-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathalt_i2v.py
205 lines (193 loc) · 6.65 KB
/
alt_i2v.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import keras
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential, Model, Merge, load_model
from keras.layers import Input, Activation, Dropout, Flatten, Dense, Reshape, merge
from keras.preprocessing.image import ImageDataGenerator
from keras import optimizers
from keras.preprocessing.image import ImageDataGenerator
from keras.layers.normalization import BatchNormalization as BN
import numpy as np
import os
from PIL import Image
import glob
import pickle
import sys
import plyvel
import msgpack
import msgpack_numpy as m
import numpy as np
import json
img_width, img_height = 150, 150
train_data_dir = './danbooru.imgs'
validation_data_dir = './imgs'
nb_train_samples = 2000
nb_validation_samples = 800
nb_epoch = 50
result_dir = 'results'
def loader(db, th = None):
db = plyvel.DB(db, create_if_missing=True)
Xs, Ys = [], []
for dbi, (img, vec) in enumerate(db):
img = msgpack.unpackb(img, object_hook=m.decode)
Xs.append(img)
vec = msgpack.unpackb(vec, object_hook=m.decode)
Ys.append(vec)
if dbi%1000 == 0:
print('now on load iter {}'.format(dbi))
if dbi > 50000:
break
if th and th < dbi:
break
return Xs,Ys
def build_dataset() -> None:
db150 = plyvel.DB('lexical150.ldb', create_if_missing=True)
dbeval = plyvel.DB('lexical_eval.ldb', create_if_missing=True)
dbmemo = plyvel.DB('memo.ldb', create_if_missing=True)
print("start to loading huge file system...")
keys = [name.replace('.txt', '') for name in glob.glob('danbooru.imgs/*.txt')]
print("complete to get file names ...")
tag_index = pickle.loads(open('tag_index.pkl', 'rb').read())
print("complete to get tag_index.pkl ...")
kantai = list(filter(lambda x:'kantai' in x, keys))
length = len(kantai)
def _f(ki, key):
if dbmemo.get(bytes(key, 'utf-8')) is not None:
#continue
return
if ki%100 == 0:
print('iter {}/{}'.format(ki, length))
vec = [0.]*len(tag_index)
raw = open('{key}.txt'.format(key=key)).read()
try:
json_tag = list(json.loads(open('{key}.metav1'.format(key=key)).read()).values())
except FileNotFoundError as e:
return;#continue
except OSError as e:
return;#continue
except json.decoder.JSONDecodeError as e:
return;#continue
json_tag = list(map(lambda x:x.replace(' ', '_'), json_tag))
text_tags = raw.split()
for tag in sum([json_tag, text_tags], []):
if tag_index.get(tag) is not None:
vec[tag_index[tag]] = 1.
try:
img = Image.open('{key}.jpg'.format(key=key))
except OSError as e:
return;#continue
try:
img = img.convert('RGB')
except OSError as e:
return;#continue
img150 = np.array(img.resize((150, 150)))
vec = np.array(vec)
img150 = msgpack.packb(img150, default=m.encode)
vec = msgpack.packb(vec, default=m.encode)
if ki/length < 0.8:
db150.put(img150, vec)
else:
dbeval.put(img150, vec)
dbmemo.put(bytes(key, 'utf-8'), bytes('f', 'utf-8'))
ts = [(ki,key) for ki, key in enumerate(kantai)]
for t in ts:
_f(t[0], t[1])
return None
def tag2index():
keys = [name for name in glob.glob('danbooru.imgs/*.txt')]
tags_freq = {}
keys = list(filter(lambda x:'kantai' in x, keys))
length = len(keys)
for ki, key in enumerate(keys):
if ki%10000 == 0:
print('now on iter {}/{}'.format(ki, length))
raw = open('{key}'.format(key=key)).read().split('\n')
text_tags = raw[0].split()
for tag in text_tags:
if tags_freq.get(tag) is None :
tags_freq[tag] = 0
tags_freq[tag] += 1
metakey = "{}.metav1".format(key.replace('.txt', ''))
try:
dic = json.loads(open('{key}'.format(key=metakey)).read())
for tag in map(lambda x:x.replace(' ', '_'), list(dic.values())):
if tags_freq.get(tag) is None :
tags_freq[tag] = 0
tags_freq[tag] += 1
#print(raw)
except FileNotFoundError as e:
continue
except OSError as e:
continue
except json.decoder.JSONDecodeError as e:
continue
tag_index = {}
print('now building pkl file...')
for tag, freq in sorted(tags_freq.items(), key=lambda x:x[1]*-1)[:4096]:
tag_index[tag] = len(tag_index)
open('tag_index.pkl', 'wb').write(pickle.dumps(tag_index))
from keras.applications.vgg16 import VGG16
def build_model():
input_tensor = Input(shape=(150, 150, 3))
vgg16_model = VGG16(include_top=False, weights='imagenet', input_tensor=input_tensor)
dense = Flatten()( \
Dense(2048, activation='relu')( \
BN()( \
vgg16_model.layers[-1].output ) ) )
result = Activation('sigmoid')(\
Activation('linear')( \
Dense(4096)(\
dense) ) )
model = Model(input=vgg16_model.input, output=result)
for i in range(len(model.layers)):
print(i, model.layers[i])
for layer in model.layers[:12]: # default 15
layer.trainable = False
model.compile(loss='binary_crossentropy', optimizer='adam')
return model
#build_model()
def train():
print('load lexical dataset...')
Xs, Ys = loader(db='lexical150.ldb')
print('build model...')
model = build_model()
for i in range(100):
model.fit(np.array(Xs), np.array(Ys), batch_size=16, nb_epoch=1 )
if i%1 == 0:
model.save('models/model%05d.model'%i)
def eval():
tag_index = pickle.loads(open('tag_index.pkl', 'rb').read())
index_tag = { index:tag for tag, index in tag_index.items() }
model = build_model()
model = load_model(sorted(glob.glob('models/*.model'))[-1])
Xs, Ys = loader(db='lexical_eval.ldb', th=100)
for i in range(30):
result = model.predict(np.array([Xs[i]]) )
for i,w in sorted(result.items(), key=lambda x:x[1]*-1)[:30]:
print(index_tag[i], i, w)
def pred():
tag_index = pickle.loads(open('tag_index.pkl', 'rb').read())
index_tag = { index:tag for tag, index in tag_index.items() }
name_img150 = []
for name in filter(lambda x: '.jpg' in x, sys.argv):
img = Image.open('{name}'.format(name=name))
img = img.convert('RGB')
img150 = np.array(img.resize((150, 150)))
name_img150.append( (name, img150) )
model = load_model(sorted(glob.glob('models/*.model'))[-1])
for name, img150 in name_img150:
result = model.predict(np.array([img150]) )
result = result.tolist()[0]
result = { i:w for i,w in enumerate(result)}
for i,w in sorted(result.items(), key=lambda x:x[1]*-1)[:30]:
print("{name} tag={tag} prob={prob}".format(name=name, tag=index_tag[i], prob=w) )
if __name__ == '__main__':
if '--maeshori' in sys.argv:
tag2index()
if '--build' in sys.argv:
build_dataset()
if '--train' in sys.argv:
train()
if '--eval' in sys.argv:
eval()
if '--pred' in sys.argv:
pred()