input = Variable(torch.LongTensor([[my_lang.word2index["SOS"]]]))
decoder_input = check_cuda_for_var(decoder_input)
encoder_hidden = encoder.init_hidden()
decoder_hidden = decoder.init_hidden()
for ei in range(len(gen_sentence)):
_, encoder_hidden = encoder(gen_sentence[ei], encoder_hidden)
context_output, context_hidden = context(encoder_hidden, context_hidden)
except KeyboardInterrupt:
print()
else:
# Load last Seq2seq model
number = torch.load(os.path.join(args.save, 'checkpoint.pt'))
encoder = torch.load(os.path.join(args.save, 'encoder'+str(number)+'.pt'))
decoder = torch.load(os.path.join(args.save, 'decoder'+str(number)+'.pt'))
if torch.cuda.is_available():
encoder = encoder.cuda()
decoder = decoder.cuda()
def gen(sentence):
max_length = 20
encoder.eval()
decoder.eval()
talking_history = []
gen_sentence = []
counter = 0
while counter < 10:
encoder_hidden = encoder.init_hidden()
encoder_outputs = Variable(torch.zeros(max_length, encoder.hidden_size))
decoder_input = Variable(torch.LongTensor([[my_lang.word2index["SOS"]]]))
encoder_outputs = check_cuda_for_var(encoder_outputs)
decoder_input = check_cuda_for_var(decoder_input)
if len(gen_sentence) > 0:
for ei in range(len(gen_sentence)):
encoder_output, encoder_hidden = encoder(gen_sentence[ei], encoder_hidden)
encoder_outputs[ei] = encoder_output[0][0]
# Clean generated sentence list
gen_sentence = []
else:
for ei in range(len(sentence)):
encoder_output, encoder_hidden = encoder(sentence[ei], encoder_hidden)
encoder_outputs[ei] = encoder_output[0][0]
decoder_hidden = encoder_hidden
while True:
if DEBUG:
print("[Debug] ", decoder_input.data)
gen_sentence.append(decoder_input.data[0][0])
if gen_sentence[-1] == my_lang.word2index["EOS"] or len(gen_sentence) >= max_length - 1:
break
decoder_output, decoder_hidden, decoder_attention = decoder(decoder_input, decoder_hidden, \
encoder_outputs)
_, topi = decoder_output.data.topk(1)
ni = topi[0][0]
decoder_input = Variable(torch.LongTensor([[ni]]))
decoder_input = check_cuda_for_var(decoder_input)
gen_sentence = Variable(torch.LongTensor(gen_sentence))
gen_sentence = check_cuda_for_var(gen_sentence)
string = ' '.join([my_lang.index2word[word.data[0]] for word in gen_sentence])
print(string)
talking_history.append(string)
if "EOD" in string or args.sbs:
break
counter += 1
return talking_history
# Generating string
try:
if args.sbs == 0 or args.type == 'seq2seq':
while True:
start = input("[%s] >>> " % (args.type.upper()))
clean_sentence = clean(start)
clean_sentence_idx = my_lang.sentence2index(clean_sentence)
clean_sentence_idx = Variable(torch.LongTensor(clean_sentence_idx))
clean_sentence_idx = check_cuda_for_var(clean_sentence_idx)
gen(clean_sentence_idx)
else:
genSbyS()
except KeyboardInterrupt:
print()