-
Notifications
You must be signed in to change notification settings - Fork 0
/
training.py
73 lines (53 loc) · 2.16 KB
/
training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import random,json,pickle
import numpy as np
import nltk
from nltk.stem import WordNetLemmatizer
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense,Activation,Dropout
from tensorflow.keras.optimizers import SGD
lematizer = WordNetLemmatizer()
intents = json.loads(open('intents.json').read())
words = []
classes = []
documents = []
ignore_letters = ['?','!','.',',']
for intent in intents['intents']:
for pattern in intent['patterns']:
word_list = nltk.word_tokenize(pattern)
words.extend(word_list)
documents.append((word_list,intent['tag']))
if intent['tag'] not in classes:
classes.append(intent['tag'])
words = [lematizer.lemmatize(word) for word in words if word not in ignore_letters]
words = sorted(set(words))
classes = sorted(set(classes))
pickle.dump(words, open('words.pkl','wb'))
pickle.dump(classes, open('classes.pkl','wb'))
training_bag = []
traning_output_row = []
output_empty = [0] * len(classes)
for document in documents:
bag = []
word_patterns = document[0]
word_patterns = [lematizer.lemmatize(word.lower()) for word in word_patterns]
for word in words:
bag.append(1) if word in word_patterns else bag.append(0)
output_row = list(output_empty)
output_row[classes.index(document[1])] = 1
training_bag.append(bag)
traning_output_row.append(output_row)
training_bag = np.array(training_bag)
traning_output_row = np.array(traning_output_row)
from sklearn.utils import shuffle
train_x,train_y = shuffle(training_bag,traning_output_row,random_state=0)
model =Sequential()
model.add(Dense(128,input_shape=(len(train_x[0]),), activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(64, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(len(train_y[0]), activation='softmax'))
sgd = SGD(lr=0.01, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy',optimizer=sgd,metrics=['accuracy'])
hist = model.fit(np.array(train_x),np.array(train_y),epochs=200,batch_size=5,verbose=1)
model.save('IntellichatModel.h5',hist)
print('Done')