Skip to content

Latest commit

 

History

History
184 lines (134 loc) · 8.51 KB

README.md

File metadata and controls

184 lines (134 loc) · 8.51 KB

pySICE

Python scripts behind the SICE toolchain for albedo retrieval.

by B. Vandecrux (2), A. Kokhanovsky (1), J. Box (2)

(1) German Research Centre for Geosciences, Potsdam, Germany (2) Geological Survey of Denmark and Greenland (GEUS) Øster Voldgade 10, 1350 Copenhagen, Denmark

Table of Contents

Running environment

developped on Python 3.7.6 uses numpy, rasterio, time and sys packages

Theoretical background

The snow surface characteristics retrieval is based on the following work:

The ozone total ozone retreival is described in

The Algorithm Theoretical Basis Document is available here

Input files:

File Description
height.tif Height in metre
mask.tif Ice mask
O3.tif Total column ozone
OZA.tif Observation zenith angle
OAA.tif Observation azimuth angle
r_TOA_01..21.tif Top of the atmosphere OLCI reflectance
SZA.tif Solar Zenith angle
SAA.tif Solar azimuth angle
File Name Description Units
grain_diameter.tif Snow grain diameter mm
snow_specific_surface_area.tif Snow specific surface area m^{2}kg^{-1}
albedo_bb_planar_sw.tif shortwave broadband planar albedo 300-2400 nm
albedo_bb_spherical_sw.tif shortwave broadband spherical albedo 300-2400 nm
rBRR_01..21.tif bottom of the atmosphere surface reflectance (OLCI bands 1 through 21)
albedo_spectral_planar_01..21.tif spectral planar albedo (OLCI bands 1 to 11 and 16 to 21)
albedo_spectral_spherical_01..21.tif spectral spherical albedo (OLCI bands 1 to 11 and 16 to 21)
isnow.tif See next table
impurity_load.tif pollutant load ppm_weight
pol_type.tif type of pollutant: 1(soot), 2( dust), 3 and 4 (other or mixture)
al.tif effective absorption length mm
r0.tif reflectance of a semi-infinite non-absorbing snow layer
O3_SICE.tif total ozone product (OLCI) corrected for ozone scattering
factor.tif Snow covered fraction within mixed pixels
cv1.tif quality check 1 (see ATBD)
cv2.tif quality check 1 (see ATBD)
Diagnostic Code Description
1 clean snow
2 polluted snow
3 partially snow covered pixel
100 sza<75, no retrival
102 TOA reflectance at band 21 < 0.1, no retrieval
103 TOA reflectance at band 1 < 0.2, no retrieval
104 grain_diameter < 0.1, no retrieval, potential cloud flag
105 retrieved spherical albedo negative in band 1, 2 or 3
-n impossible to solve snow spherical albedo equation at band n

We recommend the use of Anaconda and recent version of Python (>3.7).

The package can be installed as using

pip install git+https://github.com/GEUS-SICE/pySICE.git@pySICEv2.1                                  

The package can be run using

pysice InputFolder OutputFolder

The output is added to the OutputFolder if it exists, if not is is added to the InputFolder folder. See help for other possibilities:

pysice -h


usage: pysice.py [-h] [-i FL_IN] [-o FL_OUT] [-c [CLEAN_SNOW]]
                 [--no_qc [NO_QC]] [--no_oz [NO_OZ]]
                 [input_folder] [output_folder]

positional arguments:
  input_folder          Path to input folder, containing OLCI radiance files
  output_folder         Path to output folder (same as input folder if non-
                        existent or not specified)

optional arguments:
  -h, --help            show this help message and exit
  -i FL_IN, --fl_in FL_IN, --input FL_IN
                        Path to input folder, containing OLCI radiance files
                        (or use first positional argument)
  -o FL_OUT, --fl_out FL_OUT, --output FL_OUT
                        Path to output folder (or use last positional
                        argument)
  -c [CLEAN_SNOW], --clean_snow [CLEAN_SNOW]
                        If present, processes all pixels as clean snow
  --no_qc [NO_QC]       If present, does not run quality check
  --no_oz [NO_OZ]       If present, does not retrieve ozone


Post questions, suggestions, patches at https://github.com/GEUS-SICE/pySICE

Test input files are available here. Download and unzip using browser or with:

wget https://www.dropbox.com/s/b7wbervqls0p5cc/S3_test_data.zip
unzip S3_test_data.zip -d S3_test_data

sice_f.py reads the SICE-generated S3 geotiff files, converts them into ascii files, compiles and runs sice.f, reads the text outputs and save them into geotiff again.

Compile sice.f:

gfortran ./fortran/sice.f -o ./fortran/sice.exe

Create the output folder and run the script:

mkdir S3_test_data/fortran
python fortran/sice_f.py ./S3_test_data